Feasibility of Serum Galectin-1 as a Diagnostic Biomarker for Metabolic Dysfunction-Associated Steatotic Liver Disease: A Study on a Segment of the Chinese Population Using Convenience Sampling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Clinical Data and Galectin-1 Measurement
2.3. Statistical Analyses
2.4. Animal Experiments
3. Results
3.1. Characteristics of Participants
3.2. The Trend of MASLD in Increasing Galectin-1 Level Groups
3.3. Analysis of the Correlation Between Serum Galectin-1 Levels and Other Metabolic Indicators
3.4. The Clinical Value of Galectin-1 Levels in Predicting MASLD
3.5. Increased Galectin-1 Expression in the Liver of MASLD Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 79, 1542–1556. [Google Scholar] [CrossRef] [PubMed]
- Soto, A.; Spongberg, C.; Martinino, A.; Giovinazzo, F. Exploring the Multifaceted Landscape of MASLD: A Comprehensive Synthesis of Recent Studies, from Pathophysiology to Organoids and Beyond. Biomedicines 2024, 12, 397. [Google Scholar] [CrossRef]
- Zou, H.; Ma, X.; Pan, W.; Xie, Y. Comparing similarities and differences between NAFLD, MAFLD, and MASLD in the general U.S. population. Front. Nutr. 2024, 11. [Google Scholar] [CrossRef] [PubMed]
- Byrne, C.D.; Targher, G. MASLD, MAFLD, or NAFLD criteria: Have we re-created the confusion and acrimony surrounding metabolic syndrome? Metab. Target Organ Damage 2024, 4, 10. [Google Scholar] [CrossRef]
- Powell, E.E.; Wong, V.W.-S.; Rinella, M. Non-alcoholic fatty liver disease. Lancet 2021, 397, 2212–2224. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef]
- Miao, L.; Targher, G.; Byrne, C.D.; Cao, Y.Y.; Zheng, M.H. Current status and future trends of the global burden of MASLD. Trends Endocrinol. Metab. 2024, 35, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Alves-Bezerra, M.; Cohen, D.E. Triglyceride Metabolism in the Liver. Compr. Physiol. 2017, 8, 7841. [Google Scholar]
- Teng, T.; Qiu, S.; Zhao, Y.; Zhao, S.; Sun, D.; Hou, L.; Li, Y.; Zhou, K.; Yu, X.; Yang, C.; et al. Pathogenesis and Therapeutic Strategies Related to Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2022, 23, 7841. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.C.; Wu, P.S.; Lin, H.C. Pathogenesis and treatment of non-alcoholic steatohepatitis and its fibrosis. Clin. Mol. Hepatol. 2023, 29, 77–98. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, J.V.; Mark, H.E.; Anstee, Q.M.; Arab, J.P.; Batterham, R.L.; Castera, L.; Cortez-Pinto, H.; Crespo, J.; Cusi, K.; Dirac, M.A.; et al. Advancing the global public health agenda for NAFLD: A consensus statement. Nat. Rev. Gastroenterol. Hepatol. 2021, 19, 60–78. [Google Scholar] [CrossRef] [PubMed]
- Hardy, T.; Oakley, F.; Anstee, Q.M.; Day, C.P. Nonalcoholic Fatty Liver Disease: Pathogenesis and Disease Spectrum. Annu. Rev. Pathol. 2016, 11, 451–496. [Google Scholar] [CrossRef] [PubMed]
- Byrne, C.D.; Targher, G. NAFLD: A multisystem disease. J. Hepatol. 2015, 62, S47–S64. [Google Scholar] [CrossRef] [PubMed]
- Musso, G.; De Michieli, F.; Bongiovanni, D.; Parente, R.; Framarin, L.; Leone, N.; Berrutti, M.; Gambino, R.; Cassader, M.; Cohney, S.; et al. New Pharmacologic Agents That Target Inflammation and Fibrosis in Nonalcoholic Steatohepatitis-Related Kidney Disease. Clin. Gastroenterol. Hepatol. 2017, 15, 972–985. [Google Scholar] [CrossRef]
- Targher, G.; Corey, K.E.; Byrne, C.D.; Roden, M. The complex link between NAFLD and type 2 diabetes mellitus—Mechanisms and treatments. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 599–612. [Google Scholar] [CrossRef]
