Metagenomic Microbial Signatures for Noninvasive Detection of Pancreatic Cancer
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Sample Collection
2.2. Shotgun Metagenomic Sequencing and Data Analysis
2.3. Microbial Signature Selection and Model Construction
2.4. Validation of Predictive Model Performance
2.5. Statistical Analysis
3. Results
3.1. Microbiota and Functional Features of PDAC
3.2. Construction and Validation of Metagenomic-Based PDAC Classifiers
3.3. Microbial Signature and CA19-9 Levels Improve Diagnostic Accuracy for PDAC
3.4. Efficacy of the Microbial Signatures Across Different Confounders
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, J.; Lok, V.; Ngai, C.H.; Zhang, L.; Yuan, J.; Lao, X.Q.; Wong, M.C. Worldwide Burden of, Risk Factors for, and Trends in Pancreatic Cancer. Gastroenterology 2021, 160, 744–754. [Google Scholar] [CrossRef] [PubMed]
- Balachandran, V.P.; Beatty, G.L.; Dougan, S.K. Broadening the Impact of Immunotherapy to Pancreatic Cancer: Challenges and Opportunities. Gastroenterology 2019, 156, 2056–2072. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.P. Pancreatic cancer epidemiology: Understanding the role of lifestyle and inherited risk factors. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA A Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA A Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Singhi, A.D.; Koay, E.J.; Chari, S.T.; Maitra, A. Early Detection of Pancreatic Cancer: Opportunities and Challenges. Gastroenterology 2019, 156, 2024–2040. [Google Scholar] [CrossRef]
- Howaizi, M.; Abboura, M.; Krespine, C.; Sbai-Idrissi, M.S.; Marty, O.; Djabbari-Sobhani, M. A new cause for CA19.9 elevation: Heavy tea consumption. Gut 2003, 52, 913–914. [Google Scholar] [CrossRef]
- Luo, G.; Jin, K.; Deng, S.; Cheng, H.; Fan, Z.; Gong, Y.; Qian, Y.; Huang, Q.; Ni, Q.; Liu, C.; et al. Roles of CA19-9 in pancreatic cancer: Biomarker, predictor and promoter. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2021, 1875, 188409. [Google Scholar] [CrossRef]
- Gui, J.-C.; Yan, W.-L.; Liu, X.-D. CA19-9 and CA242 as tumor markers for the diagnosis of pancreatic cancer: A meta-analysis. Clin. Exp. Med. 2014, 14, 225–233. [Google Scholar] [CrossRef]
- Alencar, R.; Kendler, D.B.; Andrade, F.; Nava, C.; Bulzico, D.; Pessoa, C.C.d.N.; Corbo, R.; Vaisman, F. CA19-9 as a Predictor of Worse Clinical Outcome in Medullary Thyroid Carcinoma. Eur. Thyroid. J. 2019, 8, 186–191. [Google Scholar] [CrossRef]
- Sholl, J.; Sepich-Poore, G.D.; Knight, R.; Pradeu, T. Redrawing therapeutic boundaries: Microbiota and cancer. Trends Cancer 2022, 8, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Maekawa, T.; Fukaya, R.; Takamatsu, S.; Itoyama, S.; Fukuoka, T.; Yamada, M.; Hata, T.; Nagaoka, S.; Kawamoto, K.; Eguchi, H.; et al. Possible involvement of Enterococcus infection in the pathogenesis of chronic pancreatitis and cancer. Biochem. Biophys. Res. Commun. 2018, 506, 962–969. [Google Scholar] [CrossRef]
