Epigenetic Alterations in Ovarian Function and Their Impact on Assisted Reproductive Technologies: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Quality Assessment of the Included Studies
- Low danger of bias: a NOS score of 7–9.
- Moderate risk of bias: NOS score of 5–6
- High danger of bias: NOS score of 0–4.
2.2. Eligibility Criteria
2.3. Study Selection Process
2.4. Data Extraction and Quality Assessment
2.5. Limitations
3. Results
3.1. Overview of Key Findings in Epigenetic Regulation and ART Outcomes
- Lack of relevant epigenetic data (n = 65): These studies focused on ovarian function or ART but did not look at epigenetic alterations like DNA methylation, histone modifications, or non-coding RNA regulation.
- Low methodological quality (n = 32): Studies that lacked proper controls, had small sample sizes, or did not provide adequate statistical analyses were deemed methodologically weak and excluded to ensure the review’s scientific integrity.
- Not directly associated with ART outcomes (n = 42): These studies looked into epigenetic impacts but did not give direct evidence of their impact on assisted reproductive technologies such IVF outcomes, implantation rates, or ovarian reserve.
3.2. Epigenetic Mechanisms in Ovarian Function and ART Outcomes
3.2.1. miRNA Regulation and Its Impact on Ovarian Function
3.2.2. DNA Methylation’s Impact on Ovarian Aging and Endometrial Receptivity
3.2.3. Histone Modifications and Chromatin Remodeling in Follicular Cells
3.2.4. PiRNAs and Their Role in Oocyte Maturation
3.2.5. Clinical and Translational Implications of Epigenetic Research in ART
- Personalize ovarian stimulation techniques based on individual epigenetic profiles.
- Optimize embryo selection by finding epigenetic signatures associated with implantation success.
- Create targeted therapeutics to address epigenetic dysregulation in ovarian and endometrial tissues.
4. Discussion
4.1. The Role of ART in Epigenetic Modifications and Clinical Outcomes
4.2. DNA Methylation: A Regulator of Ovarian Function and ART Success
4.3. Histone Modifications: Chromatin Remodeling in Follicular Development and Embryogenesis
5. Clinical and Research Implications
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, X.; Xu, J.; Song, B.; Zhu, R.; Liu, J.; Liu, Y.F.; Ma, Y.J. The role of epigenetics in women’s reproductive health: The impact of environmental factors. Front. Endocrinol. 2024, 15, 1399757. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saftić Martinović, L.; Mladenić, T.; Lovrić, D.; Ostojić, S.; Dević Pavlić, S. Decoding the Epigenetics of Infertility: Mechanisms, Environmental Influences, and Therapeutic Strategies. Epigenomes 2024, 8, 34. [Google Scholar] [CrossRef]
- Marsh, M.L.; Oliveira, M.N.; Vieira-Potter, V.J. Adipocyte Metabolism and Health after the Menopause: The Role of Exercise. Nutrients 2023, 15, 444. [Google Scholar] [CrossRef] [PubMed]
- Nitsch, S.; Zorro Shahidian, L.; Schneider, R. Histone acylations and chromatin dynamics: Concepts, challenges, and links to metabolism. EMBO Rep. 2021, 22, e52774. [Google Scholar] [CrossRef]
- Wang, J.; Sun, X.; Yang, Z.; Li, S.; Wang, Y.; Ren, R.; Liu, Z.; Yu, D. Epigenetic regulation in premature ovarian failure: A literature review. Front. Physiol. 2023, 13, 998424. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gong, F.; Miller, K.M. Histone methylation and the DNA damage response. Mutat. Res./Rev. Mutat. Res. 2019, 780, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Zama, A.M.; Uzumcu, M. Epigenetic effects of endocrine-disrupting chemicals on female reproduction: An ovarian perspective. Front. Neuroendocrinol. 2010, 31, 420–439. [Google Scholar] [CrossRef]
