From Petri Dish to Primitive Heart: How IVF Alters Early Cardiac Gene Networks and Epigenetic Landscapes
Abstract
1. Introduction
1.1. Background and Clinical Rationale
1.2. Cardiogenesis: Genetic Networks and Molecular Pathways
1.3. Epigenetic Dysregulation in Embryos Induced by Assisted Reproductive Technology
1.4. Implications for Translation and Clinical Practice
2. Molecular Regulation of Early Cardiac Lineage Specification
2.1. Cardiac Transcription Factors Regulating Lineage Commitment
2.2. Signaling Pathways That Control the Patterning of Cardiac Mesoderm
2.3. Epigenetic Influences on the Activation of Cardiogenic Genes
2.4. Non-Coding RNAs in Initial Cardiac Development
3. ART and Congenital Heart Disease—Clinical Correlates and Mechanistic Insights
3.1. Epidemiological Correlation Between ART and Congenital Heart Disease
3.2. ART and Issues with Left–Right Patterning
3.3. Halting the Progression of the Second Heart Field and Outflow Tract
3.4. Modifications to the Epigenome Within Cardiac Transcriptional Networks
4. Clinical Implications and Translational Perspectives
4.1. ART-Induced Cardiovascular Risk: Emerging Clinical Evidence
4.2. Impacts on the Specification and Morphogenesis of Cardiac Lineages
4.3. The Translational Significance of Epigenetic Biomarkers in Early Diagnosis
4.4. Prospective Approaches and Preventive Measures for Managing ART Embryos
5. Conclusions
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kuhnt, A.-K.; Passet-Wittig, J. Families formed through assisted reproductive technology: Causes, experiences, and consequences in an international context. Reprod. Biomed. Soc. Online 2022, 14, 289–296. [Google Scholar] [CrossRef]
- Ahmadi, H.; Aghebati-Maleki, L.; Rashidiani, S.; Csabai, T.; Nnaemeka, O.B.; Szekeres-Bartho, J. Long-Term Effects of ART on the Health of the Offspring. Int. J. Mol. Sci. 2023, 24, 13564. [Google Scholar] [CrossRef]
- Rosca, I.; Turenschi, A.; Raris-Denisa, A.; Popescu, D.-E.; Stoica, C.; Carp-Veliscu, A.; Jura, A.-M.; Constantin, A.T. Association of Assisted Reproductive Technology with the Risk of Congenital Heart Defects: A 5-Year Retrospective Study–Experience from a Tertiary Maternity Hospital in Bucharest. Obstet. Gynecol. Res. 2023, 6, 281–294. [Google Scholar] [CrossRef]
- Piemonti, L.; Vettor, L.; Balducci, A.; Farina, A.; Contro, E. Assisted reproductive technology and the risk of fetal congenital heart disease: Insights from a tertiary-care referral center. Arch. Gynecol. Obstet. 2024, 310, 2073–2080. [Google Scholar] [CrossRef]
- Boulet, S.L.; Kirby, R.S.; Reefhuis, J.; Zhang, Y.; Sunderam, S.; Cohen, B.; Bernson, D.; Copeland, G.; Bailey, M.A.; Jamieson, D.J.; et al. Assisted Reproductive Technology and Birth Defects Among Liveborn Infants in Florida, Massachusetts, and Michigan, 2000–2010. JAMA Pediatr. 2016, 170, e154934. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.-W.; Bloom, M.S.; Wei, F.; Liu, L.; Qin, J.; Xue, L.; Wang, S.; Huang, G.; Teng, M.; He, B.; et al. Perfluoroalkyl Acids in Follicular Fluid and Embryo Quality during IVF: A Prospective IVF Cohort in China. Environ. Health Perspect. 2023, 131, 27002. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.; Moley, K.H. Gametes and Embryo Epigenetic Reprogramming Affect Developmental Outcome: Implication for Assisted Reproductive Technologies. Pediatr. Res. 2005, 58, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, A.L.; Zorzan, I.; Rugg-Gunn, P.J. Epigenetic regulation of early human embryo development. Cell Stem Cell 2023, 30, 1569–1584. [Google Scholar] [CrossRef]
- Chang, S.; Bartolomei, M.S. Modeling human epigenetic disorders in mice: Beckwith-Wiedemann Syndrome and Silver-Russell Syndrome. Dis. Model. Mech. 2020, 13, dmm044123. [Google Scholar] [CrossRef]
- Li, Y.; Du, J.; Deng, S.; Liu, B.; Jing, X.; Yan, Y.; Liu, Y.; Wang, J.; Zhou, X.; She, Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct. Target. Ther. 2024, 9, 1–60. [Google Scholar] [CrossRef]
- Niessen, K.; Karsan, A. Notch Signaling in Cardiac Development. Circ. Res. 2008, 102, 1169–1181. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, S.; Song, T.; Yin, Y.; Tan, C. Placental Angiogenesis in Mammals: A Review of the Regulatory Effects of Signaling Pathways and Functional Nutrients. Adv. Nutr. Int. Rev. J. 2021, 12, 2415–2434. [Google Scholar] [CrossRef] [PubMed]
- Sulyok, E.; Farkas, B.; Bodis, J. Pathomechanisms of Prenatally Programmed Adult Diseases. Antioxidants 2023, 12, 1354. [Google Scholar] [CrossRef] [PubMed]
- Attali, E.; Yogev, Y. The impact of advanced maternal age on pregnancy outcome. Best Pract. Res. Clin. Obstet. Gynaecol. 2021, 70, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Bonifaci, N.; Colas, E.; Serra-Musach, J.; Karbalai, N.; Brunet, J.; GÓMez, A.; Esteller, M.; FernÁNdez-Taboada, E.; Berenguer, A.; Reventós, J.; et al. Integrating gene expression and epidemiological data for the discovery of genetic interactions associated with cancer risk. Carcinogenesis 2013, 35, 578–585. [Google Scholar] [CrossRef]
- Abdullah, K.A.L.; Atazhanova, T.; Chavez-Badiola, A.; Shivhare, S.B. Automation in ART: Paving the Way for the Future of Infertility Treatment. Reprod. Sci. 2022, 30, 1006–1016. [Google Scholar] [CrossRef]
- Van Vliet, P.; Wu, S.M.; Zaffran, S.; Puceat, M. Early cardiac development: A view from stem cells to embryos. Cardiovasc. Res. 2012, 96, 352–362. [Google Scholar] [CrossRef]
- Bhat, G.R.; Sethi, I.; Sadida, H.Q.; Rah, B.; Mir, R.; Algehainy, N.; Albalawi, I.A.; Masoodi, T.; Subbaraj, G.K.; Jamal, F.; et al. Cancer cell plasticity: From cellular, molecular, and genetic mechanisms to tumor heterogeneity and drug resistance. Cancer Metastasis Rev. 2024, 43, 197–228. [Google Scholar] [CrossRef]
- Wamstad, J.A.; Alexander, J.M.; Truty, R.M.; Shrikumar, A.; Li, F.; Eilertson, K.E.; Ding, H.; Wylie, J.N.; Pico, A.R.; Capra, J.A.; et al. Dynamic and Coordinated Epigenetic Regulation of Developmental Transitions in the Cardiac Lineage. Cell 2012, 151, 206–220. [Google Scholar] [CrossRef]
- Später, D.; Abramczuk, M.K.; Buac, K.; Zangi, L.; Stachel, M.W.; Clarke, J.; Sahara, M.; Ludwig, A.; Chien, K.R. A HCN4+ cardiomyogenic progenitor derived from the first heart field and human pluripotent stem cells. Nat. Cell Biol. 2013, 15, 1098–1106. [Google Scholar] [CrossRef]