- Targher, G.; Byrne, C.D.; Tilg, H. NAFLD and increased risk of cardiovascular disease: Clinical associations, pathophysiological mechanisms and pharmacological implications. Gut 2020, 69, 1691–1705. [Google Scholar] [CrossRef] [PubMed]
- Pasmatzi, E.; Papadionysiou, C.; Monastirli, A.; Badavanis, G.; Tsambaos, D. Galectin 1 in dermatology: Current knowledge and perspectives. Acta Dermatovenerol. Alp. Pannonica Adriat. 2019, 28, 27–31. [Google Scholar] [CrossRef]
- Johannes, L.; Jacob, R.; Leffler, H. Galectins at a glance. J. Cell Sci. 2018, 131, 27–31. [Google Scholar] [CrossRef]
- Fryk, E.; Sundelin, J.P.; Strindberg, L.; Pereira, M.J.; Federici, M.; Marx, N.; Nyström, F.H.; Schmelz, M.; Svensson, P.A.; Eriksson, J.W.; et al. Microdialysis and proteomics of subcutaneous interstitial fluid reveals increased galectin-1 in type 2 diabetes patients. Metab. Clin. Exp. 2016, 65, 998–1006. [Google Scholar] [CrossRef]
- Shen, X.; Liu, H.; Zhou, H.; Cheng, Z.; Liu, G.; Huang, C.; Dou, R.; Liu, F.; You, X. Galectin-1 promotes gastric cancer peritoneal metastasis through peritoneal fibrosis. BMC Cancer 2023, 23, 559. [Google Scholar] [CrossRef]
- Davicino, R.C.; Mendez-Huergo, S.P.; Elicabe, R.J.; Stupirski, J.C.; Autenrieth, I.; Di Genaro, M.S.; Rabinovich, G.A. Galectin-1-Driven Tolerogenic Programs Aggravate Yersinia enterocolitica Infection by Repressing Antibacterial Immunity. J. Immunol. 2017, 199, 1382–1392. [Google Scholar] [CrossRef] [PubMed]
- Lei, T.; Moos, S.; Klug, J.; Aslani, F.; Bhushan, S.; Wahle, E.; Fröhlich, S.; Meinhardt, A.; Fijak, M. Galectin-1 enhances TNFα-induced inflammatory responses in Sertoli cells through activation of MAPK signalling. Sci. Rep. 2018, 8, 3741. [Google Scholar] [CrossRef] [PubMed]
- Hermenean, A.; Oatis, D.; Herman, H.; Ciceu, A.; D’Amico, G.; Trotta, M.C. Galectin 1-A Key Player between Tissue Repair and Fibrosis. Int. J. Mol. Sci. 2022, 23, 5548. [Google Scholar] [CrossRef]
- Baek, J.H.; Kim, D.H.; Lee, J.; Kim, S.J.; Chun, K.H. Galectin-1 accelerates high-fat diet-induced obesity by activation of peroxisome proliferator-activated receptor gamma (PPARγ) in mice. Cell Death Dis. 2021, 12, 66. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, R.; Yun, J.W. Pharmacological inhibition of galectin-1 by lactulose alleviates weight gain in diet-induced obese rats. Life Sci. 2016, 148, 112–117. [Google Scholar] [CrossRef]
- Sundblad, V.; Garcia-Tornadu, I.A.; Ornstein, A.M.; Martinez Allo, V.C.; Lorenzo, R.; Gatto, S.G.; Morales, R.M.; Gambarte Tudela, J.A.; Manselle Cocco, M.N.; Croci, D.O.; et al. Galectin-1 impacts on glucose homeostasis by modulating pancreatic insulin release. Glycobiology 2021, 31, 908–915. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Dong, J.; Zhai, B.; Sun, W.; Hu, F.; Cheng, H.; Xu, J. Activation of phosphatidylinositol 3-kinase/AKT/snail signaling pathway contributes to epithelial-mesenchymal transition-induced multi-drug resistance to sorafenib in hepatocellular carcinoma cells. PLoS ONE 2017, 12, e0185088. [Google Scholar] [CrossRef]
- Triguero-Martinez, A.; de la Fuente, H.; Montes, N.; Ortiz, A.M.; Roy-Vallejo, E.; Castaneda, S.; Gonzalez-Alvaro, I.; Lamana, A. Validation of galectin-1 as potential diagnostic biomarker of early rheumatoid arthritis. Sci. Rep. 2020, 10, 17799. [Google Scholar] [CrossRef]
- Jin, X.X.; Ying, X.; Dong, M.Y. Galectin-1 expression in the serum and placenta of pregnant women with fetal growth restriction and its significance. BMC Pregnancy Childbirth 2021, 21, 14. [Google Scholar] [CrossRef] [PubMed]
- Aladag, H.; Kiran, T.R.; İnceoglu, F.; Yildirim, E.; Yaprak, B.; Karabulut, A.B.; Aladag, M. Galectin-1 as a potential diagnostic biomarker in polycystic ovary syndrome. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 2543–2551. [Google Scholar]
- Drake, I.; Fryk, E.; Strindberg, L.; Lundqvist, A.; Rosengren, A.H.; Groop, L.; Ahlqvist, E.; Boren, J.; Orho-Melander, M.; Jansson, P.A. The role of circulating galectin-1 in type 2 diabetes and chronic kidney disease: Evidence from cross-sectional, longitudinal and Mendelian randomisation analyses. Diabetologia 2022, 65, 128–139. [Google Scholar] [CrossRef]
- Qiu, Z.; Gao, Y.; Wang, S.; Wang, J.; Wang, X.; Cai, N.; Zhao, J.; Li, T.; Li, H.; Li, T.; et al. Mechanism Underlying Light Intensity-Induced Melanin Synthesis of Auricularia heimuer Revealed by Transcriptome Analysis. Cells 2022, 12, 56. [Google Scholar] [CrossRef] [PubMed]
- Biciusca, T.; Stan, S.I.; Balteanu, M.A.; Cioboata, R.; Ghenea, A.E.; Danoiu, S.; Bumbea, A.M.; Biciusca, V. The Role of the Fatty Liver Index (FLI) in the Management of Non-Alcoholic Fatty Liver Disease: A Systematic Review. Diagnostics 2023, 13, 3316. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, D.; Kim, H.J.; Lee, C.H.; Yang, J.I.; Kim, W.; Kim, Y.J.; Yoon, J.H.; Cho, S.H.; Sung, M.W.; et al. Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease. Dig. Liver Dis. 2010, 42, 503–508. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, J.; Qu, D.; Sun, Q.; Yu, Y.; Zhang, H.; Liu, Z.; Sha, J.; Sun, Y. Ginsenoside Rg5 Activates the LKB1/AMPK/mTOR Signaling Pathway and Modifies the Gut Microbiota to Alleviate Nonalcoholic Fatty Liver Disease Induced by a High-Fat Diet. Nutrients 2024, 16, 842. [Google Scholar] [CrossRef]
- Wu, C.; Liu, X.; Zhong, L.; Zhou, Y.; Long, L.; Yi, T.; Chen, S.; Li, Y.; Chen, Y.; Shen, L.; et al. Identification of Cuproptosis-Related Genes in Nonalcoholic Fatty Liver Disease. Oxidative Med. Cell. Longev. 2023, 2023, 9245667. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Dai, X.; Bao, M.; Xing, Y.; Liu, J.; Zhao, S.; Liu, E.; Yuan, Z.; Bai, L. Hepatic transcriptome signatures in mice and humans with nonalcoholic fatty liver disease. Anim. Models Exp. Med. 2023, 6, 317–328. [Google Scholar] [CrossRef]
- Yao, K.; Tarabra, E.; Sia, D.; Morotti, R.; Fawaz, R.; Valentino, P.; Santoro, N.; Caprio, S.; Liu, S.; Yimlamai, D. Transcriptomic profiling of a multiethnic pediatric NAFLD cohort reveals genes and pathways associated with disease. Hepatol. Commun. 2022, 6, 1598–1610. [Google Scholar] [CrossRef]
- Song, S.J.; Lai, J.C.-T.; Lai-Hung, J.G.; Wai-Sun, V.; Yip, T.C.-F. Can we use old NAFLD data under the new MASLD definition? J. Hepatol. 2024, 80, e54–e56. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.A.; Patil, R.; Harrison, S.A. NAFLD-related hepatocellular carcinoma: The growing challenge. Hepatology 2023, 77, 323–338. [Google Scholar] [CrossRef] [PubMed]
- Acar, S.; Paketçi, A.; Küme, T.; Tuhan, H.; Çalan, O.G.; Demir, K.; Böber, E.; Abaci, A. Serum galectin-1 levels are positively correlated with body fat and negatively with fasting glucose in obese children. Peptides 2017, 95, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Fryk, E.; Strindberg, L.; Lundqvist, A.; Sandstedt, M.; Bergfeldt, L.; Mattsson Hultén, L.; Bergström, G.; Jansson, P.-A. Galectin-1 is inversely associated with type 2 diabetes independently of obesity—A SCAPIS pilot study. Metab. Open 2019, 4, 100017. [Google Scholar] [CrossRef]
- Kaneva, A.M.; Bojko, E.R. Fatty liver index (FLI): More than a marker of hepatic steatosis. J. Physiol. Biochem. 2024, 80, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Tanaka, M.; Higashiura, Y.; Mori, K.; Hanawa, N.; Ohnishi, H.; Furuhashi, M. Prediction and validation of nonalcoholic fatty liver disease by fatty liver index in a Japanese population. Endocr. J. 2022, 69, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, R.; Kim, S.W.; Park, T.; Choi, M.S.; Yun, J.W. Targeted inhibition of galectin 1 by thiodigalactoside dramatically reduces body weight gain in diet-induced obese rats. Int. J. Obes. 2015, 39, 1349–1358. [Google Scholar] [CrossRef]
Variables | Control (n = 68) | MASLD (n = 60) | p |
---|---|---|---|
Galectin-1 (ng/mL) | 85.23 ± 19.96 | 107.30 ± 23.62 | <0.001 a *** |
Male (%) | 33 (48.5) | 27 (45.0) | 0.690 b |
Age (years) | 40.676 ± 11.914 | 43.683 ±11.625 | 0.124 a |
Height (cm) | 163.00 ± 8.89 | 160.57 ± 8.18 | 0.111 a |
Weight (kg) | 59.85 ± 9.10 | 69.84 ± 10.90 | <0.001 a *** |
BMI (kg/m2) | 22.48 ± 2.55 | 27.03 ± 3.22 | <0.001 a *** |
WC (cm) | 76.63 ± 6.66 | 88.17 ± 7.54 | <0.001 a *** |
HC (cm) | 93.13 ± 4.09 | 98.57 ± 6.77 | <0.001 a *** |
WHR | 0.82 ± 0.06 | 0.90 ± 0.06 | <0.001 a *** |
TG (mg∗dL−1) | 95.660 (70.2, 138.2) | 148.804 (105.2, 198.4) | <0.001 c *** |
AI | 2.56 ± 1.02 | 3.56 ± 1.31 | <0.001 a *** |
TC (mmol/L) | 4.78 ± 0.82 | 5.03 ± 0.98 | 0.110 a |
HDL-C (mmol/L) | 1.41 ± 0.32 | 1.15 ± 0.26 | <0.001 a *** |
LDL-C (mmol/L) | 2.99 ± 0.71 | 3.31 ± 0.87 | 0.029 a * |
Lp(a) (nmol/L) | 38.86 ± 30.12 | 40.56 ± 36.12 | 0.772 a |
TP (g/L) | 71.7 ± 3.23 | 72.6 ± 3.86 | 0.141 a |
Alb (g/L) | 47.1 ± 2.11 | 47.3 ± 2.19 | 0.625 a |
Glb (g/L) | 24.5 ± 2.59 | 25.3 ± 3.42 | 0.166 a |
AST (U/L) | 19.52 ± 6.86 | 24.26 ± 11.50 | <0.001 a *** |
ALT (U/L) | 13.500 (10.4, 21.1) | 24.600 (19.4, 32.7) | 0.007 c ** |
GGT (U/L) | 17.500 (12.0, 26.8) | 35.500 (23.0, 61.3) | <0.001 c *** |
ALP (U/L) | 70.1 ± 13.9 | 77.9 ± 17.0 | 0.005 a ** |
TB (umol/L) | 13.47 ± 5.72 | 11.05 ± 4.75 | 0.011 a * |
DB (umol/L) | 5.00 ± 1.75 | 4.29 ± 1.40 | 0.012 a * |
IDB (umol/L) | 8.47 ± 4.12 | 6.77 ± 3.58 | 0.014 a * |
HSI | 29.35 ± 4.58 | 37.05 ± 5.10 | <0.001 a *** |
FLI | 74.29 ± 20.08 | 95.66 ± 6.26 | <0.001 a *** |
Item | Galectin-1 (ng/mL) | p for Trend | |||
---|---|---|---|---|---|
Q1 (≤79.5) | Q2 (79.6–95.8) | Q3 (95.9–110) | Q4 (>110) | ||
Control | 27 (84.4%) | 19 (59.4%) | 12 (37.5%) | 10 (31.2%) | <0.001 *** |
MASLD | 5 (15.6%) | 13 (40.6%) | 20 (62.5%) | 22 (68.8%) |
Item | r | p |
---|---|---|
Weight (kg) | 0.245 | 0.005 a ** |
BMI | 0.339 | <0.001 a *** |
WC (cm) | 0.354 | <0.001 a *** |
HC (cm) | 0.300 | <0.001 a *** |
WHR | 0.259 | 0.003 a ** |
TG (mg∗dL−1) | 0.326 | <0.001 b *** |
AI | 0.361 | <0.001 a *** |
HDL-C (mmol/L) | −0.290 | <0.001 a *** |
LDL-C (mmol/L) | 0.227 | 0.010 a * |
AST (U/L) | 0.110 | 0.219 a |
ALT (U/L) | 0.112 | 0.207 b |
GGT (U/L) | 0.188 | 0.034 b * |
ALP (U/L) | 0.126 | 0.155 a |
TB (umol/L) | −0.285 | 0.001 a ** |
DB (umol/L) | −0.275 | 0.002 a ** |
IDB (umol/L) | −0.277 | 0.002 a ** |
HSI | 0.314 | <0.001 a *** |
FLI | 0.370 | <0.001 a *** |
FLI (β (95% CI)p) | HSI (β (95%CI)p) | ||
---|---|---|---|
Crude Model | 0.370 (0.107, 0.534) <0.001 | