Application of Omics Analyses in Pediatric B-Cell Acute Lymphoblastic Leukemia
Abstract
:1. Introduction
2. The Advent of Omics Analyses in Acute B-Cell Lymphoblastic Leukemia
2.1. Next-Generation Sequencing
2.2. Whole Genome Sequencing
2.3. RNA Sequencing
2.4. Proteomics
2.5. Farmacogenomics
3. Genetic Alterations in Pediatric B-ALL
4. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Greaves, M. A Causal Mechanism for Childhood Acute Lymphoblastic Leukaemia. Nat. Rev. Cancer 2018, 18, 471–484. [Google Scholar] [CrossRef] [PubMed]
- Mullighan, C.G.; Phillips, L.A.; Su, X.; Ma, J.; Miller, C.B.; Shurtleff, S.A.; Downing, J.R. Genomic Analysis of the Clonal Origins of Relapsed Acute Lymphoblastic Leukemia. Science 2008, 322, 1377–1380. [Google Scholar] [CrossRef] [PubMed]
- Duffield, A.S.; Mullighan, C.G.; Borowitz, M.J. International Consensus Classification of Acute Lymphoblastic Leukemia/Lymphoma. Virchows Arch. 2023, 482, 11–26. [Google Scholar] [CrossRef]
- Yeung, D.T.O.; Osborn, M.P.; White, D.L. B-Cell Acute Lymphoblastic Leukaemia: Recent Discoveries in Molecular Pathology, Their Prognostic Significance, and a Review of the Current Classification. Br. J. Haematol. 2022, 197, 13–27. [Google Scholar] [CrossRef]
- Iacobucci, I.; Mullighan, C.G. Genetic Basis of Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2017, 35, 975–983. [Google Scholar] [CrossRef]
- Ivanov, A.V.; Alecsa, M.S.; Popescu, R.; Starcea, M.I.; Mocanu, A.M.; Rusu, C.; Miron, I.C. Pediatric Acute Lymphoblastic Leukemia Emerging Therapies—From Pathway to Target. Int. J. Mol. Sci. 2023, 24, 4661. [Google Scholar] [CrossRef]
- Munir, F.; He, J.; Connors, J.; Garcia, M.; Gibson, A.; McCall, D.; Nunez, C.; Dinh, C.N.; Robusto, L.; Roth, M.; et al. Translational Advances in the Treatment of Childhood Acute Lymphoblastic Leukemia: Narrative Review of Current and Emerging Molecular and Immunotherapies. Transl. Pediatr. 2023, 12, 487–502. [Google Scholar] [CrossRef]
- Schultz, L.; Mackall, C.L. The Future of CAR T-Cell Therapy for B-Cell Acute Lymphoblastic Leukemia in Pediatrics and Adolescents. Expert Opin. Biol. Ther. 2023, 23, 633–640. [Google Scholar] [CrossRef]
- Tomizawa, D. Evolution and Optimization of Therapies for Acute Lymphoblastic Leukemia in Infants. Int. J. Hematol. 2023, 117, 162–172. [Google Scholar] [CrossRef]
- Inaba, H.; Mullighan, C.G. Pediatric Acute Lymphoblastic Leukemia. Haematologica 2020, 105, 2524–2539. [Google Scholar] [CrossRef] [PubMed]
- Montaño, A.; Hernández-Sánchez, J.; Forero-Castro, M.; Matorra-Miguel, M.; Lumbreras, E.; Miguel, C.; Santos, S.; Ramírez-Maldonado, V.; Fuster, J.L.; de Las Heras, N.; et al. Comprehensive Custom NGS Panel Validation for the Improvement of the Stratification of B-Acute Lymphoblastic Leukemia Patients. J. Pers. Med. 2020, 10, 137. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Churchman, M.L.; Roberts, K.G.; Moore, I.; Zhou, X.; Nakitandwe, J.; Hagiwara, K.; Pelletier, S.; Gingras, S.; Berns, H.; et al. PAX5-Driven Subtypes of B-Progenitor Acute Lymphoblastic Leukemia. Nat. Genet. 2019, 51, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Paietta, E.; Roberts, K.G.; Wang, V.; Gu, Z.; Buck, G.A.N.; Pei, D.; Cheng, C.; Levine, R.L.; Abdel-Wahab, O.; Cheng, Z.; et al. Molecular Classification Improves Risk Assessment in Adult BCR-ABL1-Negative B-ALL. Blood 2021, 138, 948–958. [Google Scholar] [CrossRef]
- Jeck, W.R.; Lee, J.; Robinson, H.; Le, L.P.; Iafrate, A.J.; Nardi, V. A Nanopore Sequencing-Based Assay for Rapid Detection of Gene Fusions. J. Mol. Diagn. 2019, 21, 58–69. [Google Scholar] [CrossRef]
- Minervini, C.F.; Cumbo, C.; Orsini, P.; Anelli, L.; Zagaria, A.; Impera, L.; Coccaro, N.; Brunetti, C.; Minervini, A.; Casieri, P.; et al. Mutational Analysis in BCR-ABL1 Positive Leukemia by Deep Sequencing Based on Nanopore MinION Technology. Exp. Mol. Pathol. 2017, 103, 33–37. [Google Scholar] [CrossRef]
- Brady, S.W.; Roberts, K.G.; Gu, Z.; Shi, L.; Pounds, S.; Pei, D.; Cheng, C.; Dai, Y.; Devidas, M.; Qu, C.; et al. The Genomic Landscape of Pediatric Acute Lymphoblastic Leukemia. Nat. Genet. 2022, 54, 1376–1389. [Google Scholar] [CrossRef]
- The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium; Campbell, P.J.; Getz, G. Pan-Cancer Analysis of Whole Genomes. Nature 2020, 578, 82–93. [Google Scholar] [CrossRef]
- Meggendorfer, M.; Jobanputra, V.; Wrzeszczynski, K.O.; Roepman, P.; de Bruijn, E.; Cuppen, E.; Buttner, R.; Caldas, C.; Grimmond, S.; Mullighan, C.G.; et al. Analytical Demands to Use Whole-Genome Sequencing in Precision Oncology. Semin. Cancer Biol. 2022, 84, 16–22. [Google Scholar] [CrossRef]