- Noseda, M.; Peterkin, T.; Simões, F.C.; Patient, R.; Schneider, M.D. Cardiopoietic Factors: Extracellular Signals for Cardiac Lineage Commitment. Circ. Res. 2011, 108, 129–152. [Google Scholar] [CrossRef]
- Wang, R.N.; Green, J.; Wang, Z.; Deng, Y.; Qiao, M.; Peabody, M.; Zhang, Q.; Ye, J.; Yan, Z.; Denduluri, S.; et al. Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis. 2014, 1, 87–105. [Google Scholar] [CrossRef] [PubMed]
- Basson, M.A. Signaling in Cell Differentiation and Morphogenesis. Cold Spring Harb. Perspect. Biol. 2012, 4, a008151. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E.D.; Wang, Z.; Lepore, J.J.; Lu, M.M.; Taketo, M.M.; Epstein, D.J.; Morrisey, E.E. Wnt/β-catenin signaling promotes expansion of Isl-1–positive cardiac progenitor cells through regulation of FGF signaling. J. Clin. Investig. 2007, 117, 1794–1804. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Miao, D.; Li, Y.; Gao, R. Spotlight on Isl1: A Key Player in Cardiovascular Development and Diseases. Front. Cell Dev. Biol. 2021, 9, 793605. [Google Scholar] [CrossRef]
- Clark, C.D.; Lee, K.-H. Second heart field-specific expression of Nkx2-5 requires promoter proximal interaction with Srf. Mech. Dev. 2020, 162, 103615. [Google Scholar] [CrossRef]
- Briggs, L.E.; Takeda, M.; Cuadra, A.E.; Wakimoto, H.; Marks, M.H.; Walker, A.J.; Seki, T.; Oh, S.P.; Lu, J.T.; Sumners, C.; et al. Perinatal Loss of Nkx2-5 Results in Rapid Conduction and Contraction Defects. Circ. Res. 2008, 103, 580–590. [Google Scholar] [CrossRef]
- He, A.; Gu, F.; Hu, Y.; Ma, Q.; Ye, L.Y.; Akiyama, J.A.; Visel, A.; Pennacchio, L.A.; Pu, W.T. Dynamic GATA4 enhancers shape the chromatin landscape central to heart development and disease. Nat. Commun. 2014, 5, 4907. [Google Scholar] [CrossRef]
- Yang, P.; Yin, C.; Li, M.; Ma, S.; Cao, Y.; Zhang, C.; Chen, T.; Zhao, H. Mutation analysis of tubulin beta 8 class VIII in infertile females with oocyte or embryonic defects. Clin. Genet. 2020, 99, 208–214. [Google Scholar] [CrossRef]
- Steimle, J.D.; Moskowitz, I.P. TBX5. In Current Topics in Developmental Biology; Elsevier: Amsterdam, The Netherlands, 2017; pp. 195–221. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0070215316301752 (accessed on 22 July 2025).
- Vanlerberghe, C.; Jourdain, A.-S.; Ghoumid, J.; Frenois, F.; Mezel, A.; Vaksmann, G.; Lenne, B.; Delobel, B.; Porchet, N.; Cormier-Daire, V.; et al. Holt-Oram syndrome: Clinical and molecular description of 78 patients with TBX5 variants. Eur. J. Hum. Genet. 2018, 27, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Barnes, R.M.; Harris, I.S.; Jaehnig, E.J.; Sauls, K.; Sinha, T.; Rojas, A.; Schachterle, W.; McCulley, D.J.; Norris, R.A.; Black, B.L. MEF2C regulates outflow tract alignment and transcriptional control of Tdgf1. Development 2016, 143, 774–779. [Google Scholar] [CrossRef]
- Dodou, E.; Verzi, M.P.; Anderson, J.P.; Xu, S.-M.; Black, B.L. Mef2cis a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development 2004, 131, 3931–3942. [Google Scholar] [CrossRef]
- Firulli, A.B.; McFadden, D.G.; Lin, Q.; Srivastava, D.; Olson, E.N. Heart and extra-embryonic mesodermal defects in mouse embryos lacking the bHLH transcription factor Hand1. Nat. Genet. 1998, 18, 266–270. [Google Scholar] [CrossRef]
- Vincentz, J.W.; Barnes, R.M.; Firulli, A.B. Hand factors as regulators of cardiac morphogenesis and implications for congenital heart defects. Birth Defects Res. Part A Clin. Mol. Teratol. 2011, 91, 485–494. [Google Scholar] [CrossRef]
- Vallaster, M.; Vallaster, C.D.; Wu, S.M. Epigenetic mechanisms in cardiac development and disease. Acta Biochim. Et Biophys. Sin. 2012, 44, 92–102. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Z.; Yin, C.; Asfour, H.; Chen, O.; Li, Y.; Bursac, N.; Liu, J.; Qian, L. Stoichiometry of Gata4, Mef2c, and Tbx5 Influences the Efficiency and Quality of Induced Cardiac Myocyte Reprogramming. Circ. Res. 2015, 116, 237–244. [Google Scholar] [CrossRef]
- Christoforou, N.; Chellappan, M.; Adler, A.F.; Kirkton, R.D.; Wu, T.; Addis, R.C.; Bursac, N.; Leong, K.W.; Aalto-Setala, K. Transcription Factors MYOCD, SRF, Mesp1 and SMARCD3 Enhance the Cardio-Inducing Effect of GATA4, TBX5, and MEF2C during Direct Cellular Reprogramming. PLoS ONE 2013, 8, e63577. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Greene, S.B.; Martin, J.F. BMP signaling in congenital heart disease: New developments and future directions. Birth Defects Res. Part A Clin. Mol. Teratol. 2011, 91, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Garside, V.C.; Chang, A.C.; Karsan, A.; Hoodless, P.A. Co-ordinating Notch, BMP, and TGF-β signaling during heart valve development. Cell Mol. Life Sci. 2013, 70, 2899–2917. [Google Scholar] [CrossRef] [PubMed]
- von Both, I.; Silvestri, C.; Erdemir, T.; Lickert, H.; Walls, J.R.; Henkelman, R.; Rossant, J.; Harvey, R.P.; Attisano, L.; Wrana, J.L. Foxh1 Is Essential for Development of the Anterior Heart Field. Dev. Cell 2004, 7, 331–345. [Google Scholar] [CrossRef]
- Lv, L.; Jimenez-Krassel, F.; Sen, A.; Bettegowda, A.; Mondal, M.; Folger, J.K.; Lee, K.-B.; Ireland, J.J.; Smith, G.W. Evidence Supporting a Role for Cocaine- and Amphetamine-Regulated Transcript (CARTPT) in Control of Granulosa Cell Estradiol Production Associated with Dominant Follicle Selection in Cattle. Biol. Reprod. 2009, 81, 580–586. [Google Scholar] [CrossRef]
- Lee, S.-M.; Surani, M.A. Epigenetic reprogramming in mouse and human primordial germ cells. Exp. Mol. Med. 2024, 56, 2578–2587. [Google Scholar] [CrossRef]
- Zhou, C.; Lv, M.; Wang, P.; Guo, C.; Ni, Z.; Bao, H.; Tang, Y.; Cai, H.; Lu, J.; Deng, W.; et al. Sequential activation of uterine epithelial IGF1R by stromal IGF1 and embryonic IGF2 directs normal uterine preparation for embryo implantation. J. Mol. Cell Biol. 2021, 13, 646–661. [Google Scholar] [CrossRef]
- Duan, J.E.; Jiang, Z.C.; Alqahtani, F.; Mandoiu, I.; Dong, H.; Zheng, X.; Marjani, S.L.; Chen, J.; Tian, X.C. Methylome Dynamics of Bovine Gametes and in vivo Early Embryos. Front. Genet. 2019, 10, 512. [Google Scholar] [CrossRef]
- Horibe, Y.; Nakabayashi, K.; Arai, M.; Okamura, K.; Hashimoto, K.; Matsui, H.; Hata, K. Comprehensive analysis of whole genome methylation in mouse blastocysts cultured with four different constituents following in vitro fertilization. Middle East Fertil. Soc. J. 2019, 24, 1–8. [Google Scholar] [CrossRef]