- Tricotteaux-Zarqaoui, S.; Lahimer, M.; Abou Diwan, M.; Corona, A.; Candela, P.; Cabry, R.; Bach, V.; Khorsi-Cauet, H.; Benkhalifa, M. Endocrine disruptor chemicals exposure and female fertility declining: From pathophysiology to epigenetic risks. Front. Public Health 2024, 12, 1466967. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shi, Y.Q.; Zhu, X.T.; Zhang, S.N.; Ma, Y.F.; Han, Y.H.; Jiang, Y.; Zhang, Y.H. Premature ovarian insufficiency: A review on the role of oxidative stress and the application of antioxidants. Front. Endocrinol. 2023, 14, 1172481. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Throwba, H.P.K.; Unnikrishnan, L.; Pangath, M.; Vasudevan, K.; Jayaraman, S.; Li, M.; Iyaswamy, A.; Palaniyandi, K.; Gnanasampanthapandian, D. The epigenetic correlation among ovarian cancer, endometriosis, and PCOS: A review. Crit. Rev. Oncol. Hematol. 2022, 180, 103852. [Google Scholar] [CrossRef] [PubMed]
- Mani, S.; Srivastava, V.; Shandilya, C.; Kaushik, A.; Singh, K.K. Mitochondria: The epigenetic regulators of ovarian aging and longevity. Front. Endocrinol. 2024, 15, 1424826. [Google Scholar] [CrossRef] [PubMed]
- Ju, W.; Zhao, Y.; Yu, Y.; Zhao, S.; Xiang, S.; Lian, F. Mechanisms of mitochondrial dysfunction in ovarian aging and potential interventions. Front. Endocrinol. 2024, 15, 1361289. [Google Scholar] [CrossRef] [PubMed]
- Sahafnejad, Z.; Ramazi, S.; Allahverdi, A. An Update of Epigenetic Drugs for the Treatment of Cancers and Brain Diseases: A Comprehensive Review. Genes 2023, 14, 873. [Google Scholar] [CrossRef] [PubMed]
- Rapani, A.; Nikiforaki, D.; Karagkouni, D.; Sfakianoudis, K.; Tsioulou, P.; Grigoriadis, S.; Maziotis, E.; Pantou, A.; Voutsina, A.; Pantou, A.; et al. Reporting on the Role of miRNAs and Affected Pathways on the Molecular Backbone of Ovarian Insufficiency: A Systematic Review and Critical Analysis Mapping of Future Research. Front. Cell Dev. Biol. 2021, 8, 590106. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xiao, C.; Fan, T.; Zheng, Y.; Tian, H.; Deng, Z.; Liu, J.; Li, C.; He, J. H3K4 trimethylation regulates cancer immunity: A promising therapeutic target in combination with immunotherapy. J. Immunother. Cancer 2023, 11, e005693. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, J.; Liu, Y.; Song, Y.; Wang, L.; Ai, J.; Li, K. Aging conundrum: A perspective for ovarian aging. Front. Endocrinol. 2022, 13, 952471. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, Z.; Khawar, M.B.; Liu, C.; Li, W. The histone codes for meiosis. Reproduction 2017, 154, R65–R79. [Google Scholar] [CrossRef]
- Ratti, M.; Lampis, A.; Ghidini, M.; Salati, M.; Mirchev, M.B.; Valeri, N.; Hahne, J.C. MicroRNAs (miRNAs) and Long Non-Coding RNAs (lncRNAs) as New Tools for Cancer Therapy: First Steps from Bench to Bedside. Target Oncol. 2020, 15, 261–278. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shen, X.; Chen, C.; Wang, Y.; Zheng, W.; Zheng, J.; Jones, A.E.; Zhu, B.; Zhang, H.; Lyons, C.; Rijal, A.; et al. Role of histone variants H2BC1 and H2AZ.2 in H2AK119ub nucleosome organization and Polycomb gene silencing. bioRxiv 2024, Preprint. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Usman, M.; Li, A.; Wu, D.; Qinyan, Y.; Yi, L.X.; He, G.; Lu, H. The functional role of lncRNAs as ceRNAs in both ovarian processes and associated diseases. Noncoding RNA Res. 2023, 9, 165–177. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- ElMonier, A.A.; El-Boghdady, N.A.; Fahim, S.A.; Sabry, D.; Elsetohy, K.A.; Shaheen, A.A. LncRNA NEAT1 and MALAT1 are involved in polycystic ovary syndrome pathogenesis by functioning as competing endogenous RNAs to control the expression of PCOS-related target genes. Non-Coding RNA Res. 2023, 8, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Loubalova, Z.; Konstantinidou, P.; Haase, A.D. Themes and variations on piRNA-guided transposon control. Mob. DNA 2023, 14, 10. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Chen, W.; Zhang, D.; Cui, Y.; He, Z. The functions and mechanisms of piRNAs in mediating mammalian spermatogenesis and their applications in reproductive medicine. Cell Mol. Life Sci. 2024, 81, 379. [Google Scholar] [CrossRef]