- Berglund, E.; Barbany, G.; Orsmark-Pietras, C.; Fogelstrand, L.; Abrahamsson, J.; Golovleva, I.; Hallböök, H.; Höglund, M.; Lazarevic, V.; Levin, L.-Å.; et al. A Study Protocol for Validation and Implementation of Whole-Genome and -Transcriptome Sequencing as a Comprehensive Precision Diagnostic Test in Acute Leukemias. Front. Med. 2022, 9, 842507. [Google Scholar] [CrossRef]
- Jeha, S.; Choi, J.; Roberts, K.G.; Pei, D.; Coustan-Smith, E.; Inaba, H.; Rubnitz, J.E.; Ribeiro, R.C.; Gruber, T.A.; Raimondi, S.C.; et al. Clinical Significance of Novel Subtypes of Acute Lymphoblastic Leukemia in the Context of Minimal Residual Disease-Directed Therapy. Blood Cancer Discov. 2021, 2, 326–337. [Google Scholar] [CrossRef] [PubMed]
- Rezayee, F.; Eisfeldt, J.; Skaftason, A.; Öfverholm, I.; Sayyab, S.; Syvänen, A.C.; Maqbool, K.; Lilljebjörn, H.; Johansson, B.; Olsson-Arvidsson, L.; et al. Feasibility to Use Whole-Genome Sequencing as a Sole Diagnostic Method to Detect Genomic Aberrations in Pediatric B-Cell Acute Lymphoblastic Leukemia. Front. Oncol. 2023, 13, 1217712. [Google Scholar] [CrossRef] [PubMed]
- Leongamornlert, D.; Gutiérrez-Abril, J.; Lee, S.; Barretta, E.; Creasey, T.; Gundem, G.; Levine, M.F.; Arango-Ossa, J.E.; Liosis, K.; Medina-Martinez, J.S.; et al. Diagnostic Utility of Whole Genome Sequencing in Adults with B-Other Acute Lymphoblastic Leukemia. Blood Adv. 2023, 7, 3862–3873. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Wang, H.; Chen, H.; Jiang, H.; Yuan, J.; Yang, Z.; Wang, W.-J.; Xu, F.; Guo, X.; Cao, Y.; et al. Identification of Balanced Chromosomal Rearrangements Previously Unknown among Participants in the 1000 Genomes Project: Implications for Interpretation of Structural Variation in Genomes and the Future of Clinical Cytogenetics. Genet. Med. 2018, 20, 697–707. [Google Scholar] [CrossRef]
- Kosugi, S.; Momozawa, Y.; Liu, X.; Terao, C.; Kubo, M.; Kamatani, Y. Comprehensive Evaluation of Structural Variation Detection Algorithms for Whole Genome Sequencing. Genome Biol. 2019, 20, 117. [Google Scholar] [CrossRef]
- Dremsek, P.; Schwarz, T.; Weil, B.; Malashka, A.; Laccone, F.; Neesen, J. Optical Genome Mapping in Routine Human Genetic Diagnostics—Its Advantages and Limitations. Genes 2021, 12, 1958. [Google Scholar] [CrossRef]
- Genomics, B. Bionano Solve Theory of Operation: Structural Variant Calling; Bionano Genomics, Inc.: San Diego, CA, USA, 2020; p. 30110. [Google Scholar]
- Neveling, K.; Mantere, T.; Vermeulen, S.; Oorsprong, M.; van Beek, R.; Kater-Baats, E.; Pauper, M.; van der Zande, G.; Smeets, D.; Weghuis, D.O.; et al. Next-Generation Cytogenetics: Comprehensive Assessment of 52 Hematological Malignancy Genomes by Optical Genome Mapping. Am. J. Hum. Genet. 2021, 108, 1423–1435. [Google Scholar] [CrossRef]
- Lühmann, J.L.; Stelter, M.; Wolter, M.; Kater, J.; Lentes, J.; Bergmann, A.K.; Schieck, M.; Göhring, G.; Möricke, A.; Cario, G.; et al. The Clinical Utility of Optical Genome Mapping for the Assessment of Genomic Aberrations in Acute Lymphoblastic Leukemia. Cancers 2021, 13, 4388. [Google Scholar] [CrossRef]
- Brandes, D.; Yasin, L.; Nebral, K.; Ebler, J.; Schinnerl, D.; Picard, D.; Bergmann, A.K.; Alam, J.; Köhrer, S.; Haas, O.A.; et al. Optical Genome Mapping Identifies Novel Recurrent Structural Alterations in Childhood ETV6::RUNX1+ and High Hyperdiploid Acute Lymphoblastic Leukemia. Hemasphere 2023, 7, e925. [Google Scholar] [CrossRef]
- Brown, L.M.; Lonsdale, A.; Zhu, A.; Davidson, N.M.; Schmidt, B.; Hawkins, A.; Wallach, E.; Martin, M.; Mechinaud, F.M.; Khaw, S.L.; et al. The Application of RNA Sequencing for the Diagnosis and Genomic Classification of Pediatric Acute Lymphoblastic Leukemia. Blood Adv. 2020, 4, 930–942. [Google Scholar] [CrossRef]
- Martinelli, G.; Iacobucci, I.; Storlazzi, C.T.; Vignetti, M.; Paoloni, F.; Cilloni, D.; Soverini, S.; Vitale, A.; Chiaretti, S.; Cimino, G.; et al. IKZF1 (Ikaros) Deletions in BCR-ABL1-Positive Acute Lymphoblastic Leukemia Are Associated with Short Disease-Free Survival and High Rate of Cumulative Incidence of Relapse: A GIMEMA AL WP Report. J. Clin. Oncol. 2009, 27, 5202–5207. [Google Scholar] [CrossRef] [PubMed]
- Migita, N.A.; Jotta, P.Y.; Nascimento, N.P.d.; Vasconcelos, V.S.; Centoducatte, G.L.; Massirer, K.B.; Azevedo, A.C.d.; Brandalise, S.R.; Yunes, J.A. Classification and Genetics of Pediatric B-Other Acute Lymphoblastic Leukemia by Targeted RNA Sequencing. Blood Adv. 2023, 7, 2957–2971. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Cho, S.; Hong, S.-E.; Kang, D.; Choi, H.; Lee, J.-M.; Yoon, J.-H.; Cho, B.-S.; Lee, S.; Kim, H.-J.; et al. Integrative Analysis of Gene Expression Data by RNA Sequencing for Differential Diagnosis of Acute Leukemia: Potential Application of Machine Learning. Front. Oncol. 2021, 11, 717616. [Google Scholar] [CrossRef] [PubMed]