- Pushalkar, S.; Hundeyin, M.; Daley, D.; Zambirinis, C.P.; Kurz, E.; Mishra, A.; Mohan, N.; Aykut, B.; Usyk, M.; Torres, L.E.; et al. The Pancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression. Cancer Discov. 2018, 8, 403–416. [Google Scholar] [CrossRef]
- Wu, X.; Wu, Y.; He, L.; Wu, L.; Wang, X.; Liu, Z. Effects of the intestinal microbial metabolite butyrate on the development of colorectal cancer. J. Cancer 2018, 9, 2510–2517. [Google Scholar] [CrossRef]
- Mullins, T.D.; Kern, H.F.; Metzgar, R.S. Ultrastructural differentiation of sodium butyrate-treated human pancreatic adenocarcinoma cell lines. Pancreas 1991, 6, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Nagathihalli, N.S.; Beesetty, Y.; Lee, W.; Washington, M.K.; Chen, X.; Lockhart, A.C.; Merchant, N.B. Novel mechanistic insights into ectodomain shedding of EGFR Ligands Amphiregulin and TGF-α: Impact on gastrointestinal cancers driven by secondary bile acids. Cancer Res. 2014, 74, 2062–2072. [Google Scholar] [CrossRef]
- Kim, Y.J.; Jeong, S.H.; Kim, E.-K.; Kim, E.J.; Cho, J.H. Ursodeoxycholic acid suppresses epithelial-mesenchymal transition and cancer stem cell formation by reducing the levels of peroxiredoxin II and reactive oxygen species in pancreatic cancer cells. Oncol. Rep. 2017, 38, 3632–3638. [Google Scholar] [CrossRef] [PubMed]
- Mirji, G.; Worth, A.; Bhat, S.A.; El Sayed, M.; Kannan, T.; Goldman, A.R.; Tang, H.-Y.; Liu, Q.; Auslander, N.; Dang, C.V.; et al. The microbiome-derived metabolite TMAO drives immune activation and boosts responses to immune checkpoint blockade in pancreatic cancer. Sci. Immunol. 2022, 7, eabn0704. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, G.; You, L.; Yang, J.; Feng, M.; Qiu, J.; Zhao, Y. Role of the microbiome in occurrence, development and treatment of pancreatic cancer. Mol. Cancer 2019, 18, 173. [Google Scholar] [CrossRef]
- Half, E.; Keren, N.; Reshef, L.; Dorfman, T.; Lachter, I.; Kluger, Y.; Reshef, N.; Knobler, H.; Maor, Y.; Stein, A.; et al. Fecal microbiome signatures of pancreatic cancer patients. Sci. Rep. 2019, 9, 16801. [Google Scholar] [CrossRef]
- Hueman, M.T.; Wang, H.; Yang, C.Q.; Sheng, L.; Henson, D.E.; Schwartz, A.M.; Chen, D. Creating prognostic systems for cancer patients: A demonstration using breast cancer. Cancer Med. 2018, 7, 3611–3621. [Google Scholar] [CrossRef]
- Yang, C.Q.; Gardiner, L.; Wang, H.; Hueman, M.T.; Chen, D. Creating Prognostic Systems for Well-Differentiated Thyroid Cancer Using Machine Learning. Front. Endocrinol. 2019, 10, 288. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Hou, Y.; Hu, W.; Wang, H.; Yang, R.; Zhang, Q.; Feng, Q.; Zheng, X.; Yao, G.; Hao, H. Repressed Blautia-acetate immunological axis underlies breast cancer progression promoted by chronic stress. Nat. Commun. 2023, 14, 6160. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Ma, J.; Han, J.; Li, A.; Liu, G.; Sun, Y.; Zheng, J.; Zhang, J.; Chen, G.; Xu, R.; et al. Gut microbiome model predicts response to neoadjuvant immunotherapy plus chemoradiotherapy in rectal cancer. Med 2024, 5, 1293–1306.e4. [Google Scholar] [CrossRef]