- Azhar, S.; Dong, D.; Shen, W.J.; Hu, Z.; Kraemer, F.B. The role of miRNAs in regulating adrenal and gonadal steroidogenesis. J. Mol. Endocrinol. 2020, 64, R21–R43. [Google Scholar] [CrossRef] [PubMed]
- Nwabo Kamdje, A.H.; Dongmo Fogang, H.P.; Mimche, P.N. Role of epigenetic in cancer biology, in hematologic malignancies and in anticancer therapy. Front. Mol. Med. 2024, 4, 1426454. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J.M.; Núñez, M.J.; Quiñonero, A.; Martínez, S.; de la Orden, M.; Simón, C.; Pellicer, A.; Díaz-García, C.; Domínguez, F. Follicular fluid and mural granulosa cells microRNA profiles vary in in vitro fertilization patients depending on their age and oocyte maturation stage. Fertil. Steril. 2015, 104, 1037–1046.e1. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, I.; Nahmias, N.; Novoselsky Persky, M.; Greenfield, C.; Goldman-Wohl, D.; Hurwitz, A. Elevated circulating micro-ribonucleic acid (miRNA)-200b and miRNA-429 levels in anovulatory women. Fertil. Steril. 2017, 107, 269–275. [Google Scholar] [CrossRef]
- Zhang, K.; Zhong, W.; Li, W.P.; Chen, Z.J.; Zhang, C. miR-15a-5p levels correlate with poor ovarian response in human follicular fluid. Reproduction 2017, 154, 483–496. [Google Scholar] [CrossRef]
- Mortlock, S.; Restuadi, R.; Levien, R.; Girling, J.E.; Holdsworth-Carson, S.J.; Healey, M.; Zhu, Z.; Qi, T.; Wu, Y.; Lukowski, S.W.; et al. Genetic regulation of methylation in human endometrium and blood and gene targets for reproductive diseases. Clin. Epigenetics 2019, 11, 49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Novakovic, B.; Lewis, S.; Halliday, J.; Kennedy, J.; Burgner, D.P.; Czajko, A.; Kim, B.; Sexton-Oates, A.; Juonala, M.; Hammarberg, K.; et al. Assisted reproductive technologies are associated with limited epigenetic variation at birth that largely resolves by adulthood. Nat. Commun. 2019, 10, 3922. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barišić, A.; Kolak, M.; Peterlin, A.; Tul, N.; Gašparović Krpina, M.; Ostojić, S.; Peterlin, B.; Pereza, N. DNMT3B rs1569686 and rs2424913 gene polymorphisms are associated with positive family history of preterm birth and smoking status. Croat. Med. J. 2020, 61, 8–17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Battaglia, R.; Musumeci, P.; Ragusa, M.; Barbagallo, D.; Scalia, M.; Zimbone, M.; Lo Faro, J.M.; Borzì, P.; Scollo, P.; Purrello, M.; et al. Ovarian aging increases small extracellular vesicle CD81+ release in human follicular fluid and influences miRNA profiles. Aging 2020, 12, 12324–12341. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, C.H.; Lu, F.; Yang, W.J.; Yang, P.E.; Chen, W.M.; Kang, S.T.; Huang, Y.S.; Kao, Y.C.; Feng, C.T.; Chang, P.C.; et al. A novel platform for discovery of differentially expressed microRNAs in patients with repeated implantation failure. Fertil. Steril. 2021, 116, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Joshi, N.R.; Kohan-Ghadr, H.R.; Roqueiro, D.S.; Yoo, J.Y.; Fru, K.; Hestermann, E.; Yuan, L.; Ho, S.M.; Jeong, J.W.; Young, S.L.; et al. Genetic and epigenetic changes in the eutopic endometrium of women with endometriosis: Association with decreased endometrial αvβ3 integrin expression. Molecular Hum. Reprod. 2021, 27, gaab018. [Google Scholar] [CrossRef]
- Li, L.; Shi, X.; Shi, Y.; Wang, Z. The Signaling Pathways Involved in Ovarian Follicle Development. Front. Physiol. 2021, 12, 730196. [Google Scholar] [CrossRef]