- Zhang, Y.; Shields, T.; Crenshaw, T.; Hao, Y.; Moulton, T.; Tycko, B. Imprinting of human H19: Allele-specific CpG methylation, loss of the active allele in Wilms tumor, and potential for somatic allele switching. Am. J. Hum. Genet. 1993, 53, 113–124. [Google Scholar]
- Pidsley, R.; Dempster, E.; Troakes, C.; Al-Sarraj, S.; Mill, J. Epigenetic and genetic variation at theIGF2/H19imprinting control region on 11p15.5 is associated with cerebellum weight. Epigenetics 2012, 7, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Preussner, J.; Chen, X.; Guenther, S.; Yuan, X.; Yekelchyk, M.; Kuenne, C.; Looso, M.; Zhou, Y.; Teichmann, S.; et al. Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement. Nat. Commun. 2018, 9, 4877. [Google Scholar] [CrossRef] [PubMed]
- Plageman, T.F.; Yutzey, K.E. Differential Expression and Function of Tbx5 and Tbx20 in Cardiac Development. J. Biol. Chem. 2004, 279, 19026–19034. [Google Scholar] [CrossRef]
- Mannarino, S.; Calcaterra, V.; Puricelli, F.; Cecconi, G.; Chillemi, C.; Raso, I.; Cordaro, E.; Zuccotti, G. The Role of miRNA Expression in Congenital Heart Disease: Insights into the Mechanisms and Biomarker Potential. Children 2025, 12, 611. [Google Scholar] [CrossRef]
- Gujar, H.; Weisenberger, D.J.; Liang, G. The Roles of Human DNA Methyltransferases and Their Isoforms in Shaping the Epigenome. Genes 2019, 10, 172. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, Z.; Shen, W.; Huang, G.; Sedivy, J.M.; Wang, H.; Ju, Z. Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: The regulation and intervention. Signal Transduct. Target. Ther. 2021, 6, 245. [Google Scholar] [CrossRef]
- Destici, E.; Zhu, F.; Tran, S.; Preissl, S.; Farah, E.N.; Zhang, Y.; Hou, X.; Poirion, O.B.; Lee, A.Y.; Grinstein, J.D.; et al. Human-gained heart enhancers are associated with species-specific cardiac attributes. Nat. Cardiovasc. Res. 2022, 1, 830–843. [Google Scholar] [CrossRef]
- Bonev, B.; Cohen, N.M.; Szabo, Q.; Fritsch, L.; Papadopoulos, G.L.; Lubling, Y.; Xu, X.; Lv, X.; Hugnot, J.-P.; Tanay, A.; et al. Multiscale 3D Genome Rewiring during Mouse Neural Development. Cell 2017, 171, 557–572.e24. [Google Scholar] [CrossRef]
- Zuin, J.; Roth, G.; Zhan, Y.; Cramard, J.; Redolfi, J.; Piskadlo, E.; Mach, P.; Kryzhanovska, M.; Tihanyi, G.; Kohler, H.; et al. Nonlinear control of transcription through enhancer–promoter interactions. Nature 2022, 604, 571–577. [Google Scholar] [CrossRef]
- Franke, M.; De la Calle-Mustienes, E.; Neto, A.; Almuedo-Castillo, M.; Irastorza-Azcarate, I.; Acemel, R.D.; Tena, J.J.; Santos-Pereira, J.M.; Gómez-Skarmeta, J.L. CTCF knockout in zebrafish induces alterations in regulatory landscapes and developmental gene expression. Nat. Commun. 2021, 12, 5415. [Google Scholar] [CrossRef]
- Costa, S.; La Rocca, G.; Cavalieri, V. Epigenetic Regulation of Chromatin Functions by MicroRNAs and Long Noncoding RNAs and Implications in Human Diseases. Biomedicines 2025, 13, 725. [Google Scholar] [CrossRef] [PubMed]
- Vincentz, J.W.; Barnes, R.M.; Firulli, B.A.; Conway, S.J.; Firulli, A.B. Cooperative interaction of Nkx2.5 and Mef2c transcription factors during heart development. Dev. Dyn. 2008, 237, 3809–3819. [Google Scholar] [CrossRef] [PubMed]
- VanOudenhove, J.; Yankee, T.N.; Wilderman, A.; Cotney, J. Epigenomic and Transcriptomic Dynamics During Human Heart Organogenesis. Circ. Res. 2020, 127, E184–E209. [Google Scholar] [CrossRef]
- Bohn, D.; Dargaville, P.A.; Davis, P.G.; Hutchison, A.A.; Owen, L.S. Acute Neonatal Respiratory Failure. In Pediatric and Neonatal Mechanical Ventilation; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1185–1265. Available online: http://link.springer.com/10.1007/978-3-642-01219-8_47 (accessed on 22 July 2025).
- Ang, Y.-S.; Rivas, R.N.; Ribeiro, A.J.; Srivas, R.; Rivera, J.; Stone, N.R.; Pratt, K.; Mohamed, T.M.; Fu, J.-D.; Spencer, C.I.; et al. Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis. Cell 2016, 167, 1734–1749.e22. [Google Scholar] [CrossRef] [PubMed]
- Calcaterra, V.; Mannarino, S.; Garella, V.; Rossi, V.; Biganzoli, E.M.; Zuccotti, G. Cardiovascular Risk in Pediatrics: A Dynamic Process during the First 1000 Days of Life. Pediatr. Rep. 2023, 15, 636–659. [Google Scholar] [CrossRef]
- Sainz, T.; Álvarez-Fuente, M.; Navarro, M.L.; Díaz, L.; Rojo, P.; Blázquez, D.; de José, M.I.; Ramos, J.T.; Serrano-Villar, S.; Martínez, J.; et al. Subclinical Atherosclerosis and Markers of Immune Activation in HIV-Infected Children and Adolescents. Am. J. Ther. 2014, 65, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Fowden, A.L.; Thornburg, K.L. Placental Origins of Chronic Disease. Physiol. Rev. 2016, 96, 1509–1565. [Google Scholar] [CrossRef]
- Auvinen, P.; Vehviläinen, J.; Rämö, K.; Laukkanen, I.; Marjonen-Lindblad, H.; Wallén, E.; Söderström-Anttila, V.; Kahila, H.; Hydén-Granskog, C.; Tuuri, T.; et al. Genome-wide DNA methylation and gene expression in human placentas derived from assisted reproductive technology. Commun. Med. 2024, 4, 267. [Google Scholar] [CrossRef]
- Thornburg, K.; O’TIerney, P.; Louey, S. Review: The Placenta is a Programming Agent for Cardiovascular Disease. Placenta 2010, 31, S54–S59. [Google Scholar] [CrossRef]
- Mönckeberg, M.; Arias, V.; Fuenzalida, R.; Álvarez, S.; Toro, V.; Calvo, A.; Kusanovic, J.P.; Monteiro, L.J.; Schepeler, M.; Nien, J.K.; et al. Diagnostic Performance of First Trimester Screening of Preeclampsia Based on Uterine Artery Pulsatility Index and Maternal Risk Factors in Routine Clinical Use. Diagnostics 2020, 10, 182. [Google Scholar] [CrossRef]
- Sciuk, F.; Vilsmaier, T.; Kramer, M.; Langer, M.; Kolbinger, B.; Li, P.; Jakob, A.; Rogenhofer, N.; Dalla-Pozza, R.; Thaler, C.; et al. Left Ventricular Diastolic Function in Subjects Conceived through Assisted Reproductive Technologies. J. Clin. Med. 2022, 11, 7128. [Google Scholar] [CrossRef]
- Lee, D.; Moawad, A.R.; Morielli, T.; Fernandez, M.C.; O’FLaherty, C. Peroxiredoxins prevent oxidative stress during human sperm capacitation. Mol. Hum. Reprod. 2016, 23, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Bashiri, Z.; Afzali, A.; Koruji, M.; Torkashvand, H.; Ghorbanlou, M.; Sheibak, N.; Zandieh, Z.; Amjadi, F. Advanced strategies for single embryo selection in assisted human reproduction: A review of clinical practice and research methods. Clin. Exp. Reprod. Med. 2025, 52, 8–29. [Google Scholar] [CrossRef] [PubMed]