- Matson, V.; Fessler, J.; Bao, R.; Chongsuwat, T.; Zha, Y.; Alegre, M.-L.; Luke, J.J.; Gajewski, T.F. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science 2018, 359, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Poudel, S.K.; Padmanabhan, R.; Dave, H.; Guinta, K.; Stevens, T.; Sanaka, M.R.; Chahal, P.; Sohal, D.P.S.; Khorana, A.A.; Eng, C. Microbiomic profiles of bile in patients with benign and malignant pancreaticobiliary disease. PLoS ONE 2023, 18, e0283021. [Google Scholar] [CrossRef]
- Abe, S.; Masuda, A.; Matsumoto, T.; Inoue, J.; Toyama, H.; Sakai, A.; Kobayashi, T.; Tanaka, T.; Tsujimae, M.; Yamakawa, K.; et al. Impact of intratumoral microbiome on tumor immunity and prognosis in human pancreatic ductal adenocarcinoma. J. Gastroenterol. 2024, 59, 250–262. [Google Scholar] [CrossRef]
- Qu, R.; Zhang, Y.; Ma, Y.; Zhou, X.; Sun, L.; Jiang, C.; Zhang, Z.; Fu, W. Role of the Gut Microbiota and Its Metabolites in Tumorigenesis or Development of Colorectal Cancer. Adv. Sci. 2023, 10, e2205563. [Google Scholar] [CrossRef]
- Yu, S.; Chu, J.; Wu, Y.; Zhuang, J.; Qu, Z.; Song, Y.; Wu, X.; Han, S. Third-generation PacBio sequencing to explore gut bacteria and gender in colorectal cancer. Microb. Pathog. 2024, 192, 106684. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, K.; Zheng, R.; Zeng, H.; Wang, S.; Chen, R.; Wei, W.; He, J. Cancer incidence and mortality in China, 2015. J. Natl. Cancer Cent. 2021, 1, 2–11. [Google Scholar] [CrossRef]
- Cascetta, P.; Cavaliere, A.; Piro, G.; Torroni, L.; Santoro, R.; Tortora, G.; Melisi, D.; Carbone, C. Pancreatic Cancer and Obesity: Molecular Mechanisms of Cell Transformation and Chemoresistance. Int. J. Mol. Sci. 2018, 19, 3331. [Google Scholar] [CrossRef] [PubMed]
- Fahrmann, J.F.; Schmidt, C.M.; Mao, X.; Irajizad, E.; Loftus, M.; Zhang, J.; Patel, N.; Vykoukal, J.; Dennison, J.B.; Long, J.P.; et al. Lead-Time Trajectory of CA19-9 as an Anchor Marker for Pancreatic Cancer Early Detection. Gastroenterology 2021, 160, 1373–1383.e6. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; He, C.; Li, X.; Cai, Y.; Hu, J.; Liao, Y.; Zhao, J.; Xia, L.; He, W.; Liu, L.; et al. Gut microbiota dysbiosis worsens the severity of acute pancreatitis in patients and mice. J. Gastroenterol. 2019, 54, 347–358. [Google Scholar] [CrossRef]
- Li, H.; Xie, J.; Guo, X.; Yang, G.; Cai, B.; Liu, J.; Yue, M.; Tang, Y.; Wang, G.; Chen, S.; et al. Bifidobacterium spp. and their metabolite lactate protect against acute pancreatitis via inhibition of pancreatic and systemic inflammatory responses. Gut Microbes 2022, 14, 2127456. [Google Scholar] [CrossRef]
- Akinlalu, A.; Flaten, Z.; Rasuleva, K.; Mia, S.; Bauer, A.; Elamurugan, S.; Ejjigu, N.; Maity, S.; Arshad, A.; Wu, M.; et al. Integrated proteomic profiling identifies amino acids selectively cytotoxic to pancreatic cancer cells. Innovation 2024, 5, 100626. [Google Scholar] [CrossRef]