- Olsen, K.W.; Castillo-Fernandez, J.; Chan, A.C.; la Cour Freiesleben, N.; Zedeler, A.; Bungum, M.; Cardona, A.; Perry, J.R.B.; Skouby, S.O.; Hoffmann, E.R.; et al. Identification of a unique epigenetic profile in women with diminished ovarian reserve. Fertil. Steril. 2021, 115, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Su, J.; Kong, W.; Fang, Z.; Li, Y.; Huang, Z.; Wen, J.; Wang, Y. Roles of miR-10a-5p and miR-103a-3p, regulators of BDNF expression in follicular fluid, in the outcomes of IVF-ET. Front. Endocrinol. 2021, 12, 637384. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dabi, Y.; Suisse, S.; Puchar, A.; Delbos, L.; Poilblanc, M.; Descamps, P.; Haury, J.; Golfier, F.; Jornea, L.; Bouteiller, D.; et al. Endometriosis-associated infertility diagnosis based on saliva microRNA signatures. Reprod. Biomed. Online 2023, 46, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Gan, H.; Wang, B.; Wang, X.; Li, M.; Yang, Q.; Geng, M.; Zhu, P.; Shao, S.; Tao, F. Mediating effects of DNA methylation in the association between sleep quality and infertility among women of childbearing age. BMC Public Health 2023, 23, 1802. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, M.; Sun, J.; Xu, B.; Chrusciel, M.; Gao, J.; Bazert, M.; Stelmaszewska, J.; Xu, Y.; Zhang, H.; Pawelczyk, L.; et al. Functional characterization of MicroRNA-27a-3p expression in human polycystic ovary syndrome. Endocrinology 2018, 159, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Handy, D.E.; Castro, R.; Loscalzo, J. Epigenetic Modifications: Basic Mechanisms and Role in Cardiovascular Disease. Circulation 2011, 123, 2145–2156. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Wu, J.; Guo, H.; Yao, W.; Li, S.; Lu, Y.; Jia, Y.; Liang, X.; Tang, J.; Zhang, H. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm 2023, 4, e292. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, Z.; Xu, W.; Liu, L. Ovarian aging: Mechanisms and intervention strategies. Med. Rev. 2023, 2, 590–610. [Google Scholar] [CrossRef]
- Mani, S.R.; Juliano, C.E. Untangling the web: The diverse functions of the PIWI/piRNA pathway. Mol. Reprod. Dev. 2013, 80, 632–664. [Google Scholar] [CrossRef]
- Li, Y.; Liang, Z.; Liang, Z.; Yang, X.; Xia, H.; Yu, H. Abnormal PIWI-interacting RNA profile and its association with the deformed extracellular matrix of oocytes from recurrent oocyte maturation arrest patients. Fertil. Steril. 2021, 115, 1318–1326. [Google Scholar] [CrossRef] [PubMed]
- Russell, S.J.; LaMarre, J. Transposons and the PIWI Pathway—Genome Defence in Gametes and Embryos. Reproduction 2018, 156, R111–R124. [Google Scholar] [CrossRef] [PubMed]
- Kamalidehghan, B.; Habibi, M.; Afjeh, S.S.; Shoai, M.; Alidoost, S.; Almasi Ghale, R.; Eshghifar, N.; Pouresmaeili, F. The Importance of Small Non-Coding RNAs in Human Reproduction: A Review Article. Appl. Clin. Genet. 2020, 13, 1–11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ying, S.Y.; Chang, D.C.; Lin, S.L. The MicroRNA (miRNA): Overview of the RNA Genes that Modulate Gene Function. Mol. Biotechnol. 2008, 38, 257–268. [Google Scholar] [CrossRef]
- Khan, H.L.; Bhatti, S.; Abbas, S.; Kaloglu, C.; Isa, A.M.; Younas, H.; Ziders, R.; Khan, Y.L.; Hassan, Z.; Turhan, B.O.; et al. Extracellular microRNAs: Key players to explore the outcomes of in vitro fertilization. Reprod. Biol. Endocrinol. 2021, 19, 72. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jin, B.; Li, Y.; Robertson, K.D. DNA Methylation: Superior or Subordinate in the Epigenetic Hierarchy? Genes Cancer 2011, 2, 607–617. [Google Scholar] [CrossRef]
- Fedoriw, A.; Mugford, J.; Magnuson, T. Genomic Imprinting and Epigenetic Control of Development. Cold Spring Harb. Perspect. Biol. 2012, 4, a008136. [Google Scholar] [CrossRef] [PubMed]
- Shacfe, G.; Turko, R.; Syed, H.H.; Masoud, I.; Tahmaz, Y.; Samhan, L.M.; Alkattan, K.; Shafqat, A.; Yaqinuddin, A. A DNA Methylation Perspective on Infertility. Genes 2023, 14, 2132. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Seto, E.; Yoshida, M. Erasers of Histone Acetylation: The Histone Deacetylase Enzymes. Cold Spring Harb. Perspect. Biol. 2014, 6, a018713. [Google Scholar] [CrossRef]
- Weng, W.; Li, H.; Goel, A. Piwi-interacting RNAs (piRNAs) and cancer: Emerging biological concepts and potential clinical implications. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2019, 1871, 160–169. [Google Scholar] [CrossRef]