- Mäkinen, V.P.; Rehn, J.; Breen, J.; Yeung, D.; White, D.L. Multi-Cohort Transcriptomic Subtyping of B-Cell Acute Lymphoblastic Leukemia. Int. J. Mol. Sci. 2022, 23, 4574. [Google Scholar] [CrossRef]
- Schmidt, B.; Brown, L.M.; Ryland, G.L.; Lonsdale, A.; Kosasih, H.J.; Ludlow, L.E.; Majewski, I.J.; Blombery, P.; Ekert, P.G.; Davidson, N.M.; et al. ALLSorts: An RNA-Seq Subtype Classifier for B-Cell Acute Lymphoblastic Leukemia. Blood Adv. 2022, 6, 4093–4097. [Google Scholar] [CrossRef]
- Beder, T.; Hansen, B.-T.; Hartmann, A.M.; Zimmermann, J.; Amelunxen, E.; Wolgast, N.; Walter, W.; Zaliova, M.; Antić, Ž.; Chouvarine, P.; et al. The Gene Expression Classifier ALLCatchR Identifies B-Cell Precursor ALL Subtypes and Underlying Developmental Trajectories Across Age. Hemasphere 2023, 7, e939. [Google Scholar] [CrossRef]
- Hu, Z.; Jia, Z.; Liu, J.; Mao, A.; Han, H.; Gu, Z. MD-ALL: An Integrative Platform for Molecular Diagnosis of B-Acute Lymphoblastic Leukemia. Haematologica 2023, 109, 1741–1754. [Google Scholar] [CrossRef]
- Rehn, J.; Mayoh, C.; Heatley, S.L.; McClure, B.J.; Eadie, L.N.; Schutz, C.; Yeung, D.T.; Cowley, M.J.; Breen, J.; White, D.L. RaScALL: Rapid (Ra) Screening (Sc) of RNA-Seq Data for Prognostically Significant Genomic Alterations in Acute Lymphoblastic Leukaemia (ALL). PLoS Genet. 2022, 18, e1010300. [Google Scholar] [CrossRef]
- Schieck, M.; Lentes, J.; Thomay, K.; Hofmann, W.; Behrens, Y.L.; Hagedorn, M.; Ebersold, J.; Davenport, C.F.; Fazio, G.; Möricke, A.; et al. Implementation of RNA Sequencing and Array CGH in the Diagnostic Workflow of the AIEOP-BFM ALL 2017 Trial on Acute Lymphoblastic Leukemia. Ann. Hematol. 2020, 99, 809–818. [Google Scholar] [CrossRef]
- López Villar, E.; Wu, D.; Cho, W.C.; Madero, L.; Wang, X. Proteomics-Based Discovery of Biomarkers for Paediatric Acute Lymphoblastic Leukaemia: Challenges and Opportunities. J. Cell. Mol. Med. 2014, 18, 1239–1246. [Google Scholar] [CrossRef]
- Macklin, A.; Khan, S.; Kislinger, T. Recent Advances in Mass Spectrometry Based Clinical Proteomics: Applications to Cancer Research. Clin. Proteom. 2020, 17, 17. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Beyer, A.; Aebersold, R. On the Dependency of Cellular Protein Levels on mRNA Abundance. Cell 2016, 165, 535–550. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, R.; Ma, D.; Li, L. Mass Spectrometry-Based Proteomics and Peptidomics for Systems Biology and Biomarker Discovery. Front. Biol. 2012, 7, 313–335. [Google Scholar] [CrossRef] [PubMed]
- Pursiheimo, A.; Vehmas, A.P.; Afzal, S.; Suomi, T.; Chand, T.; Strauss, L.; Poutanen, M.; Rokka, A.; Corthals, G.L.; Elo, L.L. Optimization of Statistical Methods Impact on Quantitative Proteomics Data. J. Proteome Res. 2015, 14, 4118–4126. [Google Scholar] [CrossRef]
- Melani, R.D.; Gerbasi, V.R.; Anderson, L.C.; Sikora, J.W.; Toby, T.K.; Hutton, J.E.; Butcher, D.S.; Negrão, F.; Seckler, H.S.; Srzentić, K.; et al. The Blood Proteoform Atlas: A Reference Map of Proteoforms in Human Hematopoietic Cells. Science 2022, 375, 411–418. [Google Scholar] [CrossRef]
- Costa, O.; Schneider, P.; Coquet, L.; Chan, P.; Penther, D.; Legrand, E.; Jouenne, T.; Vasse, M.; Vannier, J.-P. Proteomic Profile of Pre-B2 Lymphoblasts from Children with Acute Lymphoblastic Leukemia (ALL) in Relation with the Translocation (12; 21). Clin. Proteom. 2014, 11, 31. [Google Scholar] [CrossRef]
- Bagheralmoosavi, S.; Gholami, P.; Amini, M.; Alizadeh, M.; Yaghmaei, M.; Tavakkoli, S.; Salari, S.; Jeddi-Tehrani, M.; Ghasempour, A.; Gilany, K.; et al. Proteome Analysis of Adult Acute Lymphoblastic Leukemia by Two-Dimensional Blue Native/Sodium Dodecyl Sulfate Gel Electrophoresis. Avicenna J. Med. Biotechnol. 2023, 15, 21–27. [Google Scholar] [CrossRef]
- Schroeder, M.P.; Bastian, L.; Eckert, C.; Gökbuget, N.; James, A.R.; Tanchez, J.O.; Schlee, C.; Isaakidis, K.; Häupl, B.; Baum, K.; et al. Integrated Analysis of Relapsed B-Cell Precursor Acute Lymphoblastic Leukemia Identifies Subtype-Specific Cytokine and Metabolic Signatures. Sci. Rep. 2019, 9, 4188. [Google Scholar] [CrossRef]
- Papadopoulou, M.T.; Panagopoulou, P.; Paramera, E.; Pechlivanis, A.; Virgiliou, C.; Papakonstantinou, E.; Palabougiouki, M.; Ioannidou, M.; Vasileiou, E.; Tragiannidis, A.; et al. Metabolic Fingerprint in Childhood Acute Lymphoblastic Leukemia. Diagnostics 2024, 14, 682. [Google Scholar] [CrossRef]
- Antić, Ž.; Yu, J.; Van Reijmersdal, S.V.; Van Dijk, A.; Dekker, L.; Segerink, W.H.; Sonneveld, E.; Fiocco, M.; Pieters, R.; Hoogerbrugge, P.M.; et al. Multiclonal Complexity of Pediatric Acute Lymphoblastic Leukemia and the Prognostic Relevance of Subclonal Mutations. Haematologica 2021, 106, 3046–3055. [Google Scholar] [CrossRef]
- Lorentzian, A.C.; Rever, J.; Ergin, E.K.; Guo, M.; Akella, N.M.; Rolf, N.; James Lim, C.; Reid, G.S.D.; Maxwell, C.A.; Lange, P.F. Targetable Lesions and Proteomes Predict Therapy Sensitivity through Disease Evolution in Pediatric Acute Lymphoblastic Leukemia. Nat. Commun. 2023, 14, 7161. [Google Scholar] [CrossRef] [PubMed]
- Kourti, M.; Aivaliotis, M.; Hatzipantelis, E. Proteomics in Childhood Acute Lymphoblastic Leukemia: Challenges and Opportunities. Diagnostics 2023, 13, 2748. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.R.; Yang, W.; Gocho, Y.; John, A.; Rowland, L.; Smart, B.; Williams, H.; Maxwell, D.; Hunt, J.; Yang, W.; et al. Pharmacotypes across the Genomic Landscape of Pediatric Acute Lymphoblastic Leukemia and Impact on Treatment Response. Nat. Med. 2023, 29, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Den Boer, M.L.; van Slegtenhorst, M.; De Menezes, R.X.; Cheok, M.H.; Buijs-Gladdines, J.G.C.A.M.; Peters, S.T.C.J.M.; Van Zutven, L.J.C.M.; Beverloo, H.B.; Van der Spek, P.J.; Escherich, G.; et al. A Subtype of Childhood Acute Lymphoblastic Leukaemia with Poor Treatment Outcome: A Genome-Wide Classification Study. Lancet Oncol. 2009, 10, 125–134. [Google Scholar] [CrossRef]
- Meyer, L.K.; Delgado-Martin, C.; Maude, S.L.; Shannon, K.M.; Teachey, D.T.; Hermiston, M.L. CRLF2 Rearrangement in Ph-like Acute Lymphoblastic Leukemia Predicts Relative Glucocorticoid Resistance That Is Overcome with MEK or Akt Inhibition. PLoS ONE 2019, 14, e0220026. [Google Scholar] [CrossRef]
- Böhm, J.W.; Sia, K.C.S.; Jones, C.; Evans, K.; Mariana, A.; Pang, I.; Failes, T.; Zhong, L.; Mayoh, C.; Landman, R.; et al. Combination Efficacy of Ruxolitinib with Standard-of-Care Drugs in CRLF2-Rearranged Ph-like Acute Lymphoblastic Leukemia. Leukemia 2021, 35, 3101–3112. [Google Scholar] [CrossRef]
- Inaba, H.; Greaves, M.; Mullighan, C.G. Acute Lymphoblastic Leukaemia. Lancet 2013, 381, 1943–1955. [Google Scholar] [CrossRef]
- van Outersterp, I.; Tasian, S.K.; Reichert, C.E.; Boeree, A.; de Groot-Kruseman, H.A.; Escherich, G.; Boer, J.M.; den Boer, M.L. Tyrosine Kinase Inhibitor Response of ABL-Class Acute Lymphoblastic Leukemia: The Role of Kinase Type and SH3 Domain. Blood 2024, 143, 2178–2189. [Google Scholar] [CrossRef]
- Buhl Rasmussen, A.S.; Andersen, C.L.; Weimann, A.; Yang, T.; Tron, C.; Gandemer, V.; Dalhoff, K.; Rank, C.U.; Schmiegelow, K. Therapeutic Drug Monitoring of Imatinib—How Far Are We in the Leukemia Setting? Expert Rev. Clin. Pharmacol. 2024, 17, 225–234. [Google Scholar] [CrossRef]
- Stam, R.W.; den Boer, M.L.; Meijerink, J.P.P.; Ebus, M.E.G.; Peters, G.J.; Noordhuis, P.; Janka-Schaub, G.E.; Armstrong, S.A.; Korsmeyer, S.J.; Pieters, R. Differential mRNA Expression of Ara-C-Metabolizing Enzymes Explains Ara-C Sensitivity in MLL Gene-Rearranged Infant Acute Lymphoblastic Leukemia. Blood 2003, 101, 1270–1276. [Google Scholar] [CrossRef]
- Ramakers-van Woerden, N.L.; Beverloo, H.B.; Veerman, A.J.P.; Camitta, B.M.; Loonen, A.H.; van Wering, E.R.; Slater, R.M.; Harbott, J.; den Boer, M.L.; Ludwig, W.D.; et al. In Vitro Drug-Resistance Profile in Infant Acute Lymphoblastic Leukemia in Relation to Age, MLL Rearrangements and Immunophenotype. Leukemia 2004, 18, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Spijkers-Hagelstein, J.A.P.; Mimoso Pinhanços, S.; Schneider, P.; Pieters, R.; Stam, R.W. Src Kinase-Induced Phosphorylation of Annexin A2 Mediates Glucocorticoid Resistance in MLL-Rearranged Infant Acute Lymphoblastic Leukemia. Leukemia 2013, 27, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Li, B.E.; Gan, T.; Meyerson, M.; Rabbitts, T.H.; Ernst, P. Distinct Pathways Regulated by Menin and by MLL1 in Hematopoietic Stem Cells and Developing B Cells. Blood 2013, 122, 2039–2046. [Google Scholar] [CrossRef] [PubMed]
- Roberts, K.G.; Mullighan, C.G. The Biology of B-Progenitor Acute Lymphoblastic Leukemia. Cold Spring Harb. Perspect. Med. 2020, 10, a034835. [Google Scholar] [CrossRef]
- Moorman, A.V.; Ensor, H.M.; Richards, S.M.; Chilton, L.; Schwab, C.; Kinsey, S.E.; Vora, A.; Mitchell, C.D.; Harrison, C.J. Prognostic Effect of Chromosomal Abnormalities in Childhood B-Cell Precursor Acute Lymphoblastic Leukaemia: Results from the UK Medical Research Council ALL97/99 Randomised Trial. Lancet Oncol. 2010, 11, 429–438. [Google Scholar] [CrossRef]
- Enshaei, A.; Vora, A.; Harrison, C.J.; Moppett, J.; Moorman, A.V. Defining Low-Risk High Hyperdiploidy in Patients with Paediatric Acute Lymphoblastic Leukaemia: A Retrospective Analysis of Data from the UKALL97/99 and UKALL2003 Clinical Trials. Lancet Haematol. 2021, 8, e828–e839. [Google Scholar] [CrossRef]