- Scolaro, T.; Manco, M.; Pecqueux, M.; Amorim, R.; Trotta, R.; Van Acker, H.H.; Van Haele, M.; Shirgaonkar, N.; Naulaerts, S.; Daniluk, J.; et al. Nucleotide metabolism in cancer cells fuels a UDP-driven macrophage cross-talk, promoting immunosuppression and immunotherapy resistance. Nat. Cancer 2024, 5, 1206–1226. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ren, B.; Yang, G.; Wang, H.; Chen, G.; You, L.; Zhang, T.; Zhao, Y. The enhancement of glycolysis regulates pancreatic cancer metastasis. Cell. Mol. Life Sci. 2020, 77, 305–321. [Google Scholar] [CrossRef]
- Ferrer, C.M.; Lynch, T.P.; Sodi, V.L.; Falcone, J.N.; Schwab, L.P.; Peacock, D.L.; Vocadlo, D.J.; Seagroves, T.N.; Reginato, M.J. O-GlcNAcylation Regulates Cancer Metabolism and Survival Stress Signaling via Regulation of the HIF-1 Pathway. Mol. Cell 2014, 54, 820–831. [Google Scholar] [CrossRef]
- Lynch, T.P.; Ferrer, C.M.; Jackson, S.R.; Shahriari, K.S.; Vosseller, K.; Reginato, M.J. Critical role of O-Linked β-N-acetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis. J. Biol. Chem. 2012, 287, 11070–11081. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, D.; Wu, D.; Gao, X.; Shao, F.; Zhao, M.; Wang, J.; Ma, J.; Wang, W.; Qin, X.; et al. Tissue-resident Lachnospiraceae family bacteria protect against colorectal carcinogenesis by promoting tumor immune surveillance. Cell Host Microbe 2023, 31, 418–432.e8. [Google Scholar] [CrossRef]
- Wang, B.; Shangguan, W.; Li, W.; Xie, M.; Yu, Y.; Yang, Q.; Sun, Q.; Xue, J.; Zhu, Z.; Zhu, Y.; et al. Blautia coccoides and its metabolic products enhance the efficacy of bladder cancer immunotherapy by promoting CD8+ T cell infiltration. J. Transl. Med. 2024, 22, 964. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Wang, Z.; Li, C.; Lv, K.; Tian, G.; Tang, M.; Ji, L.; Yang, J. Bacterial biomarkers capable of identifying recurrence or metastasis carry disease severity information for lung cancer. Front. Microbiol. 2022, 13, 1007831. [Google Scholar] [CrossRef]
- Lu, X.; Xiong, L.; Zheng, X.; Yu, Q.; Xiao, Y.; Xie, Y. Structure of gut microbiota and characteristics of fecal metabolites in patients with lung cancer. Front. Cell. Infect. Microbiol. 2023, 13, 1170326. [Google Scholar] [CrossRef]
- Yang, J.; Li, D.; Yang, Z.; Dai, W.; Feng, X.; Liu, Y.; Jiang, Y.; Li, P.; Li, Y.; Tang, B.; et al. Establishing high-accuracy biomarkers for colorectal cancer by comparing fecal microbiomes in patients with healthy families. Gut Microbes 2020, 11, 918–929. [Google Scholar] [CrossRef] [PubMed]
- Ai, D.; Pan, H.; Li, X.; Gao, Y.; Liu, G.; Xia, L.C. Identifying Gut Microbiota Associated with Colorectal Cancer Using a Zero-Inflated Lognormal Model. Front. Microbiol. 2019, 10, 826. [Google Scholar] [CrossRef]
- Zhang, X.; Coker, O.O.; Chu, E.S.; Fu, K.; Lau, H.C.H.; Wang, Y.-X.; Chan, A.W.H.; Wei, H.; Yang, X.; Sung, J.J.Y.; et al. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. Gut 2020, 70, 761–774. [Google Scholar] [CrossRef]
- Dong, Y.; Meng, F.; Wang, J.; Wei, J.; Zhang, K.; Qin, S.; Li, M.; Wang, F.; Wang, B.; Liu, T.; et al. Desulfovibrio vulgaris flagellin exacerbates colorectal cancer through activating LRRC19/TRAF6/TAK1 pathway. Gut Microbes 2025, 17, 2446376. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Li, S.; Guo, R.; Song, F.; Zhang, Y.; Wang, X.; Huo, X.; Lv, Q.; Ullah, H.; Wang, G.; et al. Meta-analysis of fecal viromes demonstrates high diagnostic potential of the gut viral signatures for colorectal cancer and adenoma risk assessment. J. Adv. Res. 2023, 49, 103–114. [Google Scholar] [CrossRef]