- Xu, M.M.; Li, X.Z. Enigmatic Pachytene PIWI-Interacting RNAs. Genome Biol. Evol. 2024, 16, evae162. [Google Scholar] [CrossRef] [PubMed]
- Conti, M.; Franciosi, F. Acquisition of oocyte competence to develop as an embryo: Integrated nuclear and cytoplasmic events. Hum. Reprod. Update 2018, 24, 245–266. [Google Scholar] [CrossRef]
- Mani, S.; Ghosh, J.; Coutifaris, C.; Sapienza, C.; Mainigi, M. Epigenetic changes and assisted reproductive technologies. Epigenetics 2020, 15, 12–25. [Google Scholar] [CrossRef]
- Hartwick Bjorkman, S.; Oliveira Pereira, R. The Interplay Between Mitochondrial Reactive Oxygen Species, Endoplasmic Reticulum Stress, and Nrf2 Signaling in Cardiometabolic Health. Antioxid. Redox Signal. 2021, 35, 252–269. [Google Scholar] [CrossRef]
- Joseph, D.B.; Strand, D.W.; Vezina, C.M. DNA methylation in development and disease: An overview for prostate researchers. Am. J. Clin. Exp. Urol. 2018, 6, 197–218. [Google Scholar]
- Chen, W.; Dong, L.; Wei, C.; Wu, H. Role of epigenetic regulation in diminished ovarian reserve. J. Assist. Reprod. Genet. 2024, 42, 389–403. [Google Scholar] [CrossRef]
- Glaviano, A.; Foo, A.S.C.; Lam, H.Y.; Yap, K.C.H.; Jacot, W.; Jones, R.H.; Eng, H.; Nair, M.G.; Makvandi, P.; Geoerger, B.; et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023, 22, 138. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pelosi, E.; Omari, S.; Michel, M.; Ding, J.; Amano, T.; Forabosco, A.; Schlessinger, D.; Ottolenghi, C. Constitutively active Foxo3 in oocytes preserves ovarian reserve in mice. Nat. Commun. 2013, 4, 1843. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, X.; Wang, L.; Xiang, W. Mechanisms of ovarian aging in women: A review. J. Ovarian Res. 2023, 16, 67. [Google Scholar] [CrossRef]
- Zhang, S.; Lin, H.; Kong, S.; Wang, S.; Wang, H.; Wang, H.; Armant, D.R. Physiological and molecular determinants of embryo implantation. Mol. Aspects Med. 2013, 34, 939–980. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, H.; Huang, X.; Mor, G.; Liao, A. Epigenetic modifications working in the decidualization and endometrial receptivity. Cell Mol. Life Sci. 2020, 77, 2091–2101. [Google Scholar] [CrossRef] [PubMed]
- Xue, P.; Zhou, W.; Fan, W.; Jiang, J.; Kong, C.; Zhou, W.; Zhou, J.; Huang, X.; Yang, H.; Han, Q.; et al. Increased METTL3-mediated m6A methylation inhibits embryo implantation by repressing HOXA10 expression in recurrent implantation failure. Reprod. Biol. Endocrinol. 2021, 19, 187. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sciorio, R.; El Hajj, N. Epigenetic Risks of Medically Assisted Reproduction. J. Clin. Med. 2022, 11, 2151. [Google Scholar] [CrossRef]
- Yang, S.C.; Park, M.; Hong, K.H.; La, H.; Park, C.; Wang, P.; Li, G.; Chen, Q.; Choi, Y.; DeMayo, F.J.; et al. CFP1 governs uterine epigenetic landscapes to intervene in progesterone responses for uterine physiology and suppression of endometriosis. Nat. Commun. 2023, 14, 3220. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- MacLean, J.A.; Hayashi, K. Progesterone Actions and Resistance in Gynecological Disorders. Cells 2022, 11, 647. [Google Scholar] [CrossRef]
- Rose, N.R.; Klose, R.J. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim. Biophys. Acta (BBA)-Gene Regul. Mech. 2014, 1839, 1362–1372. [Google Scholar] [CrossRef]
- Sindik, N.; Pereza, N.; Dević Pavlić, S. Epigenetics of oogenesis. Arch. Gynecol. Obs. 2024, 311, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Guo, D.Y.; Yin, T.L.; Yang, J. Non-Coding RNAs Regulate Placental Trophoblast Function and Participate in Recurrent Abortion. Front. Pharmacol. 2021, 12, 646521. [Google Scholar] [CrossRef]