- Molina, O.; Bataller, A.; Thampi, N.; Ribera, J.; Granada, I.; Velasco, P.; Fuster, J.L.; Menéndez, P. Near-Haploidy and Low-Hypodiploidy in B-Cell Acute Lymphoblastic Leukemia: When Less Is Too Much. Cancers 2021, 14, 32. [Google Scholar] [CrossRef]
- Safavi, S.; Paulsson, K. Near-Haploid and Low-Hypodiploid Acute Lymphoblastic Leukemia: Two Distinct Subtypes with Consistently Poor Prognosis. Blood 2017, 129, 420–423. [Google Scholar] [CrossRef]
- Nachman, J.B.; Heerema, N.A.; Sather, H.; Camitta, B.; Forestier, E.; Harrison, C.J.; Dastugue, N.; Schrappe, M.; Pui, C.-H.; Basso, G.; et al. Outcome of Treatment in Children with Hypodiploid Acute Lymphoblastic Leukemia. Blood 2007, 110, 1112–1115. [Google Scholar] [CrossRef]
- Mullighan, C.G.; Jeha, S.; Pei, D.; Payne-Turner, D.; Coustan-Smith, E.; Roberts, K.G.; Waanders, E.; Choi, J.K.; Ma, X.; Raimondi, S.C.; et al. Outcome of Children with Hypodiploid ALL Treated with Risk-Directed Therapy Based on MRD Levels. Blood 2015, 126, 2896–2899. [Google Scholar] [CrossRef]
- Moorman, A.V.; Richards, S.M.; Robinson, H.M.; Strefford, J.C.; Gibson, B.E.S.; Kinsey, S.E.; Eden, T.O.B.; Vora, A.J.; Mitchell, C.D.; Harrison, C.J. Prognosis of Children with Acute Lymphoblastic Leukemia (ALL) and Intrachromosomal Amplification of Chromosome 21 (iAMP21). Blood 2007, 109, 2327–2330. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C.J. Blood Spotlight on iAMP21 Acute Lymphoblastic Leukemia (ALL), a High-Risk Pediatric Disease. Blood 2015, 125, 1383–1386. [Google Scholar] [CrossRef]
- Rubnitz, J.E.; Wichlan, D.; Devidas, M.; Shuster, J.; Linda, S.B.; Kurtzberg, J.; Bell, B.; Hunger, S.P.; Chauvenet, A.; Pui, C.-H.; et al. Prospective Analysis of TEL Gene Rearrangements in Childhood Acute Lymphoblastic Leukemia: A Children’s Oncology Group Study. J. Clin. Oncol. 2008, 26, 2186–2191. [Google Scholar] [CrossRef] [PubMed]
- Bhojwani, D.; Pei, D.; Sandlund, J.T.; Jeha, S.; Ribeiro, R.C.; Rubnitz, J.E.; Raimondi, S.C.; Shurtleff, S.; Onciu, M.; Cheng, C.; et al. ETV6-RUNX1-Positive Childhood Acute Lymphoblastic Leukemia: Improved Outcome with Contemporary Therapy. Leukemia 2012, 26, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Zaliova, M.; Kotrova, M.; Bresolin, S.; Stuchly, J.; Stary, J.; Hrusak, O.; TeKronnie, G.; Trka, J.; Zuna, J.; Vaskova, M. ETV6/RUNX1-like Acute Lymphoblastic Leukemia: A Novel B-Cell Precursor Leukemia Subtype Associated with the CD27/CD44 Immunophenotype. Genes Chromosomes Cancer 2017, 56, 608–616. [Google Scholar] [CrossRef]
- Kang, Z.-J.; Liu, Y.-F.; Xu, L.-Z.; Long, Z.-J.; Huang, D.; Yang, Y.; Liu, B.; Feng, J.-X.; Pan, Y.-J.; Yan, J.-S.; et al. The Philadelphia Chromosome in Leukemogenesis. Chin. J. Cancer 2016, 35, 48. [Google Scholar] [CrossRef]
- Slayton, W.B.; Schultz, K.R.; Silverman, L.B.; Hunger, S.P. How We Approach Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia in Children and Young Adults. Pediatr. Blood Cancer 2020, 67, e28543. [Google Scholar] [CrossRef]
- Roberts, K.G. The Biology of Philadelphia Chromosome-like ALL. Best Pract. Res. Clin. Haematol. 2017, 30, 212–221. [Google Scholar] [CrossRef]
- Moorman, A.V. New and Emerging Prognostic and Predictive Genetic Biomarkers in B-Cell Precursor Acute Lymphoblastic Leukemia. Haematologica 2016, 101, 407–416. [Google Scholar] [CrossRef]
- Harvey, R.C.; Tasian, S.K. Clinical Diagnostics and Treatment Strategies for Philadelphia Chromosome-like Acute Lymphoblastic Leukemia. Blood Adv. 2020, 4, 218–228. [Google Scholar] [CrossRef]
- Roberts, K.G.; Li, Y.; Payne-Turner, D.; Harvey, R.C.; Yang, Y.-L.; Pei, D.; McCastlain, K.; Ding, L.; Lu, C.; Song, G.; et al. Targetable Kinase-Activating Lesions in Ph-like Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2014, 371, 1005–1015. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, S.; Urayama, K.Y.; Arakawa, Y.; Koh, K.; Yuza, Y.; Hasegawa, D.; Taneyama, Y.; Noguchi, Y.; Yanagimachi, M.; Inukai, T.; et al. Rare TCF3 Variants Associated with Pediatric B Cell Acute Lymphoblastic Leukemia. Pediatr. Hematol. Oncol. 2024, 41, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Fischer, U.; Forster, M.; Rinaldi, A.; Risch, T.; Sungalee, S.; Warnatz, H.-J.; Bornhauser, B.; Gombert, M.; Kratsch, C.; Stütz, A.M.; et al. Genomics and Drug Profiling of Fatal TCF3-HLF-Positive Acute Lymphoblastic Leukemia Identifies Recurrent Mutation Patterns and Therapeutic Options. Nat. Genet. 2015, 47, 1020–1029. [Google Scholar] [CrossRef] [PubMed]
- Burmeister, T.; Gröger, D.; Gökbuget, N.; Spriewald, B.; Starck, M.; Elmaagacli, A.; Hoelzer, D.; Keller, U.; Schwartz, S. Molecular Characterization of TCF3::PBX1 Chromosomal Breakpoints in Acute Lymphoblastic Leukemia and Their Use for Measurable Residual Disease Assessment. Sci. Rep. 2023, 13, 15167. [Google Scholar] [CrossRef] [PubMed]
- Górecki, M.; Kozioł, I.; Kopystecka, A.; Budzyńska, J.; Zawitkowska, J.; Lejman, M. Updates in KMT2A Gene Rearrangement in Pediatric Acute Lymphoblastic Leukemia. Biomedicines 2023, 11, 821. [Google Scholar] [CrossRef]
- Winters, A.C.; Bernt, K.M. MLL-Rearranged Leukemias-An Update on Science and Clinical Approaches. Front. Pediatr. 2017, 5, 4. [Google Scholar] [CrossRef]
- Vega-García, N.; Malatesta, R.; Estella, C.; Pérez-Jaume, S.; Esperanza-Cebollada, E.; Torrebadell, M.; Català, A.; Gassiot, S.; Berrueco, R.; Ruiz-Llobet, A.; et al. Paediatric Patients with Acute Leukaemia and KMT2A (MLL) Rearrangement Show a Distinctive Expression Pattern of Histone Deacetylases. Br. J. Haematol. 2018, 182, 542–553. [Google Scholar] [CrossRef]
- Joshi, I.; Yoshida, T.; Jena, N.; Qi, X.; Zhang, J.; Van Etten, R.A.; Georgopoulos, K. Loss of Ikaros DNA-Binding Function Confers Integrin-Dependent Survival on Pre-B Cells and Progression to Acute Lymphoblastic Leukemia. Nat. Immunol. 2014, 15, 294–304. [Google Scholar] [CrossRef]
- Boer, J.M.; van der Veer, A.; Rizopoulos, D.; Fiocco, M.; Sonneveld, E.; de Groot-Kruseman, H.A.; Kuiper, R.P.; Hoogerbrugge, P.; Horstmann, M.; Zaliova, M.; et al. Prognostic Value of Rare IKZF1 Deletion in Childhood B-Cell Precursor Acute Lymphoblastic Leukemia: An International Collaborative Study. Leukemia 2016, 30, 32–38. [Google Scholar] [CrossRef]
- Stanulla, M.; Dagdan, E.; Zaliova, M.; Möricke, A.; Palmi, C.; Cazzaniga, G.; Eckert, C.; TeKronnie, G.; Bourquin, J.-P.; Bornhauser, B.; et al. IKZF1(plus) Defines a New Minimal Residual Disease-Dependent Very-Poor Prognostic Profile in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2018, 36, 1240–1249. [Google Scholar] [CrossRef]
- Russell, L.J.; Capasso, M.; Vater, I.; Akasaka, T.; Bernard, O.A.; Calasanz, M.J.; Chandrasekaran, T.; Chapiro, E.; Gesk, S.; Griffiths, M.; et al. Deregulated Expression of Cytokine Receptor Gene, CRLF2, Is Involved in Lymphoid Transformation in B-Cell Precursor Acute Lymphoblastic Leukemia. Blood 2009, 114, 2688–2698. [Google Scholar] [CrossRef] [PubMed]
- Mullighan, C.G.; Collins-Underwood, J.R.; Phillips, L.A.A.; Loudin, M.G.; Liu, W.; Zhang, J.; Ma, J.; Coustan-Smith, E.; Harvey, R.C.; Willman, C.L.; et al. Rearrangement of CRLF2 in B-Progenitor- and Down Syndrome-Associated Acute Lymphoblastic Leukemia. Nat. Genet. 2009, 41, 1243–1246. [Google Scholar] [CrossRef] [PubMed]
- Yoda, A.; Yoda, Y.; Chiaretti, S.; Bar-Natan, M.; Mani, K.; Rodig, S.J.; West, N.; Xiao, Y.; Brown, J.R.; Mitsiades, C.; et al. Functional Screening Identifies CRLF2 in Precursor B-Cell Acute Lymphoblastic Leukemia. Proc. Natl. Acad. Sci. USA 2010, 107, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Konoplev, S.; Lu, X.; Konopleva, M.; Jain, N.; Ouyang, J.; Goswami, M.; Roberts, K.G.; Valentine, M.; Mullighan, C.G.; Bueso-Ramos, C.; et al. CRLF2-Positive B-Cell Acute Lymphoblastic Leukemia in Adult Patients: A Single-Institution Experience. Am. J. Clin. Pathol. 2017, 147, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, T.; Tsuzuki, S.; Kawazu, M.; Hayakawa, F.; Kojima, S.; Ueno, T.; Imoto, N.; Kohsaka, S.; Kunita, A.; Doi, K.; et al. Recurrent DUX4 Fusions in B Cell Acute Lymphoblastic Leukemia of Adolescents and Young Adults. Nat. Genet. 2016, 48, 569–574. [Google Scholar] [CrossRef]
- Zhang, J.; McCastlain, K.; Yoshihara, H.; Xu, B.; Chang, Y.; Churchman, M.L.; Wu, G.; Li, Y.; Wei, L.; Iacobucci, I.; et al. Deregulation of DUX4 and ERG in Acute Lymphoblastic Leukemia. Nat. Genet. 2016, 48, 1481–1489. [Google Scholar] [CrossRef]
- Hirabayashi, S.; Ohki, K.; Nakabayashi, K.; Ichikawa, H.; Momozawa, Y.; Okamura, K.; Yaguchi, A.; Terada, K.; Saito, Y.; Yoshimi, A.; et al. ZNF384-Related Fusion Genes Define a Subgroup of Childhood B-Cell Precursor Acute Lymphoblastic Leukemia with a Characteristic Immunotype. Haematologica 2017, 102, 118–129. [Google Scholar] [CrossRef]
- Sudutan, T.; Erbilgin, Y.; Hatirnaz Ng, O.; Karaman, S.; Karakas, Z.; Kucukcankurt, F.; Celkan, T.; Timur, C.; Ozdemir, G.N.; Hacısalihoglu, S.; et al. Zinc Finger Protein 384 (ZNF384) Impact on Childhood Mixed Phenotype Acute Leukemia and B-Cell Precursor Acute Lymphoblastic Leukemia. Leuk. Lymphoma 2022, 63, 2931–2939. [Google Scholar] [CrossRef]
- Chang, N.; Feng, J.; Liao, P.; Hu, Y.; Li, M.; He, Y.; Li, Y. Knockdown of MEF2D Inhibits the Development and Progression of B-Cell Acute Lymphoblastic Leukemia. Transl. Cancer Res. 2023, 12, 287–300. [Google Scholar] [CrossRef]
- Gu, Z.; Churchman, M.; Roberts, K.; Li, Y.; Liu, Y.; Harvey, R.C.; McCastlain, K.; Reshmi, S.C.; Payne-Turner, D.; Iacobucci, I.; et al. Genomic Analyses Identify Recurrent MEF2D Fusions in Acute Lymphoblastic Leukaemia. Nat. Commun. 2016, 7, 13331. [Google Scholar] [CrossRef]
