Echocardiographic Findings in Cardiomyopathy Due to Acromegaly
Abstract
:1. Introduction
2. Materials and Methods
2.1. Echocardiograms
2.2. Statistical Analysis
3. Results
3.1. The Study Population
3.2. Echocardiographic Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CHT | Concentric hypertrophy |
CR | Concentric remodeling |
EH | Eccentric hypertrophy |
LVEF | Left ventricular ejection fraction |
LAE | Left atrial enlargement |
VI | Valvular insufficiency |
GH | Growth hormone |
IGF-1 | Insulin-like growth factor type 1 |
LVH | Left ventricular hypertrophy |
LV | Left ventricular |
PSAP | Pulmonary artery systolic pressure |
HbA1c | Glycated hemoglobin |
TSH | Thyroid-stimulating hormone |
LAVI | Left atrial volume index |
RVBD | Right ventricular baseline diameter |
RVSF | Right ventricular systolic function |
TAPSE | Tricuspid annular plane systolic excursion |
References
- Parolin, M.; Dassie, F.; Vettor, R.; Maffei, P. Acromegaly and ultrasound: How, when and why? J. Endocrinol. Investig. 2019, 43, 279–287. [Google Scholar] [CrossRef]
- Portocarrero-Ortiz, L.A.; Vergara-Lopez, A.; Vidrio-Velazquez, M.; Uribe-Diaz, A.M.; García-Dominguez, A.; Reza-Albarrán, A.A.; Cuevas-Ramos, D.; Melgar, V.; Talavera, J.; Rivera-Hernandez, A.d.J.; et al. The Mexican Acromegaly Registry: Clinical and Biochemical Characteristics at Diagnosis and Therapeutic Outcomes. J. Clin. Endocrinol. Metab. 2016, 101, 3997–4004. [Google Scholar] [CrossRef]
- Melga, V.; Espinosa, E.; Cuenca, D.; Valle, V.; Mercado, M. Diagnóstico y tratamiento actual de la acromegalia. Rev. Med. Inst. Mex. Seguro Soc. 2015, 53, 74–83. [Google Scholar]
- Mercado, M.; Abreu, C.; Vergara-López, A.; González-Virla, B.; Espinosa-De-Los-Monteros, A.-L.; Sosa-Eroza, E.; Cadena-Obando, D.; Cuevas-Ramos, D.; A Portocarrero-Ortiz, L.; Pérez-Reyes, S.-P.; et al. Surgical and Pharmacological Outcomes in Acromegaly: Real-Life Data from the Mexican Acromegaly Registry. J. Clin. Endocrinol. Metab. 2020, 105, 4567–4576. [Google Scholar] [CrossRef] [PubMed]
- Cadena-Obando, D.A.; Remba-Shapiro, I.; Abreu-Rosario, C.G.; Mercado, M. Acromegalia y sus implicaciones cardiovasculares. Rev. Med. Inst. Mex. Seguro Soc. 2021, 59, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.N.; Tan, M.; Amsterdam, E.A.; Singh, G.D. Acromegalic cardiomyopathy: Epidemiology, diagnosis, and management. Clin. Cardiol. 2018, 41, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Vitale, G.; Pivonello, R.; Lombardi, G.; Colao, A. Cardiac abnormalities in acromegaly pathophysiology and implications for management. Treat. Endocrinol. 2004, 3, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.D.; Nguyen, A.V.; Brown, S.; Robbins, R.J. Cardiovascular disease in acromegaly. Methodist. Debakey Cardiovasc. J. 2017, 13, 64–67. [Google Scholar] [CrossRef]
- Gómez-Martínez, G.; Maldonado-Almaraz, B.; Martínez-Delgado, I.A. Características ecográficas de pacientes con acromegalia. Rev. Endocrinol. Nutr. 2013, 21, 125–131. [Google Scholar]
- Colao, A. 5 Long-term acromegaly and associated cardiovascular complications: A case-based review. Best. Pract. Res. Clin. Endocrinol. Metab. 2009, 23 (Suppl. S1), S31–S38. [Google Scholar] [CrossRef]