- Chico-Sordo, L.; García-Velasco, J.A. MicroRNAs as Biomarkers and Therapeutic Targets in Female Infertility. Int. J. Mol. Sci. 2024, 25, 12979. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Li, J.; Wang, X.; Jin, Y.; Wang, H.; An, H.; Sun, H.; Han, L.; Shen, B.; Wang, Q. The chromatin accessibility landscape of mouse oocytes during configuration transition. Cell Prolif. 2025, 58, e13733. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dvoran, M.; Nemcova, L.; Kalous, J. An Interplay between Epigenetics and Translation in Oocyte Maturation and Embryo Development: Assisted Reproduction Perspective. Biomedicines 2022, 10, 1689. [Google Scholar] [CrossRef]
- Xia, W.; Xie, W. Rebooting the Epigenomes during Mammalian Early Embryogenesis. Stem Cell Rep. 2020, 15, 1158–1175. [Google Scholar] [CrossRef]
Author/Year | Study Type | Cases (Number) | Groups | Interventions | Selection Bias | Comparability | Outcome Assessment | Total NOS Score (0–9) | Risk of Bias |
---|---|---|---|---|---|---|---|---|---|
Moreno et al., 2015, [26] | Prospective, Observational, Comparative | 30 | IVF (Young vs. Advanced Age, Different Oocyte Maturation Stages) | IVF, ICSI | 3/4 | 2/2 | 3/3 | 8/9 | Low |
Eisenberg et al., 2017, [27] | Prospective Observational, Comparative, Cross-Sectional | 40 | Ovulatory women, Anovulatory women (PCOS), IVF patients | No intervention | 3/4 | 2/2 | 3/3 | 8/9 | Low |
Zhang et al., 2017, [28] | Prospective Observational, Comparative, Cross-Sectional | 45 | Young women with Poor Ovarian Response (POR), Old women with POR, Control (Non-POR) | IVF with ovarian stimulation | 3/4 | 1/2 | 3/3 | 7/9 | Moderate |
Wang et al., 2018, [17] | Prospective, Observational, Comparative | 42 | Women with PCOS, Control group | No intervention | 3/4 | 2/2 | 3/3 | 7/9 | Moderate |
Mortlock et al., 2019, [29] | Prospective, Observational | 66 | General female population | No intervention | 3/4 | 2/2 | 3/3 | 7/9 | Moderate |
Novakovic et al., 2019, [30] | Prospective, Observational | Unknown | Women undergoing ART | ART procedures (IVF, ICSI) | 3/4 | 1/2 | 3/3 | 6/9 | High |
Barišić et al., 2020, [31] | Case–Control Study, Genetic Analysis | 324 | Women with Preterm Birth, Control group | No intervention | 3/4 | 1/2 | 3/3 | 7/9 | Moderate |
Bataglia et al., 2020, [32] | Prospective, Observational | Unknown | Older vs. Younger women | No intervention | 3/4 | 2/2 | 3/3 | 7/9 | Moderate |
Chen et al., 2021, [33] | Prospective, Observational | 25 | Women with Repeated Implantation Failure, Control group | IVF, assessment of repeated implantation failure | 3/4 | 2/2 | 3/3 | 8/9 | Low |
Joshi et al., 2021, [34] | Prospective, Observational | 11 | Women with Endometriosis (Low vs. High Integrin Expression) | No intervention | 3/4 | 2/2 | 3/3 | 7/9 | Moderate |
Li et al., 2021, [35] | Prospective, Observational | 162 | Women with Oocyte Maturation Arrest, Control group | IVF with oocyte maturation analysis | 3/4 | 2/2 | 3/3 | 8/9 | Low |
Olsen et al., 2021, [36] | Prospective, Observational | 119 | Women with Diminished Ovarian Reserve, Control group | IVF with ovarian reserve assessment | 3/4 | 2/2 | 3/3 | 7/9 | Moderate |
Zhang et al., 2021, [37] | Prospective, Observational, Comparative, Cross-Sectional | 106 | Women undergoing IVF, Control group | IVF with controlled ovarian stimulation | 3/4 | 2/2 | 3/3 | 8/9 | Low |
Dabi et al., 2023, [38] | Prospective, Observational | 200 | Women with Endometriosis—Infertile vs. Fertile | No intervention | 3/4 | 2/2 | 3/3 | 7/9 | Moderate |
Tang et al., 2023, [39] | Prospective, Case–Control | 86 | Women with Anovulatory Infertility, Healthy Control women | No intervention | 3/4 | 1/2 | 3/3 | 7/9 | Moderate |
Author/Year | Study Type | Cases (Number) | Groups | Interventions | Primary Outcome |
---|---|---|---|---|---|
Moreno et al., 2015, [26] | Prospective, Observational, Comparative | Women (30) | Women undergoing IVF (Young vs. Advanced Age, Different Oocyte Maturation Stages) | IVF, intracytoplasmic sperm injection (ICSI) | Follicular fluid and granulosa cells miRNA profiles in IVF patients |