- Paige, S.L.; Plonowska, K.; Xu, A.; Wu, S.M. Molecular Regulation of Cardiomyocyte Differentiation. Circ. Res. 2015, 116, 341–353. [Google Scholar] [CrossRef]
- Calo, E.; Wysocka, J. Modification of Enhancer Chromatin: What, How, and Why? Mol. Cell 2013, 49, 825–837. [Google Scholar] [CrossRef] [PubMed]
- Suluba, E.; Masaganya, J.; Mbugi, E.; Masala, M.; Mathew, J.; Mruma, H.; Shuwei, L. NKX2.5 coding exons sequencing reveals novel non-synonymous mutations in patients with sporadic congenital heart diseases among the Tanzanian population. Egypt. J. Med. Hum. Genet. 2024, 25, 86. [Google Scholar] [CrossRef]
- Garg, V.; Kathiriya, I.S.; Barnes, R.; Schluterman, M.K.; King, I.N.; Butler, C.A.; Rothrock, C.R.; Eapen, R.S.; Hirayama-Yamada, K.; Joo, K.; et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 2003, 424, 443–447. [Google Scholar] [CrossRef]
- Yilbas, A.E.; Hamilton, A.; Wang, Y.; Mach, H.; Lacroix, N.; Davis, D.R.; Chen, J.; Li, Q. Activation of GATA4 gene expression at the early stage of cardiac specification. Front. Chem. 2014, 2, 12. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Yi, Q.; Yang, C.; Wang, Y.; Tian, J.; Zhu, J. Histone modifications interact with DNA methylation at the GATA4 promoter during differentiation of mesenchymal stem cells into cardiomyocyte-like cells. Cell Prolif. 2016, 49, 315–329. [Google Scholar] [CrossRef]
- Sweat, M.E.; Cao, Y.; Zhang, X.; Burnicka-Turek, O.; Perez-Cervantes, C.; Kulandaisamy, A.; Lu, F.; Keating, E.M.; Akerberg, B.N.; Ma, Q.; et al. Author Correction: Tbx5 maintains atrial identity in postnatal cardiomyocytes by regulating an atrial-specific enhancer network. Nat. Cardiovasc. Res. 2023, 2, 1095. [Google Scholar] [CrossRef]
- Varela, D.; Conceição, N.; Cancela, M.L. Transcriptional regulation of human T-box 5 gene (TBX5) by bone- and cardiac-related transcription factors. Gene 2021, 768, 145322. [Google Scholar] [CrossRef]
- Ghazizadeh, Z.; Fattahi, F.; Mirzaei, M.; Bayersaikhan, D.; Lee, J.; Chae, S.; Hwang, D.; Byun, K.; Tabar, M.S.; Taleahmad, S.; et al. Prospective Isolation of ISL1+ Cardiac Progenitors from Human ESCs for Myocardial Infarction Therapy. Stem Cell Rep. 2018, 10, 848–859. [Google Scholar] [CrossRef]
- Abu-Hanna, J.; Patel, J.A.; Anastasakis, E.; Cohen, R.; Clapp, L.H.; Loizidou, M.; Eddama, M.M.R. Therapeutic potential of inhibiting histone 3 lysine 27 demethylases: A review of the literature. Clin. Epigenetics 2022, 14, 98. [Google Scholar] [CrossRef]
- Agarwal, P.; Verzi, M.P.; Nguyen, T.; Hu, J.; Ehlers, M.L.; McCulley, D.J.; Xu, S.-M.; Dodou, E.; Anderson, J.P.; Wei, M.L.; et al. The MADS box transcription factor MEF2C regulates melanocyte development and is a direct transcriptional target and partner of SOX10. Development 2011, 138, 2555–2565. [Google Scholar] [CrossRef]
- Giuffrida, D.; Rogers, I.M.; Nagy, A.; Calogero, A.E.; Brown, T.J.; Casper, R.F. Human embryonic stem cells secrete soluble factors that inhibit cancer cell growth. Cell Prolif. 2009, 42, 788–798. [Google Scholar] [CrossRef]
- McFadden, D.G.; Barbosa, A.C.; Richardson, J.A.; Schneider, M.D.; Srivastava, D.; Olson, E.N. The Hand1 and Hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner. Development 2005, 132, 189–201. [Google Scholar] [CrossRef]
- George, R.M.; Firulli, B.A.; Podicheti, R.; Rusch, D.B.; Mannion, B.J.; Pennacchio, L.A.; Osterwalder, M.; Firulli, A.B. Single cell evaluation of endocardial Hand2 gene regulatory networks reveals HAND2-dependent pathways that impact cardiac morphogenesis. Development 2023, 150, dev201341. [Google Scholar] [CrossRef] [PubMed]
- Razzaq, S.S.; Khan, I.; Naeem, N.; Salim, A.; Begum, S.; Haneef, K. Overexpression of GATA binding protein 4 and myocyte enhancer factor 2C induces differentiation of mesenchymal stem cells into cardiac-like cells. World J. Stem Cells 2022, 14, 700–713. [Google Scholar] [CrossRef]
- Deshpande, A.; Shetty, P.M.V.; Frey, N.; Rangrez, A.Y. SRF: A seriously responsible factor in cardiac development and disease. J. Biomed. Sci. 2022, 29, 38. [Google Scholar] [CrossRef]
- Heemskerk, I.; Burt, K.; Miller, M.; Chhabra, S.; Guerra, M.C.; Liu, L.; Warmflash, A. Rapid changes in morphogen concentration control self-organized patterning in human embryonic stem cells. eLife 2019, 8, e40526. [Google Scholar] [CrossRef]
- Sagner, A.; Briscoe, J. Morphogen interpretation: Concentration, time, competence, and signaling dynamics. WIREs Dev. Biol. 2017, 6, e271. [Google Scholar] [CrossRef]
- Kimura, M.; Furukawa, H.; Shoji, M.; Shinozawa, T. Increased mesodermal and mesendodermal populations by BMP4 treatment facilitates human iPSC line differentiation into a cardiac lineage. J. Stem Cells Regen. Med. 2019, 15, 45–51. [Google Scholar] [CrossRef]
- Sánchez-De-Diego, C.; Valer, J.A.; Pimenta-Lopes, C.; Rosa, J.L.; Ventura, F. Interplay between BMPs and Reactive Oxygen Species in Cell Signaling and Pathology. Biomolecules 2019, 9, 534. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Miyagawa-Tomita, S.; Vincent, S.D.; Kelly, R.G.; Moon, A.M.; Buckingham, M.E. Role of Mesodermal FGF8 and FGF10 Overlaps in the Development of the Arterial Pole of the Heart and Pharyngeal Arch Arteries. Circ. Res. 2010, 106, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Wang, Q.; Meng, Z.; Peng, J.; Zhou, Y.; Song, W.; Wang, J.; Chen, S.; Sun, K. Mutations in fibroblast growth factor (FGF8) and FGF10 identified in patients with conotruncal defects. J. Transl. Med. 2020, 18, 283. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Lu, Y.; Liu, X.; Huang, X.; Keller, E.T.; Qian, C.-N.; Zhang, J. Wnt3a: Functions and implications in cancer. Chin. J. Cancer 2015, 34, 50. [Google Scholar] [CrossRef]
- Zeng, X.; Huang, H.; Tamai, K.; Zhang, X.; Harada, Y.; Yokota, C.; Almeida, K.; Wang, J.; Doble, B.; Woodgett, J.; et al. Initiation of Wnt signaling: Control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development 2008, 135, 367–375. [Google Scholar] [CrossRef]
- Kaufhold, S.; Bonavida, B. Central role of Snail1 in the regulation of EMT and resistance in cancer: A target for therapeutic intervention. J. Exp. Clin. Cancer Res. 2014, 33, 62. [Google Scholar] [CrossRef]
- Song, J.; Xiao, L.; Zhang, Z.; Wang, Y.; Kouis, P.; Rasmussen, L.J.; Dai, F. Effects of reactive oxygen species and mitochondrial dysfunction on reproductive aging. Front. Cell Dev. Biol. 2024, 12, 1347286. [Google Scholar] [CrossRef]