- Abreu-Rosario, C.; Cadena-Obando, D.; Vergara-López, A.; Monteros-Sánchez, A.L.E.d.L.; Portocarrero-Ortiz, L.; Romero, P.G.; Pérez-Guzmán, M.C.; Cuevas-Ramos, D.; Reza-Albarrán, A.A.; González-Virla, B.; et al. Tercer consenso nacional de acromegalia: Recomendaciones para su diagnóstico, tratamiento y seguimiento. Rev. Mex. Endocrinol. Metab. Nutr. 2021, 8 (Suppl. S1), 3–21. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–271. [Google Scholar] [CrossRef]
- Devereux, R.B.; Alonso, D.R.; Lutas, E.M.; Gottlieb, G.J.; Campo, E.; Sachs, I.; Reichek, N. Echocardiographic assessment of left ventricular hypertrophy: Comparison to necropsy findings. Am. J. Cardiol. 1986, 57, 450–458. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the evaluation of Left velntricular diastolic function by echocardiography: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [PubMed]
- Orihuela, O.; Ventura, M.d.J.; Carmona-Ruiz, H.A.; Santos-Martinez, L.-E.; Sánchez, A.R.; Paniagua, R. Pulmonary hypertension in patients starting peritodDialysis. Arch. Med. Res. 2020, 51, 254–260. [Google Scholar] [CrossRef]
- Bolfi, F.; Neves, A.F.; Boguszewski, C.L.; Nunes-Nogueira, V.S. Mortality in acromegaly decreased in the last decade: A systematic review and metaanalysis. Eur. J. Endocrinol. 2018, 179, 59–71. [Google Scholar] [CrossRef]
- Kormányos, Á.; Domsik, P.; Kalapos, A.; Valkusz, Z.; Lengyel, C.; Forster, T.; Nemes, A. A Three-dimensional speckle tracking echocardiography-derived left atrial deformation analysis in acromegaly (Results from the MAGYAR-Path Study). Echocardiography 2018, 35, 975–984. [Google Scholar] [CrossRef] [PubMed]
- Kou, S.; Caballero, L.; Dulgheru, R.; Voilliot, D.; De Sousa, C.; Kacharava, G.; Athanassopoulos, G.D.; Barone, D.; Baroni, M.; Cardim, N.; et al. Echocardiographic reference ranges for normal cardiac chamber size: Results from the NORRE study. European heart journal. Cardiovasc. Imaging 2014, 15, 680–690. [Google Scholar] [CrossRef]
- Barquera, S.; Hernández-Barrera, L.; Oviedo-Solís, C.; Rodríguez-Ramírez, S.; Monterrubio-Flores, E.; Trejo-Valdivia, B.; Martínez-Tapia, B.; Aguilar-Salinas, C.; Galván-Valencia, O.; Chávez-Manzanera, E.; et al. Obesidad en adultos. Salud Publica Mex. 2024, 66, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Hinojosa-Amaya, J.M.; Varlamov, E.V.; Yedinak, C.G.; Cetas, J.S.; McCartney, S.; Banskota, S.; Fleseriu, M. Echocardiographic findings in acromegaly: Prevalence of concentric left ventricular remodeling in a large single-center cohort. J. Endocrinol. Investig. 2021, 44, 2665–2674. [Google Scholar] [CrossRef]
- Popielarz-Grygalewicz, A.; Gąsior, J.S.; Konwicka, A.; Grygalewicz, P.; Stelmachowska-Banaś, M.; Zgliczyński, W.; Dąbrowski, M. Heart in Acromegaly: The Echocardiographic Characteristics of Patients Diagnosed with Acromegaly in Various Stages of the Disease. Int. J. Endocrinol. 2018, 2018, 6935054. [Google Scholar] [CrossRef] [PubMed]
- Giustina, A.; Barkan, A.; Beckers, A.; Biermasz, N.; Biller, B.M.K.; Boguszewski, C.; Bolanowski, M.; Bonert, V.; Bronstein, M.D.; Casanueva, F.F.; et al. A consensus on the diagnosis and treatment of acromegaly comorbidities: An update. J. Clin. Endocrinol. Metab. 2020, 105, dgz096. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-C.; Yu, W.-C.; Kuo, C.-S.; Chen, H.-S. Growth hormone control and cardiovascular function in patients with acromegaly. J. Chin. Med. Assoc. 2021, 84, 165–170. [Google Scholar] [CrossRef]