Eisenberg et al., 2017, [27] | Prospective Observational, Comparative, Cross-Sectional | Women (40) | Ovulatory women, Anovulatory women (PCOS), IVF patients | No intervention, natural ovulation, or ovulation induction | Expression levels of miRNA-200b and miRNA-429 in ovulatory and anovulatory women |
Zhang et al., 2017, [28] | Prospective Observational, Comparative, Cross-Sectional | Women (45) | Young women with Poor Ovarian Response (POR), Old women with POR, Control (Non-POR) | IVF with ovarian stimulation | Correlation of miR-15a-5p levels with poor ovarian response |
Wang et al., 2018, [17] | Prospective, Observational, Comparative | Women (42) | Women with PCOS, Control group | No intervention, analysis of granulosa cells | Role of miR-27a-3p in granulosa cell dysfunction in PCOS |
Mortlock et al., 2019, [29] | Prospective, Observational | Women (66) | General female population | No intervention, genomic analysis | Genetic regulation of methylation in human endometrium |
Novakovic et al., 2019, [30] | Prospective, Observational | Women (Unknown) | Women undergoing ART | ART procedures (IVF, ICSI) | Epigenetic variations associated with ART at birth and adulthood |
Barišić et al., 2020, [31] | Case–Control Study, Genetic Analysis | Women with Preterm Birth and Controls (324) | Women with Preterm Birth, Control group | No intervention, genetic polymorphism analysis | Association between DNA methylation gene polymorphisms and preterm birth |
Bataglia et al., 2020, [32] | Prospective, Observational | Women (Unknown) | Older vs. Younger women | No intervention, follicular fluid analysis | Impact of ovarian aging on follicular fluid miRNA profiles |
Chen et al., 2021, [33] | Prospective, Observational | Women (25) | Women with Repeated Implantation Failure, Control group | IVF, assessment of repeated implantation failure | Identification of miRNA biomarkers for repeated implantation failure |
Joshi et al., 2021, [34] | Prospective, Observational | Women (11) | Women with Endometriosis (Low vs. High Integrin Expression) | No intervention, endometrial biopsy | Epigenetic changes in the endometrium of women with endometriosis |
Li et al., 2021, [35] | Prospective, Observational | Women (162) | Women with Oocyte Maturation Arrest, Control group | IVF with oocyte maturation analysis | Association of PIWI-interacting RNA profile with oocyte maturation arrest |
Olsen et al., 2021, [36] | Prospective, Observational | Women (119) | Women with Diminished Ovarian Reserve, Control group | IVF with ovarian reserve assessment | Epigenetic differences in granulosa cells of women with diminished ovarian reserve |
Zhang et al., 2021, [37] | Prospective, Observational, Comparative, Cross-Sectional | Women (106) | Women undergoing IVF, Control group | IVF with controlled ovarian stimulation | Effects of miR-103a-3p and miR-10a-5p on oocyte maturation and IVF outcomes |
Dabi et al., 2023, [38] | Prospective, Observational | Women (200) | Women with Endometriosis—Infertile vs. Fertile | No intervention, saliva sample collection | Saliva-based miRNA signature for endometriosis-associated infertility |
Tang et al., 2023, [39] | Prospective, Case–Control | Women (86) | Women with Anovulatory Infertility, Healthy Control women | No intervention, observational study | Mediating effect of DNA methylation in sleep quality and infertility |
Author/Year | Epigenetic Mechanism | Sample Type | ART/Clinical Outcome | Key Findings |
---|---|---|---|---|
Moreno et al., 2015, [26] | miRNA expression | Follicular fluid, granulosa cells | IVF success | Identified specific miRNA profiles linked to implantation rates and embryo development. |
Eisenberg et al., 2017, [27] | miRNA-200b, miRNA-429 | Serum, granulosa cells | Ovulation status | Differential miRNA expression between ovulatory and anovulatory women, with potential biomarker application. |