- Boer, J.M.; Valsecchi, M.G.; Hormann, F.M.; Antić, Ž.; Zaliova, M.; Schwab, C.; Cazzaniga, G.; Arfeuille, C.; Cavé, H.; Attarbaschi, A.; et al. Favorable Outcome of NUTM1-Rearranged Infant and Pediatric B Cell Precursor Acute Lymphoblastic Leukemia in a Collaborative International Study. Leukemia 2021, 35, 2978–2982. [Google Scholar] [CrossRef] [PubMed]
- Schwab, C.; Nebral, K.; Chilton, L.; Leschi, C.; Waanders, E.; Boer, J.M.; Žaliová, M.; Sutton, R.; Öfverholm, I.I.; Ohki, K.; et al. Intragenic Amplification of PAX5: A Novel Subgroup in B-Cell Precursor Acute Lymphoblastic Leukemia? Blood Adv. 2017, 1, 1473–1477. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Gu, Z. PAX5 Alterations in B-Cell Acute Lymphoblastic Leukemia. Front. Oncol. 2022, 12, 1023606. [Google Scholar] [CrossRef] [PubMed]
- Passet, M.; Boissel, N.; Sigaux, F.; Saillard, C.; Bargetzi, M.; Ba, I.; Thomas, X.; Graux, C.; Chalandon, Y.; Leguay, T.; et al. PAX5 P80R Mutation Identifies a Novel Subtype of B-Cell Precursor Acute Lymphoblastic Leukemia with Favorable Outcome. Blood 2019, 133, 280–284. [Google Scholar] [CrossRef]
- Ramos-Muntada, M.; Trincado, J.L.; Blanco, J.; Bueno, C.; Rodríguez-Cortez, V.C.; Bataller, A.; López-Millán, B.; Schwab, C.; Ortega, M.; Velasco, P.; et al. Clonal Heterogeneity and Rates of Specific Chromosome Gains Are Risk Predictors in Childhood High-Hyperdiploid B-Cell Acute Lymphoblastic Leukemia. Mol. Oncol. 2022, 16, 2899–2919. [Google Scholar] [CrossRef]
- Paulsson, K.; Johansson, B. High Hyperdiploid Childhood Acute Lymphoblastic Leukemia. Genes Chromosomes Cancer 2009, 48, 637–660. [Google Scholar] [CrossRef]
- Mühlbacher, V.; Zenger, M.; Schnittger, S.; Weissmann, S.; Kunze, F.; Kohlmann, A.; Bellos, F.; Kern, W.; Haferlach, T.; Haferlach, C. Acute Lymphoblastic Leukemia with Low Hypodiploid/near Triploid Karyotype Is a Specific Clinical Entity and Exhibits a Very High TP53 Mutation Frequency of 93%. Genes Chromosomes Cancer 2014, 53, 524–536. [Google Scholar] [CrossRef]
- Safavi, S.; Olsson, L.; Biloglav, A.; Veerla, S.; Blendberg, M.; Tayebwa, J.; Behrendtz, M.; Castor, A.; Hansson, M.; Johansson, B.; et al. Genetic and Epigenetic Characterization of Hypodiploid Acute Lymphoblastic Leukemia. Oncotarget 2015, 6, 42793–42802. [Google Scholar] [CrossRef]
- Nachi, M.; Kihel, I.; Entasoltane, B.; Brahimi, M.; Yafour, N.; Guella, D.; Abed, A.; Bekadja, M.A. Impact of the Major BCR-ABL1 Transcript Type on Clinical and Biological Parameters and Molecular Response in Patients with Chronic Myeloid Leukemia. Hematol. Oncol. Stem Cell Ther. 2022, 15, 58–62. [Google Scholar] [CrossRef]
- Li, H.; Zhang, W.; Kuang, P.; Ye, Y.; Yang, J.; Dai, Y.; Lu, X.; Zheng, Y.; Liu, T. Combination of IKZF1 Deletion and Early Molecular Response Show Significant Roles on Prognostic Stratification in Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia Patients. Leuk. Lymphoma 2018, 59, 1890–1898. [Google Scholar] [CrossRef]
- de Boer, J.; Yeung, J.; Ellu, J.; Ramanujachar, R.; Bornhauser, B.; Solarska, O.; Hubank, M.; Williams, O.; Brady, H.J.M. The E2A-HLF Oncogenic Fusion Protein Acts through Lmo2 and Bcl-2 to Immortalize Hematopoietic Progenitors. Leukemia 2011, 25, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Inaba, T.; Roberts, W.M.; Shapiro, L.H.; Jolly, K.W.; Raimondi, S.C.; Smith, S.D.; Look, A.T. Fusion of the Leucine Zipper Gene HLF to the E2A Gene in Human Acute B-Lineage Leukemia. Science 1992, 257, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Hunger, S.P.; Devaraj, P.E.; Foroni, L.; Secker-Walker, L.M.; Cleary, M.L. Two Types of Genomic Rearrangements Create Alternative E2A-HLF Fusion Proteins in t(17;19)-ALL. Blood 1994, 83, 2970–2977. [Google Scholar] [CrossRef] [PubMed]
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; Araujo, I.B.d.O.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M.; et al. The 5th Edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef]
- Steinhilber, D.; Marschalek, R. How to Effectively Treat Acute Leukemia Patients Bearing MLL-Rearrangements? Biochem. Pharmacol. 2018, 147, 183–190. [Google Scholar] [CrossRef]
- Olsson, L.; Johansson, B. Ikaros and Leukaemia. Br. J. Haematol. 2015, 169, 479–491. [Google Scholar] [CrossRef]
- Tiacci, E.; Pileri, S.; Orleth, A.; Pacini, R.; Tabarrini, A.; Frenguelli, F.; Liso, A.; Diverio, D.; Lo-Coco, F.; Falini, B. PAX5 Expression in Acute Leukemias: Higher B-Lineage Specificity than CD79a and Selective Association with t(8;21)-Acute Myelogenous Leukemia. Cancer Res. 2004, 64, 7399–7404. [Google Scholar] [CrossRef]
- Schinnerl, D.; Fortschegger, K.; Kauer, M.; Marchante, J.R.M.; Kofler, R.; Den Boer, M.L.; Strehl, S. The Role of the Janus-Faced Transcription Factor PAX5-JAK2 in Acute Lymphoblastic Leukemia. Blood 2015, 125, 1282–1291. [Google Scholar] [CrossRef]