- Yang, H.; Tan, H.; Huang, H.; Li, J. Advances in research on the cardiovascular complications of acromegaly. Front. Oncol. 2021, 11, 640999. [Google Scholar] [CrossRef] [PubMed]
- Petrossians, P.; Daly, A.F.; Natchev, E.; Maione, L.; Blijdorp, K.; Sahnoun-Fathallah, M.; Auriemma, R.; Diallo, A.M.; Hulting, A.-L.; Ferone, D.; et al. Acromegaly at diagnosis in 3173 patients from the Liège Acromegaly Survey (LAS) Database. Endocr.-Relat. Cancer 2017, 24, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, G.; Colao, A.; Marzullo, P.; Biondi, B.; Palmieri, E.; Fazio, S.; Multicenter Italian Study Group on Lanreotide. Improvement of left ventricular hypertrophy and arrhythmias after lanreotide-induced GH and IGF-I decrease in acromegaly. A prospective multi-center study. J. Endocrinol. Investig. 2002, 25, 971–976. [Google Scholar] [CrossRef]
- Maison, P.; Tropeano, A.-I.; Macquin-Mavier, I.; Giustina, A.; Chanson, P. Impact of somatostatin analogs on the heart in acromegaly: A metaanalysis. J. Clin. Endocrinol. Metab. 2007, 92, 1743–1747. [Google Scholar] [CrossRef]
- Wexler, T.L.; Durst, R.; McCarty, D.; Picard, M.H.; Gunnell, L.; Omer, Z.; Fazeli, P.; Miller, K.K.; Klibanski, A. Growth hormone status predicts left ventricular mass in patients after cure of acromegaly. Growth Horm. IGF Res. 2010, 20, 333–337. [Google Scholar] [CrossRef]
- Lombardi, G.; Colao, A.; Cuocolo, A.; Longobardi, S.; Di Somma, C.; Orio, F.; Merola, B.; Nicolai, E.; Salvatore, M. Cardiological aspects of growth hormone and insulin-like growth factor-I. J. Pediatr. Endocrinol. Metab. 1997, 10, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, B.L.; Bruch, C.; Saller, B.; Bartel, T.; Ferdin, S.; Erbel, R.; Mann, K. Erbel, R Acromegaly: Evidence for a direct relation between disease activity and cardiac dysfunction in patients without ventricular hypertrophy. Clin. Endocrinol. 2002, 56, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Colao, A.; Grasso, L.F.; Di Somma, C.; Pivonello, R. Acromegaly and heart failure. Heart Fail. Clin. 2019, 15, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Minniti, G.; Moroni, C.; Jaffrain-Rea, M.; Esposito, V.; Santoro, A.; Affricano, C.; Cantore, G.; Tamburrano, G.; Cassone, R. Marked improvement in cardiovascular function after successful transsphenoidal surgery in acromegalic patients. Clin. Endocrinol. 2001, 55, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Ilter, A.; Kırış, A.; Kaplan, Ş.; Kutlu, M.; Şahin, M.; Erem, C.; Civan, N.; Kangül, F. Atrial conduction times and left atrium mechanical functions in patients with active acromegaly. Endocrine 2015, 48, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Kim, K.-S.; Han, K.; Park, C.-Y. Acromegaly and cardiovascular outcomes: A cohort study. Eur. Heart J. 2022, 43, 1491–1499. [Google Scholar] [CrossRef] [PubMed]
- Fazio, S.; Cittadini, A.; Sabatini, D.; Merola, B.; Colao, A.M.; Biondi, B.; Lombardi, G.; Sacca, L. Evidence for biventricular involvement in acromegaly: A Doppler echocardiographic study. Eur. Heart J. 1993, 14, 26–33. [Google Scholar] [CrossRef]
- Natchev, E.; Kundurdjiev, A.; Zlatareva, N.; Vandeva, S.; Kirilov, G.; Kundurzhiev, T.; Zacharieva, S. Echocardiographic myocardial changes in acromegaly: A cross-sectional analysis in a tertiary center in bulgaria. Acta Endocrinol. 2019, 5, 52–61. [Google Scholar] [CrossRef]