- Marongiu, L.; Landry, J.J.M.; Rausch, T.; Abba, M.L.; Delecluse, S.; Delecluse, H.; Allgayer, H. Metagenomic analysis of primary colorectal carcinomas and their metastases identifies potential microbial risk factors. Mol. Oncol. 2021, 15, 3363–3384. [Google Scholar] [CrossRef]
- Mueller, S.; Saunier, K.; Hanisch, C.; Norin, E.; Alm, L.; Midtvedt, T.; Cresci, A.; Silvi, S.; Orpianesi, C.; Verdenelli, M.C.; et al. Differences in Fecal Microbiota in Different European Study Populations in Relation to Age, Gender, and Country: A Cross-Sectional Study. Appl. Environ. Microbiol. 2006, 72, 1027–1033. [Google Scholar] [CrossRef]
- Chakladar, J.; Kuo, S.Z.; Castaneda, G.; Li, W.T.; Gnanasekar, A.; Yu, M.A.; Chang, E.Y.; Wang, X.Q.; Ongkeko, W.M. The Pancreatic Microbiome Is Associated with Carcinogenesis and Worse Prognosis in Males and Smokers. Cancers 2020, 12, 2672. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zhu, Y.; Bu, Y.; Dong, M.; Zhang, G.; Chen, C.; Tang, H.; Wang, L.; Wang, P.; Wang, Y.; et al. Microbiome and metabolome analysis in smoking and non-smoking pancreatic ductal adenocarcinoma patients. BMC Microbiol. 2024, 24, 541. [Google Scholar] [CrossRef] [PubMed]
- Pinart, M.; Dötsch, A.; Schlicht, K.; Laudes, M.; Bouwman, J.; Forslund, S.K.; Pischon, T.; Nimptsch, K. Gut Microbiome Composition in Obese and Non-Obese Persons: A Systematic Review and Meta-Analysis. Nutrients 2021, 14, 12. [Google Scholar] [CrossRef] [PubMed]
- Friedenreich, C.M.; Ryder-Burbidge, C.; McNeil, J. Physical activity, obesity and sedentary behavior in cancer etiology: Epidemiologic evidence and biologic mechanisms. Mol. Oncol. 2021, 15, 790–800. [Google Scholar] [CrossRef]
- Eibl, G.; Rozengurt, E. Obesity and Pancreatic Cancer: Insight into Mechanisms. Cancers 2021, 13, 5067. [Google Scholar] [CrossRef]
- Honda, K.; Katzke, V.A.; Hüsing, A.; Okaya, S.; Shoji, H.; Onidani, K.; Olsen, A.; Tjønneland, A.; Overvad, K.; Weiderpass, E.; et al. CA19-9 and apolipoprotein-A2 isoforms as detection markers for pancreatic cancer: A prospective evaluation. Int. J. Cancer 2019, 144, 1877–1887. [Google Scholar] [CrossRef]
Characteristics | PDAC | Controls | p-Value |
---|---|---|---|
Total samples (feces, n) | 50 | 50 | NA |
Sex (male/female, n) | 29/21 | 26/24 | 0.546 |
Age, years, (mean ± SD) | 63.46 ± 11.03 | 62.0 ± 8.89 | 0.468 |
BMI, kg/m2, (mean ± SD) | 23.68 ± 3.38 | 22.54 ± 2.28 | 0.090 |
Smoking, n (%) | 11 (22%) | 8 (16%) | 0.444 |
Alcohol, n (%) | 4 (8%) | 4 (8%) | 1.000 |
Diabetes mellitus, n (%) | 5 (10%) | 7 (14%) | 0.538 |
CA19-9, U/mL, median (IQR) | 66.4 (17.35–171.8) | 8.3 (5.3–11.18) | <0.0001 |
UICC classification | |||
IA, n (%) | 8 (16%) | NA | NA |
IB, n (%) | 11 (22%) | NA | NA |
IIA, n (%) | 3 (6%) | NA | NA |
IIB, n (%) | 8 (16%) | NA | NA |
III, n (%) | 12 (24%) | NA | NA |
IV, n (%) | 8 (16%) | NA | NA |
Tumor stage | |||
T1, n (%) | 11 (22%) | NA | NA |
T2, n (%) | 20 (40%) | NA | NA |
T3, n (%) | 9 (18%) | NA | NA |
T4, n (%) | 10 (20%) | NA | NA |
Lymph node invasion | |||
N0, n (%) | 28 (56%) | NA | NA |
N1, n (%) | 9 (18%) | NA | NA |
N2, n (%) | 13 (26%) | NA | NA |
Metastases | |||
M0, n (%) | 42 (84%) | NA | NA |
M1, n (%) | 8 (16%) | NA | NA |
Model | AUC | Accuracy | Sensitivity | Specificity | PPV | NPV | |
---|---|---|---|---|---|---|---|
Age < 55 (n = 43) | Model 1 + CA19-9 | 0.96 | 0.93 | 0.90 | 0.94 | 0.82 | 0.97 |
Model 2 + CA19-9 | 0.91 | 0.88 | 0.80 | 0.91 | 0.73 | 0.94 | |
CA19-9 alone | 0.78 | 0.88 | 0.60 | 0.97 | 0.86 | 0.89 | |
Age ≥ 55 (n = 57) | Model 1 + CA19-9 | 0.99 | 0.95 | 0.95 | 0.95 | 0.97 | 0.89 |
Model 2 + CA19-9 | 0.99 | 0.95 | 0.95 | 0.94 | 0.97 | 0.89 | |
CA19-9 alone | 0.75 | 0.70 | 0.60 | 0.88 | 0.92 | 0.48 | |
Male (n = 55) | Model 1 + CA19-9 | 0.98 | 0.95 | 0.93 | 0.96 | 0.96 | 0.93 |
Model 2 + CA19-9 | 0.98 | 0.95 | 0.93 | 0.96 | 0.96 | 0.93 | |
CA19-9 alone | 0.84 | 0.82 | 0.69 | 0.96 | 0.95 | 0.74 | |
Female (n = 45) | Model 1 + CA19-9 | 0.96 | 0.93 | 0.95 | 0.92 | 0.91 | 0.96 |
Model 2 + CA19-9 | 0.91 | 0.89 | 0.91 | 0.88 | 0.86 | 0.91 | |
CA19-9 alone | 0.76 | 0.72 | 0.64 | 0.92 | 0.83 | 0.67 | |
BMI < 25 (n = 74) | Model 1 + CA19-9 | 0.98 | 0.95 | 0.95 | 0.93 | 0.93 | 0.95 |
Model 2 + CA19-9 | 0.95 | 0.95 | 0.93 | 0.95 | 0.93 | 0.95 | |
CA19-9 alone | 0.76 | 0.78 | 0.67 | 0.92 | 0.85 | 0.76 | |
BMI ≥ 25 (n = 26) | Model 1 + CA19-9 | 0.98 | 0.92 | 0.95 | 0.83 | 0.95 | 0.83 |
Model 2 + CA19-9 | 0.94 | 0.85 | 0.90 | 0.67 | 0.90 | 0.67 | |
CA19-9 alone | 0.93 | 0.73 | 0.65 | 0.98 | 0.98 | 0.46 | |
Early stage (n = 30) | Model 1 + CA19-9 | 0.94 | 0.95 | 0.97 | 0.90 | 0.91 | 0.98 |
Model 2 + CA19-9 | 0.93 | 0.94 | 0.98 | 0.87 | 0.89 | 0.98 | |
CA19-9 alone | 0.79 | 0.77 | 0.60 | 0.97 | 0.95 | 0.70 | |
Advanced stage (n = 20) | Model 1 + CA19-9 | 0.97 | 0.92 | 0.84 | 0.95 | 0.89 | 0.93 |
Model 2 + CA19-9 | 0.93 | 0.86 | 0.79 | 0.90 | 0.79 | 0.90 | |
CA19-9 alone | 0.88 | 0.83 | 0.58 | 0.8 | 0.80 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Nian, F.; Chen, J.; Jiang, Q.; Yuan, T.; Feng, H.; Shen, X.; Dong, L. Metagenomic Microbial Signatures for Noninvasive Detection of Pancreatic Cancer. Biomedicines 2025, 13, 1000. https://doi.org/10.3390/biomedicines13041000
Chen Y, Nian F, Chen J, Jiang Q, Yuan T, Feng H, Shen X, Dong L. Metagenomic Microbial Signatures for Noninvasive Detection of Pancreatic Cancer. Biomedicines. 2025; 13(4):1000. https://doi.org/10.3390/biomedicines13041000
Chicago/Turabian StyleChen, Yueying, Fulin Nian, Jia Chen, Qiuyu Jiang, Tianli Yuan, Haokang Feng, Xizhong Shen, and Ling Dong. 2025. "Metagenomic Microbial Signatures for Noninvasive Detection of Pancreatic Cancer" Biomedicines 13, no. 4: 1000. https://doi.org/10.3390/biomedicines13041000
APA StyleChen, Y., Nian, F., Chen, J., Jiang, Q., Yuan, T., Feng, H., Shen, X., & Dong, L. (2025). Metagenomic Microbial Signatures for Noninvasive Detection of Pancreatic Cancer. Biomedicines, 13(4), 1000. https://doi.org/10.3390/biomedicines13041000