- Chen, H.; Gu, M.; Liang, J.; Song, H.; Zhang, J.; Xu, W.; Zhao, F.; Shen, D.; Shen, H.; Liao, C.; et al. Minimal Residual Disease Detection by Next-Generation Sequencing of Different Immunoglobulin Gene Rearrangements in Pediatric B-ALL. Nat. Commun. 2023, 14, 7468. [Google Scholar] [CrossRef]
- Muffly, L.; Liang, E.C.; Dolan, J.G.; Pulsipher, M.A. How I Use Next-Generation Sequencing-MRD to Plan Approach and Prevent Relapse after HCT for Children and Adults with ALL. Blood 2024, 144, 253–261. [Google Scholar] [CrossRef]
Good Prognosis | Bad Prognosis | |
---|---|---|
Gender | Females | Males |
Age | <30 years | <1 year >65 years |
Ethnicity | Caucasians | African Americans, Asians, and Hispanics |
Cytogenetic features | Hyperdiploidy > 50 (51–65 chromosomes) t(12;21) t(1;19) | t(9;22) (more common among adults) t(4;11) (4% of cases and is most common in infants under 12 months) t(8;14)(q24.1;q32) t(8;14) t(2;8) t(8;22) t(5;14) hypodiploidy (<46 chromosomes) haploidy triploidy (66–68 chromosomes) del (17p) t(11q23) t(1;19) in relapse |
Other factors | White blood cell count <25,000/mcL (<25 × 109/L) or <50,000/mcL (<50 × 109/L) No central nervous system involvement at the time of diagnosis | high initial white blood cell count over 100 × 109/L; involvement of the nervous system and other organs; slow response to initial treatment; presence of minimal residual disease after treatment |
Genetic Alterations | Frequency in Childhood B-ALL | Prognosis | Targeted Therapy | References |
---|---|---|---|---|
High hyperdiploidy (51–65 chromosomes) | 30% | Good | None | [66,67] |
Near Haploidy (24–31 chromosomes) | 1–2% | Poor | Potential use of PI3K inhibitors | [68,69] |
Low Hypodiploidy (32–39 chromosomes) | 1–2% | Poor | Potential use of PI3K inhibitors | [69,70,71] |
iAMP21 (intrachromosal amplification of chromosome 21) | 1.5–2% | Intermediate | None | [72,73] |
ETV6::RUNX1 (gene traslocation) t(12;21)(p13;q22) | 25% | Good | None | [74,75] |
ETV6::RUNX- like (gene translocation) absence of ETV6-RUNX1 fusion; mutations in both ETV6 and IKZF1 | 2–3% | Poor | None | [76] |
BCR::ABL1 (Philadelphia chromosome) t(9;22)(q34;q11) | 3–5% | Poor | Tyrosine kinase inhibitors | [77,78] |
Ph-like ALL (Gene fusions) | 15% | Poor | TKI, JAK2 inhibitors, JAK1/JAK3 inihibitors, TYK2 inhibitors, Crizotinib, MEK inhibitors, FAK inhibitors, FLT3 inhibitors | [55,79,80,81,82] |
TCF3::HLF (gene traslocation) t(17;19)(q22;p13) | <1% | Poor | [83,84] | |
TCF3::PBX1 (gene traslocation) t(1;19)(q23;p13) | 6% | Intermediate | Dasatinib, Ruxolinitib | [85] |
KMT2A (gene rearrangements 11q23) (t(11q23)) | 80% (infant), 10% (childhood) | Poor | [86,87,88] | |
IKZF1 (deletion/point mutation/gene fusions) t(3;7)(q27;p12) | 16–27% | Poor | None | [89,90,91] |
CRLF2 (gene fusions/point mutation) t(X;14)(p22;q32) or t(Y;14)(p11;q32) | 5% | Poor | Potential use of JAK inhibitors | [92,93,94,95] |
DUX4 (gene fusions) t(4;19)(q35;q13) | 4–7% | Good | Potential | [96,97] |
ZNF384 (gene fusions) t(12;17)(p13;q21) | 3–5% | Intermediate | FLT3 | [98,99] |
MEF2D (gene fusions) | 4% | Poor | HDAC inhibitors staurosporina, Venetoclax | [100,101] |
NUTM1 (gene fusions) | 1% | Good | Bromodomain inhibitors | [102] |
PAX5 (gene fusion/deletion/amplification) t(9;22)(p13;q13) | 7–10% | Intermediate | Tyrosine kinase inhibitors (NRAS, KRAS, and FLT3) | [13,103,104] |
PAX5 Hot-spot mutation (Pax5: p.Pro80Arg) | 3–4% | Intermediate | Potential use of Ros, JAK/STAT, FLT3, BRAF, and PIK3CA inhibitors | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vllahu, M.; Savarese, M.; Cantiello, I.; Munno, C.; Sarcina, R.; Stellato, P.; Leone, O.; Alfieri, M. Application of Omics Analyses in Pediatric B-Cell Acute Lymphoblastic Leukemia. Biomedicines 2025, 13, 424. https://doi.org/10.3390/biomedicines13020424
Vllahu M, Savarese M, Cantiello I, Munno C, Sarcina R, Stellato P, Leone O, Alfieri M. Application of Omics Analyses in Pediatric B-Cell Acute Lymphoblastic Leukemia. Biomedicines. 2025; 13(2):424. https://doi.org/10.3390/biomedicines13020424
Chicago/Turabian StyleVllahu, Megi, Maria Savarese, Immacolata Cantiello, Carmen Munno, Rosalba Sarcina, Pio Stellato, Ornella Leone, and Mariaevelina Alfieri. 2025. "Application of Omics Analyses in Pediatric B-Cell Acute Lymphoblastic Leukemia" Biomedicines 13, no. 2: 424. https://doi.org/10.3390/biomedicines13020424
APA StyleVllahu, M., Savarese, M., Cantiello, I., Munno, C., Sarcina, R., Stellato, P., Leone, O., & Alfieri, M. (2025). Application of Omics Analyses in Pediatric B-Cell Acute Lymphoblastic Leukemia. Biomedicines, 13(2), 424. https://doi.org/10.3390/biomedicines13020424