- Kulagina, T.Y.; Sandrikov, V.A.; Van, E.Y.; Zyabirova, R.Z.; Petrova, Y.N. Evaluation of right and left ventricular function in patients with ischemic heart disease complicated by mitral insufficiency. Kardiologiia 2022, 62, 46–56. [Google Scholar] [CrossRef]
- Pirhan, O.; Ertuğrul, A.S.; Yıldız, C.; Karabulut, D.; Pehlivan, B.; Piskinpasa, H.; Дoraнceн, С.Ч.; Mert, M. Assessment of right ventricular functions in acromegaly: Comparison of active disease with remission. Kardiologiia 2022, 62, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Cecilia, P.; Mónica, E. Cardiovascular disease and acromegaly. Insuf. Card 2011, 6, 188–202. [Google Scholar]
- Perkett, E.A.; Badesch, D.B.; Roessler, M.K.; Stenmark, K.R.; Meyrick, B. Insulin- like growth factor I and pulmonary hypertension induced by continuous air embolization in sheep. Am. J. Respir. Cell Mol. Biol. 1992, 6, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Colao, A.; Ferone, D.; Marzullo, P.; Lombardi, G. Systemic complications of acromegaly: Epidemiology, pathogenesis, and management. Endocr. Rev. 2004, 25, 102–152. [Google Scholar] [CrossRef] [PubMed]
- Galiè, N.; Humbert, M.; Vachiery, J.L.; Gibbs, S.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.; Noordegraaf, A.V.; Beghetti, M.; et al. Guia ESC/ERS 2015 sobre diagnostic y tratamiento de la hipertensión pulmonar. Rev. Esp. Cardiol. 2016, 69, 177.e1–177.e62. [Google Scholar] [CrossRef]
- Mandras, S.A.; Mehta, H.S.; Vaidya, A. Pulmonary hypertension: A brief guide for clinicians. Mayo Clin. Proc. 2022, 95, 1978–1988. [Google Scholar] [CrossRef] [PubMed]
- Itelman, E.; Segel, M.J.; Kuperstein, R.; Feinberg, M.; Segev, A.; Segal, G.; Maor, E.; Grossman, E. Pulmonary hypertension is associated with systemic arterial hypertension among patients with normal left ventricular diastolic function. J. Am. Heart Assoc. 2021, 10, e023603. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.M.; van Thiel, S.W.; Lindner, J.R.; Roelfsema, F.; van der Wall, E.E.; Morreau, H.; Smit, J.W.A.; Romijn, J.A.; Bax, J.J. Increased prevalence of regurgitant valvular heart disease in acromegaly. J. Clin. Endocrinol. Metab. 2004, 89, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Lie, J.; Grossman, S.J. Pathology of the heart in acromegaly: Anatomic findings in 27 autopsied patients. Am. Heart J. 1980, 100, 41–52. [Google Scholar] [CrossRef] [PubMed]
Age | Women (ng/mL) | Men (ng/mL) |
---|---|---|
18–30 years | 151–353 | 172–432 |
31–40 years | 116–249 | 122–304 |
41–50 years | 84–191 | 87–190 |
51–60 years | 54–177 | 54–177 |
>61 years | 56–140 | 56–140 |
Clinical Parameters | Men (n = 89) | Women (n = 148) | p * |
---|---|---|---|
Age, years | 48 ± 12 | 49 ± 13 | 0.223 |
Height, m | 1.69 ± 0.09 | 1.57 ± 0.07 | 0.146 |
Weight, kg | 83 (77–93) | 72 (64–83) | <0.001 |
BMI, kg/m2 | 29.2 (26.7–32.2) | 29.4 (25.5–33.9) | 0.938 |
Obesity, n (%) | 34 (14) | 72 (30) | 0.013 |
Smoking, n (%) | 9 (4) | 7 (3) | 0.033 |
Diabetes Mellitus, n (%) | 25 (11) | 60 (25) | 0.982 |
Prediabetes, n (%) | 16 (7) | 32 (13) | 0.745 |
Hypertension, n (%) | 25 (11) | 57 (24) | 0.734 |
Dyslipidemia, n (%) | 11 (5) | 21 (9) | 0.690 |
Secondary Hypogonadism, n (%) | 13 (5) | 4 (2) | 0.001 |
Hypocortisolism, n (%) | 3 (1) | 8 (3) | 0.471 |
Hypothyroidism, n (%) | 21 (9) | 62 (26) | 0.028 |
Biochemical Values | Men (n = 89) | Women (n = 148) | p * |
---|---|---|---|
Hemoglobin, mg/dL | 15.2 (14.1–16.0) | 13.7 (12.5–14.3) | <0.001 |
Hematocrit, % | 44.8 (42.7–47.3) | 41.1 (37.9–43.2) | <0.001 |
Glucose, mg/dL | 98 (90–105) | 103 (93–111) | 0.020 |
Urea, mg/dL | 31 (25–38) | 28 (23–37) | 0.050 |
Creatinine, mg/dL | 0.85 (0.77–0.94) | 0.67 (0.58–0.77) | <0.001 |
Cholesterol, mg/dL | 171 (150–199) | 188 (164–212) | 0.006 |
HDL, mg/dL | 46 (39–56) | 52 (40–63) | 0.018 |
LDL, mg/dL | 92 (74–112) | 99 (79–122) | 0.156 |
Triglycerides, mg/dL | 131 (104–170) | 147 (114–209) | 0.025 |
BUN, mg/dL | 14.1 (11.8–18.0) | 13.1 (10.7–17.2) | 0.055 |
Hb1Ac, % | 5.7 (5.5–6.3) | 6.0 (5.5–6.6) | 0.076 |
Prolactin, ng/ml | 8.6 (2.9–15.2) | 7.3 (1.0–13.6) | 0.352 |
Free T4, ng/dL | 1.23 (1.08–1.37) | 1.23 (1.10–1.40) | 0.797 |
TSH, μUI/ml | 2.0 (1.04–2.62) | 1.38 (0.52–2.79) | 0.063 |
GH, ng/ml | 0.94 (0.35–2.89) | 1.22 (0.65–2.65) | 0.132 |
IGF-1, ng/ml | 250 (181–405) | 240 (170–334) | 0.114 |
Parameter | Men (n = 89) | Women (n = 148) | p Value * |
---|---|---|---|
Concentric Hypertrophy, n (%) | 40 (19) | 76 (32) | 0.339 |
Eccentric Hypertrophy, n (%) | 6 (3) | 12 (5) | 0.701 |
Concentric Remodeling, n (%) | 24 (10) | 28 (12) | 0.147 |
Normal Geometry, n (%) | 19 (8) | 32 (14) | 0.960 |
LAVI, mL/m2 | 28.21 ± 9.97 | 26.88 ± 8.59 | 0.058 |
LVMI, g/m2 | 115.64 ± 43.04 | 115.269 ± 45.26 | 0.227 |
Aortic Root, mm | 31.51 ± 4.69 | 28.06 ± 3.83 | 0.003 |
LVEF, % | 64.68 ± 7.67 | 66.18 ± 6.4 | 0.562 |
MV Insufficiency, n (%) | 40 (17) | 73 (31) | 0.513 |
AV Insufficiency, n (%) | 9 (4) | 12 (5) | 0.599 |
TV insufficiency, n (%) | 66 (28) | 98 (41) | 0.200 |
Diastolic Dysfunction, n (%) | 27 (11) | 34 (14) | 0.209 |
E, m/s | 0.71 ± 0.17 | 0.78 ± 0.12 | 0.000 |
A, m/s | 0.58 ± 0.12 | 0.62 ± 0.15 | 0.014 |
E/A | 1.27 ± 0.37 | 1.32 ± 0.38 | 0.971 |
e′, cm/s | 8.43 ± 2.95 | 8.8 ± 3.38 | 0.732 |
E/e′ | 9.27 ± 5.1 | 9.14 ± 3.42 | 0.735 |
Right Ventricle Dilation, n (%) | 20 (8) | 21 (9) | 0.103 |
Right Atrium Enlargement, n (%) | 16 (7) | 19 (8) | 0.280 |
Pulmonary Hypertension, n (%) | 7 (3) | 21 (9) | 0.139 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orihuela Rodríguez, O.; Valle Nava, L.; Ferreira-Hermosillo, A.; Carmona-Ruiz, H.A.; Acevedo Meléndez, A.; Jacobo Ruvalcaba, A.; Sosa-Eroza, E. Echocardiographic Findings in Cardiomyopathy Due to Acromegaly. Biomedicines 2025, 13, 605. https://doi.org/10.3390/biomedicines13030605
Orihuela Rodríguez O, Valle Nava L, Ferreira-Hermosillo A, Carmona-Ruiz HA, Acevedo Meléndez A, Jacobo Ruvalcaba A, Sosa-Eroza E. Echocardiographic Findings in Cardiomyopathy Due to Acromegaly. Biomedicines. 2025; 13(3):605. https://doi.org/10.3390/biomedicines13030605
Chicago/Turabian StyleOrihuela Rodríguez, Oscar, Leobardo Valle Nava, Aldo Ferreira-Hermosillo, Héctor A. Carmona-Ruiz, Ariana Acevedo Meléndez, Andrés Jacobo Ruvalcaba, and Ernesto Sosa-Eroza. 2025. "Echocardiographic Findings in Cardiomyopathy Due to Acromegaly" Biomedicines 13, no. 3: 605. https://doi.org/10.3390/biomedicines13030605
APA StyleOrihuela Rodríguez, O., Valle Nava, L., Ferreira-Hermosillo, A., Carmona-Ruiz, H. A., Acevedo Meléndez, A., Jacobo Ruvalcaba, A., & Sosa-Eroza, E. (2025). Echocardiographic Findings in Cardiomyopathy Due to Acromegaly. Biomedicines, 13(3), 605. https://doi.org/10.3390/biomedicines13030605