- Papageorgis, P. TGFβSignaling in Tumor Initiation, Epithelial-to-Mesenchymal Transition, and Metastasis. J. Oncol. 2015, 2015, 587193. [Google Scholar] [CrossRef]
- Lathia, J.D.; Mattson, M.P.; Cheng, A. Notch: From neural development to neurological disorders. J. Neurochem. 2008, 107, 1471–1481. [Google Scholar] [CrossRef] [PubMed]
- Tabin, C.J. The Key to Left-Right Asymmetry. Cell 2006, 127, 27–32. [Google Scholar] [CrossRef]
- Messerschmidt, D.M.; Knowles, B.B.; Solter, D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev. 2014, 28, 812–828. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Poulsen, R.; Zhao, L.; Wang, J.; Rivkees, S.A.; Wendler, C.C. Knockdown of DNA methyltransferase 1 reduces DNA methylation and alters expression patterns of cardiac genes in embryonic cardiomyocytes. FEBS Open Bio 2021, 11, 2364–2382. [Google Scholar] [CrossRef]
- Sen, C.K.; Friday, A.J.; Roy, S. Cell and tissue reprogramming: Unlocking a new era in medical drug discovery. Pharmacol. Rev. 2025, 77, 100077. [Google Scholar] [CrossRef]
- Yang, Y.; Luan, Y.; Yuan, R.X.; Luan, Y. Histone Methylation Related Therapeutic Challenge in Cardiovascular Diseases. Front. Cardiovasc. Med. 2021, 8, 710053. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Guo, D.; Du, W. ATP-Dependent Chromatin Remodeling Complex in the Lineage Specification of Mesenchymal Stem Cells. Stem Cells Int. 2020, 2020, 8839703. [Google Scholar] [CrossRef] [PubMed]
- Horánszky, A.; Becker, J.L.; Zana, M.; Ferguson-Smith, A.C.; Dinnyés, A. Epigenetic Mechanisms of ART-Related Imprinting Disorders: Lessons From iPSC and Mouse Models. Genes 2021, 12, 1704. [Google Scholar] [CrossRef]
- Paoloni-Giacobino, A.; Chaillet, J.R. Genomic imprinting and assisted reproduction. Reprod. Health 2004, 1, 6. [Google Scholar] [CrossRef]
- Singh, D.D.; Kim, Y.; Choi, S.A.; Han, I.; Yadav, D.K. Clinical Significance of MicroRNAs, Long Non-Coding RNAs, and CircRNAs in Cardiovascular Diseases. Cells 2023, 12, 1629. [Google Scholar] [CrossRef] [PubMed]
- Fuller, A.M.; Qian, L. MiRiad Roles for MicroRNAs in Cardiac Development and Regeneration. Cells 2014, 3, 724–750. [Google Scholar] [CrossRef]
- Smith, J.; Sen, S.; Weeks, R.J.; Eccles, M.R.; Chatterjee, A. Promoter DNA Hypermethylation and Paradoxical Gene Activation. Trends Cancer 2020, 6, 392–406. [Google Scholar] [CrossRef]
- Cao, Y.; Zheng, M.; Sewani, M.A.; Wang, J. The miR-17-92 cluster in cardiac health and disease. Birth Defects Res. 2024, 116, e2273. [Google Scholar] [CrossRef]
- van Rooij, E.; Quiat, D.; Johnson, B.A.; Sutherland, L.B.; Qi, X.; Richardson, J.A.; Kelm, R.J., Jr.; Olson, E.N. A Family of microRNAs Encoded by Myosin Genes Governs Myosin Expression and Muscle Performance. Dev. Cell 2009, 17, 662–673. [Google Scholar] [CrossRef] [PubMed]
- Grote, P.; Wittler, L.; Hendrix, D.; Koch, F.; Währisch, S.; Beisaw, A.; Macura, K.; Bläss, G.; Kellis, M.; Werber, M.; et al. The Tissue-Specific lncRNA Fendrr Is an Essential Regulator of Heart and Body Wall Development in the Mouse. Dev. Cell 2013, 24, 206–214. [Google Scholar] [CrossRef]
- Korostowski, L.; Sedlak, N.; Engel, N.; Ferguson-Smith, A.C. The Kcnq1ot1 Long Non-Coding RNA Affects Chromatin Conformation and Expression of Kcnq1, but Does Not Regulate Its Imprinting in the Developing Heart. PLoS Genet. 2012, 8, e1002956. [Google Scholar] [CrossRef] [PubMed]
- Fatima, R.; Akhade, V.S.; Pal, D.; Rao, S.M. Long noncoding RNAs in development and cancer: Potential biomarkers and therapeutic targets. Mol. Cell. Ther. 2015, 3, 5. [Google Scholar] [CrossRef]
- Mei, S.; Ma, X.; Zhou, L.; Wuyun, Q.; Cai, Z.; Yan, J.; Ding, H. Circular RNA in Cardiovascular Diseases: Biogenesis, Function and Application. Biomolecules 2024, 14, 952. [Google Scholar] [CrossRef]
- Sunderam, S.; Kissin, D.M.; Crawford, S.B.; Folger, S.G.; Boulet, S.L.; Warner, L.; Barfield, W.D. Assisted Reproductive Technology Surveillance—United States, 2015. MMWR. Surveill. Summ. 2018, 67, 1–28. [Google Scholar] [CrossRef]
- Cervantes-Salazar, J.L.; Pérez-Hernández, N.; Calderón-Colmenero, J.; Rodríguez-Pérez, J.M.; González-Pacheco, M.G.; Villamil-Castañeda, C.; Rosas-Tlaque, A.A.; Ortega-Zhindón, D.B. Genetic Insights into Congenital Cardiac Septal Defects—A Narrative Review. Biology 2024, 13, 911. [Google Scholar] [CrossRef]
- Sutherland, M.J.; Ware, S.M. Disorders of left–right asymmetry: Heterotaxy and situs inversus. Am. J. Med. Genet. Part C Semin. Med. Genet. 2009, 151C, 307–317. [Google Scholar] [CrossRef]
- Kirienko, K.V.; Apryshko, V.P.; Naumova, A.A.; Kharitonova, M.A.; Klepukov, A.A.; Bolt, A.I.; Ermilova, I.Y.; Mironova, A.G.; Bozina, Y.V.; Lebedeva, E.B.; et al. Mechanical zona pellucida removal of vitrified-warmed human blastocysts does not affect the clinical outcome. Reprod. Biomed. Online 2019, 39, 745–749. [Google Scholar] [CrossRef] [PubMed]
- Reue, K.; Wiese, C.B. Illuminating the Mechanisms Underlying Sex Differences in Cardiovascular Disease. Circ. Res. 2022, 130, 1747–1762. [Google Scholar] [CrossRef] [PubMed]
- Vandenberg, L.N.; Levin, M. A unified model for left–right asymmetry? Comparison and synthesis of molecular models of embryonic laterality. Dev. Biol. 2013, 379, 1–15. [Google Scholar] [CrossRef]
- Catana, A.; Apostu, A.P. The Determination Factors of Left-Right Asymmetry Disorders—A Short Review. Med. Pharm. Rep. 2017, 90, 139–146. [Google Scholar] [CrossRef]
- Soukup, V.; Yong, L.W.; Lu, T.-M.; Huang, S.-W.; Kozmik, Z.; Yu, J.-K. The Nodal signaling pathway controls left-right asymmetric development in amphioxus. EvoDevo 2015, 6, 5. [Google Scholar] [CrossRef]
- Gardner, D.K.; Kelley, R.L. Impact of the IVF laboratory environment on human preimplantation embryo phenotype. J. Dev. Orig. Health Dis. 2017, 8, 418–435. [Google Scholar] [CrossRef]
- Franko, R.; De Almeida Monteiro Melo Ferraz, M. Exploring the potential of in vitro extracellular vesicle generation in re-productive biology. J. Extracell. Bio 2024, 3, e70007. [Google Scholar] [CrossRef]
- Nayarisseri, A.; Bandaru, S.; Khan, A.; Sharma, K.; Bhrdwaj, A.; Kaur, M.; Ghosh, D.; Chopra, I.; Panicker, A.; Kumar, A.; et al. Epigenetic dysregulation in cancers by isocitrate dehydrogenase 2 (IDH2). In Advances in Protein Chemistry and Structural Biology; Elsevier: Amsterdam, The Netherlands, 2024; pp. 223–253. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1876162323001244 (accessed on 24 July 2025).