Zhang et al., 2017, [28] | miR-15a-5p expression | Follicular fluid | Poor ovarian response | miR-15a-5p levels were inversely correlated with ovarian reserve and response to stimulation. |
Wang et al., 2018, [17] | miR-27a-3p regulation | Granulosa cells | PCOS impact on ovarian function | Implicated granulosa cell dysfunction in PCOS, affecting follicular development. |
Mortlock et al., 2019, [29] | DNA methylation | Endometrial tissue | Reproductive epigenetics | Regulation of methylation patterns in the endometrium influenced fertility outcomes. |
Novakovic et al., 2019, [30] | DNA methylation changes | Whole genome | ART-associated epigenetic inheritance | Epigenetic variations from ART persisted into adulthood. |
Barišić et al., 2020, [31] | DNA methylation polymorphisms | Peripheral blood | Preterm birth risk | DNA methylation gene polymorphisms are associated with higher risk of preterm birth. |
Bataglia et al., 2020, [32] | miRNA profiling | Follicular fluid | Ovarian aging | Identified aging-related miRNA changes affecting follicular health. |
Chen et al., 2021, [33] | miRNA biomarkers | Follicular fluid | Repeated implantation failure | Identified miRNA profiles predictive of implantation failure in IVF patients. |
Joshi et al., 2021, [34] | DNA methylation | Endometrial biopsy | Endometriosis-related infertility | Found significant epigenetic modifications in endometriosis patients. |
Li et al., 2021, [35] | PIWI-interacting RNA (piRNA) | Oocytes | Oocyte maturation | PIWI-interacting RNAs associated with oocyte maturation arrest. |
Olsen et al., 2021, [36] | DNA methylation differences | Granulosa cells | Diminished ovarian reserve | Epigenetic modifications affected ovarian reserve in aging women. |
Zhang et al., 2021, [37] | miR-103a-3p, miR-10a-5p | Follicular fluid | Oocyte maturation and IVF outcomes | miRNA expression influenced oocyte quality and developmental competence. |
Dabi et al., 2023, [38] | miRNA-based saliva test | Saliva | Endometriosis-related infertility | Identified a saliva-based miRNA signature for non-invasive endometriosis detection. |
Tang et al., 2023, [39] | DNA methylation | Peripheral blood | Sleep quality and infertility | Found a mediating role of DNA methylation between sleep quality and infertility risk. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voros, C.; Varthaliti, A.; Mavrogianni, D.; Athanasiou, D.; Athanasiou, A.; Athanasiou, A.; Papahliou, A.-M.; Zografos, C.G.; Topalis, V.; Kondili, P.; et al. Epigenetic Alterations in Ovarian Function and Their Impact on Assisted Reproductive Technologies: A Systematic Review. Biomedicines 2025, 13, 730. https://doi.org/10.3390/biomedicines13030730
Voros C, Varthaliti A, Mavrogianni D, Athanasiou D, Athanasiou A, Athanasiou A, Papahliou A-M, Zografos CG, Topalis V, Kondili P, et al. Epigenetic Alterations in Ovarian Function and Their Impact on Assisted Reproductive Technologies: A Systematic Review. Biomedicines. 2025; 13(3):730. https://doi.org/10.3390/biomedicines13030730
Chicago/Turabian StyleVoros, Charalampos, Antonia Varthaliti, Despoina Mavrogianni, Diamantis Athanasiou, Antonia Athanasiou, Aikaterini Athanasiou, Anthi-Maria Papahliou, Constantinos G. Zografos, Vasileios Topalis, Panagiota Kondili, and et al. 2025. "Epigenetic Alterations in Ovarian Function and Their Impact on Assisted Reproductive Technologies: A Systematic Review" Biomedicines 13, no. 3: 730. https://doi.org/10.3390/biomedicines13030730
APA StyleVoros, C., Varthaliti, A., Mavrogianni, D., Athanasiou, D., Athanasiou, A., Athanasiou, A., Papahliou, A.-M., Zografos, C. G., Topalis, V., Kondili, P., Darlas, M., Sina, S., Daskalaki, M. A., Theodora, M., Antsaklis, P., & Daskalakis, G. (2025). Epigenetic Alterations in Ovarian Function and Their Impact on Assisted Reproductive Technologies: A Systematic Review. Biomedicines, 13(3), 730. https://doi.org/10.3390/biomedicines13030730