- Sargisian, N.; Petzold, M.; Furenäs, E.; Gissler, M.; Spangmose, A.L.; Lauesgaard, S.M.; Opdahl, S.; Pinborg, A.; A Henningsen, A.-K.; Westvik-Johari, K.; et al. Congenital heart defects in children born after assisted reproductive technology: A CoNARTaS study. Eur. Heart J. 2024, 45, 4840–4858. [Google Scholar] [CrossRef] [PubMed]
- Dorn, T.; Goedel, A.; Lam, J.T.; Haas, J.; Tian, Q.; Herrmann, F.; Bundschu, K.; Dobreva, G.; Schiemann, M.; Dirschinger, R.; et al. Direct Nkx2-5 Transcriptional Repression of Isl1 Controls Cardiomyocyte Subtype Identity. Stem Cells 2015, 33, 1113–1129. [Google Scholar] [CrossRef] [PubMed]
- Pane, L.S.; Fulcoli, F.G.; Cirino, A.; Altomonte, A.; Ferrentino, R.; Bilio, M.; Baldini, A. Tbx1 represses Mef2c gene expression and is correlated with histone 3 deacetylation of the anterior heart field enhancer. Dis. Model. Mech. 2018, 11, dmm029967. [Google Scholar] [CrossRef]
- Yuan, X.; Scott, I.C.; Wilson, M.D. Heart Enhancers: Development and Disease Control at a Distance. Front. Genet. 2021, 12, 642975. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, L.; Guo, F.; Dai, X.; Zhang, X. Epigenetic reprogramming during the maternal-to-zygotic transition. MedComm 2023, 4, e331. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, J.M.; Ortega-Zhindón, D.B.; Villamil-Castañeda, C.; Lara-Ortiz, J.S.; Borgonio-Cuadra, V.M.; Cervantes-Salazar, J.L.; Calderón-Colmenero, J.; Escalante-Ruiz, Z.N.; Retama-Méndez, E.; Hernández-García, Y.C.; et al. Congenital Heart Diseases: Recent Insights into Epigenetic Mechanisms. Cells 2025, 14, 820. [Google Scholar] [CrossRef]
- Luna-Zurita, L.; Stirnimann, C.U.; Glatt, S.; Kaynak, B.L.; Thomas, S.; Baudin, F.; Samee, A.H.; He, D.; Small, E.M.; Mileikovsky, M.; et al. Complex Interdependence Regulates Heterotypic Transcription Factor Distribution and Coordinates Cardiogenesis. Cell 2016, 164, 999–1014. [Google Scholar] [CrossRef] [PubMed]
- Barral, A.; Déjardin, J. The chromatin signatures of enhancers and their dynamic regulation. Nucleus 2023, 14, 2160551. [Google Scholar] [CrossRef]
- Agarwal, A.; Rosas, I.M.; Anagnostopoulou, C.; Cannarella, R.; Boitrelle, F.; Munoz, L.V.; Finelli, R.; Durairajanayagam, D.; Henkel, R.; Saleh, R. Oxidative Stress and Assisted Reproduction: A Comprehensive Review of Its Pathophysiological Role and Strategies for Optimizing Embryo Culture Environment. Antioxidants 2022, 11, 477. [Google Scholar] [CrossRef]
- Pundhir, S.; Su, J.; Tapia, M.; Hansen, A.M.; Haile, J.S.; Hansen, K.; Porse, B.T. The impact of SWI/SNF and NuRD inactivation on gene expression is tightly coupled with levels of RNA polymerase II occupancy at promoters. Genome Res. 2023, 33, 332–345. [Google Scholar] [CrossRef]
- Bi, S.; Tu, Z.; Chen, D.; Zhang, S. Histone modifications in embryo implantation and placentation: Insights from mouse models. Front. Endocrinol. 2023, 14, 1229862. [Google Scholar] [CrossRef]
- Glancy, E.; Choy, N.; Eckersley-Maslin, M.A. Bivalent chromatin: A developmental balancing act tipped in cancer. Biochem. Soc. Trans. 2024, 52, 217–229. [Google Scholar] [CrossRef]
- Chen, X.; Guo, D.-Y.; Yin, T.-L.; Yang, J. Non-Coding RNAs Regulate Placental Trophoblast Function and Participate in Recurrent Abortion. Front. Pharmacol. 2021, 12, 646521. [Google Scholar] [CrossRef]
- Ono, K.; Kuwabara, Y.; Han, J. MicroRNAs and cardiovascular diseases. FEBS J. 2011, 278, 1619–1633. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, P.; Qiu, H.; Zhu, Y.; Zhang, X.; Zhang, Y.; Duan, F.; Ding, S.; Guo, J.; Huang, Y.; et al. Integrative epigenomic and transcriptomic analysis reveals the requirement of JUNB for hematopoietic fate induction. Nat. Commun. 2022, 13, 3131. [Google Scholar] [CrossRef] [PubMed]
- Farland, L.V.; Wang, Y.; Gaskins, A.J.; Rich-Edwards, J.W.; Wang, S.; Magnus, M.C.; Chavarro, J.E.; Rexrode, K.M.; Missmer, S.A. Infertility and Risk of Cardiovascular Disease: A Prospective Cohort Study. J. Am. Heart Assoc. 2023, 12, e027755. [Google Scholar] [CrossRef]
- Sciorio, R.; Cantatore, C.; D’Amato, G.; Smith, G.D. Cryopreservation, cryoprotectants, and potential risk of epigenetic al-teration. J. Assist. Reprod. Genet. 2024, 41, 2953–2967. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.-P.; Deng, Y.-B. Ultrasound evaluation of the cardiovascular system in offspring conceived through assisted reproductive technology. J. Assist. Reprod. Genet. 2024, 41, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, Y.; Huang, H.; Jin, L. Cardiovascular health of offspring conceived by assisted reproduction technology: A com-prehensive review. Front. Cardiovasc. Med. 2024, 11, 128760. [Google Scholar] [CrossRef]
- Katz, M.G.; Fargnoli, A.S.; Kendle, A.P.; Hajjar, R.J.; Bridges, C.R. The role of microRNAs in cardiac development and re-generative capacity. Am. J. Physiol.-Heart Circ. Physiol. 2016, 310, H528–H541. [Google Scholar] [CrossRef] [PubMed]
- Brade, T.; Pane, L.S.; Moretti, A.; Chien, K.R.; Laugwitz, K.-L. Embryonic Heart Progenitors and Cardiogenesis. Cold Spring Harb. Perspect. Med. 2013, 3, a013847. [Google Scholar] [CrossRef]
- Feuer, S.; Rinaudo, P. Preimplantation Stress and Development. Birth Defects Res. Pt. C 2012, 96, 299–314. [Google Scholar] [CrossRef]
- Seisenberger, S.; Peat, J.R.; Hore, T.A.; Santos, F.; Dean, W.; Reik, W. Reprogramming DNA methylation in the mammalian life cycle: Building and breaking epigenetic barriers. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20110330. [Google Scholar] [CrossRef]
- Villalba, A.; Rueda, J.; Beriain, Í.d.M. Synthetic embryos: A new venue in ethical research. Reproduction 2023, 165, V1–V3. [Google Scholar] [CrossRef]
- Kloesel, B.; DiNardo, J.A.; Body, S.C. Cardiac Embryology and Molecular Mechanisms of Congenital Heart Disease: A Primer for Anesthesiologists. Anesthesia Analg. 2016, 123, 551–569. [Google Scholar] [CrossRef]
- Ouyang, Z.; Wei, K. miRNA in cardiac development and regeneration. Cell Regen. 2021, 10, 14. [Google Scholar] [CrossRef]
- Mielcarek, M.; Zielonka, D.; Carnemolla, A.; Marcinkowski, J.T.; Guidez, F. HDAC4 as a potential therapeutic target in neurodegenerative diseases: A summary of recent achievements. Front. Cell. Neurosci. 2015, 9, 42. [Google Scholar] [CrossRef]
- Boland, M.J.; Nazor, K.L.; Loring, J.F. Epigenetic Regulation of Pluripotency and Differentiation. Circ. Res. 2014, 115, 311–324. [Google Scholar] [CrossRef]
- Voros, C.; Varthaliti, A.; Mavrogianni, D.; Athanasiou, D.; Athanasiou, A.; Athanasiou, A.; Papahliou, A.-M.; Zografos, C.G.; Topalis, V.; Kondili, P.; et al. Epigenetic Alterations in Ovarian Function and Their Impact on Assisted Reproductive Technologies: A Systematic Review. Biomedicines 2025, 13, 730. [Google Scholar] [CrossRef]
- Gullo, G.; Scaglione, M.; Buzzaccarini, G.; Laganà, A.S.; Basile, G.; Chiantera, V.; Cucinella, G.; Zaami, S. Cell-Free Fetal DNA and Non-Invasive Prenatal Diagnosis of Chromosomopathies and Pediatric Monogenic Diseases: A Critical Appraisal and Medicolegal Remarks. J. Pers. Med. 2022, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Gong, Y.; Dou, L.; Zhou, X.; Zhang, Y. Bioinformatics analysis methods for cell-free DNA. Comput. Biol. Med. 2022, 143, 105283. [Google Scholar] [CrossRef] [PubMed]
- Boštjančič, E.; Jerše, M.; Glavač, D.; Zidar, N. miR-1, miR-133a/b, and miR-208a in human fetal hearts correlate to the apoptotic and proliferation markers. Exp. Biol. Med. 2015, 240, 211–219. [Google Scholar] [CrossRef]
- Abdellatif, M.; van Rooij, E. Differential Expression of MicroRNAs in Different Disease States. Circ. Res. 2012, 110, 638–650. [Google Scholar] [CrossRef] [PubMed]
- Van Montfoort, A.P.A.; Arts, E.; Wijnandts, L.; Sluijmer, A.; Pelinck, M.J.; Land, J.A.; Van Echten-Arends, J. Reduced oxygen concentration during human IVF culture improves embryo utilization and cumulative pregnancy rates per cycle. Hum. Reprod. Open 2020, 2020, hoz036. [Google Scholar] [CrossRef]
- Toporcerová, S.; Badovská, Z.; Kriváková, E.; Mikulová, V.; Mareková, M.; Altmäe, S.; Rabajdová, M. Embryo secretome in predicting embryo quality and IVF treatment outcome. Reprod. Biomed. Online 2025, 51, 104825. [Google Scholar] [CrossRef]
Gene/Factor | Function in Cardiogenesis | Developmental Stage | Epigenetic Regulation | Potential ART-Related Disruption |
---|---|---|---|---|
NKX2-5 | Master cardiac TF; initiates heart tube formation and chamber specification | Cardiac crescent to linear heart tube | Promoter methylation; interaction with GATA4 and T-box enhancers | Downregulation and enhancer destabilization in ART embryos |
GATA4 | Activates myocardial gene expression; interacts with NKX2-5 and TBX5 | Early mesoderm to looping heart | Histone acetylation (H3K27ac) and coactivator recruitment | Reduced expression via altered HAT activity in ART blastocysts |
TBX5 | Regulates atrial/ventricular septation and limb-heart axis | Linear heart tube to chamber morphogenesis | Controlled by CREs with active histone marks | Reduced enhancer accessibility and misexpression in ART embryos |
ISL1 | Marks SHF progenitors; promotes OFT and RV development | SHF specification | Regulated by enhancer methylation and miR-17–92 | Decreased expression and SHF mispatterning in IVF models |
MEF2C | Required for RV and OFT formation; integrates Smad/TGFβ signaling | Looping stage | Direct target of FOXH1–NKX2-5 complex; Smad-dependent enhancer | Silencing of intronic enhancer via disrupted FOXH1 in ART embryos |
HAND1/2 | Ventricular morphogenesis and laterality; controls myocardial expansion | Chamber formation | Regulated by bHLH heterodimerization and methylation | Dysregulation linked to impaired chamber formation in IVC |
MYH6 | α-MHC; involved in early myocardial contraction and conduction | Chamber maturation | Isoform switch regulated by histone deacetylation | Altered isoform balance (MYH6/MYH7) in ART offspring hearts |
ACTC1 | Encodes α-cardiac actin; essential for sarcomere integrity | Early CM differentiation | Regulated by GATA/NKX co-binding sites | Impaired expression and sarcomere defects in ART-derived CMs |
DNMT3A/B | De novo DNA methylation during implantation and germ layer formation | Zygote to blastocyst | Methylation of cardiogenic loci (e.g., NKX2-5, IGF2) | Aberrant methylation patterns in ART embryos |
TET1/2/3 | DNA demethylation and 5hmC production at developmental genes | Pre-implantation and epiblast stages | Regulates enhancer activity of cardiogenic TFs | Loss of 5hmC at heart enhancers in IVF embryos |
EZH2 | Mediates H3K27me3 silencing; maintains lineage boundaries | Gastrulation to organogenesis | Silences alternative lineage genes | Overexpression may repress cardiac mesoderm genes post-ART |
miR-1/133/208 | Regulate CM differentiation, proliferation, and hypertrophy | Cardiomyocyte lineage | Post-transcriptional repression of TFs (e.g., GATA4, SRF) | Dysregulated in ART placentas and fetal hearts |
ncRNA | Type | Cardiogenic Role | Molecular Targets/Interactions | ART-Associated Disruptions |
---|---|---|---|---|
miR-1 | miRNA | Promotes CM differentiation; represses inhibitors of sarcomeric gene expression | Hdac4, Hand2, Klf4 | Downregulated in ART embryos; hypermethylated promoter |
miR-133 | miRNA | Maintains CPC proliferation; regulates cytoskeletal dynamics | Srf, Ctgf, Cyclin D2 | Altered ratio with miR-1; affects CPC fate decisions |
miR-17~92 | miRNA cluster | Supports SHF CPC expansion and survival | Bim, Pten, Tgfbr2 | Suppressed in IVF; associated with OFT malformations |
miR-208a/b, miR-499 | miRNAs | Regulate myosin isoform switching and ventricular identity | Sox6, Sp3, Thrap1 | Histone modification imbalance; defective ventricular morphogenesis |
Bvht | lncRNA | Primes mesodermal cells for cardiac lineage commitment | Interacts with Swi/Snf and PRC2 | H3K27me3 enrichment suppresses expression in IVF embryos |
Fendrr | lncRNA | Controls L/R asymmetry and posterior heart field patterning | Foxf1, Pitx2, epigenetic complexes | Repression in ART models linked to looping defects |
Kcnq1ot1 | lncRNA | Regulates imprinted cardiac loci and conduction pathways | Recruits G9a, PRC2; regulates Cdkn1c | Loss of imprinting in ART embryos; linked to abnormal cardiac growth |
Circ-Sirt1 | circRNA | Enhances CM survival under oxidative stress | Sponges miR-93 → upregulates Mef2c | Disrupted Qki/Fus expression affects circularization in ART embryos |
Neat1, Malat1 | lncRNAs | Stress-responsive; linked to cardiac remodeling and fibrosis | Nuclear speckle organization; modulate splicing factors | Upregulated in ART-conceived cardiomyocytes; long-term cardiac remodeling |
Epigenetic Regulator | Function in Cardiac Development | ART-Induced Disruption |
---|---|---|
DNMT1 | Maintenance of DNA methylation during cell division; preserves methylation of cardiogenic gene promoters | Aberrant maintenance methylation leads to dysregulated cardiogenic gene silencing |
DNMT3A/3B | De novo DNA methylation; crucial for cardiac lineage specification | Altered methylation patterns impair cardiac lineage commitment |
EZH2 (PRC2 complex) | Histone methyltransferase that deposits H3K27me3, repressing non-cardiac genes in progenitors | Upregulation causes excessive repression of critical cardiac genes |
KDM6A/KDM6B | Histone demethylases that remove H3K27me3, enabling gene activation in second heart field (SHF) | Downregulation results in persistent repression of cardiac transcriptional enhancers |
BRG1 (SWI/SNF complex) | ATP-dependent chromatin remodeler that facilitates transcription of cardiac transcription factors | Reduced expression/activity impairs access to cardiac regulatory elements |
CHD4 (NuRD complex) | Remodels nucleosomes to regulate chromatin compaction and cardiac enhancer accessibility | Mislocalization affects enhancer activity and gene silencing balance |
H3K4me3 | Activation mark at promoters of cardiac genes like NKX2-5, TBX5, MEF2C | Decreased enrichment at cardiac promoters delays gene activation |
H3K27ac | Activation mark at enhancers; promotes transcription of heart-specific genes | Loss leads to insufficient enhancer activity and delayed transcriptional onset |
miR-1 | Suppresses HAND2; balances ventricular growth and cardiomyocyte differentiation | Downregulated in ART embryos; may cause myocardial hyperplasia |
miR-133 | Inhibits proliferation and promotes differentiation in cardiac progenitors | Suppressed expression results in altered cardiomyocyte proliferation and apoptosis |
miR-208 | Regulates cardiac myosin isoform expression and electrical conductivity | Reduced expression disrupts sarcomeric protein regulation and conduction |
Preventive Strategy | Targeted Molecular Pathways/Genes | Stage of Application |
---|---|---|
Low-oxygen (5%) culture conditions | Reduces ROS impact on NKX2.5, HAND1, GATA4 | Preimplantation embryo culture |
Antioxidant supplementation (e.g., melatonin, glutathione) | Prevents oxidative DNA/histone damage; stabilizes MEF2C, ISL1 | Throughout embryo culture |
Xeno-free, defined culture media | Reduces variability in cardiac enhancer activation | Preimplantation embryo culture |
Folate and B12-enriched media | Supports DNMT1 activity; preserves methylation at IGF2/H19, TBX5 | Preimplantation embryo culture |
Minimized mechanical manipulation | Prevents disruption of cardiac chromatin dynamics | During ICSI, biopsy, hatching |
Embryo secretome profiling | Monitors ACTC1, MYH6, and cardiogenic miRNAs in spent media | Day 3–5 blastocyst stage |
Non-invasive miRNA screening | Detects dysregulation of miR-1, miR-133, miR-208 linked to myocardium | Day 3–5 blastocyst stage |
Maternal methylation profiling | Identifies polymorphisms or methylation instability in parental genome | Preconception or before IVF cycle |
CRISPR-dCas9 epigenome editing (future) | Corrects methylation errors in cardiogenic enhancers (e.g., HAND2) | In vitro (research setting) |
Organoid/chip-based embryo testing | Assesses safety/toxicity of media components on cardiac gene expression | Protocol testing before clinical use |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voros, C.; Papadimas, G.; Theodora, M.; Mavrogianni, D.; Athanasiou, D.; Sapantzoglou, I.; Bananis, K.; Athanasiou, A.; Athanasiou, A.; Tsimpoukelis, C.; et al. From Petri Dish to Primitive Heart: How IVF Alters Early Cardiac Gene Networks and Epigenetic Landscapes. Biomedicines 2025, 13, 2044. https://doi.org/10.3390/biomedicines13082044
Voros C, Papadimas G, Theodora M, Mavrogianni D, Athanasiou D, Sapantzoglou I, Bananis K, Athanasiou A, Athanasiou A, Tsimpoukelis C, et al. From Petri Dish to Primitive Heart: How IVF Alters Early Cardiac Gene Networks and Epigenetic Landscapes. Biomedicines. 2025; 13(8):2044. https://doi.org/10.3390/biomedicines13082044
Chicago/Turabian StyleVoros, Charalampos, Georgios Papadimas, Marianna Theodora, Despoina Mavrogianni, Diamantis Athanasiou, Ioakeim Sapantzoglou, Kyriakos Bananis, Antonia Athanasiou, Aikaterini Athanasiou, Charalampos Tsimpoukelis, and et al. 2025. "From Petri Dish to Primitive Heart: How IVF Alters Early Cardiac Gene Networks and Epigenetic Landscapes" Biomedicines 13, no. 8: 2044. https://doi.org/10.3390/biomedicines13082044
APA StyleVoros, C., Papadimas, G., Theodora, M., Mavrogianni, D., Athanasiou, D., Sapantzoglou, I., Bananis, K., Athanasiou, A., Athanasiou, A., Tsimpoukelis, C., Papapanagiotou, I., Vaitsis, D., Koulakmanidis, A.-M., Daskalaki, M. A., Topalis, V., Thomakos, N., Antsaklis, P., Chatzinikolaou, F., Loutradis, D., & Daskalakis, G. (2025). From Petri Dish to Primitive Heart: How IVF Alters Early Cardiac Gene Networks and Epigenetic Landscapes. Biomedicines, 13(8), 2044. https://doi.org/10.3390/biomedicines13082044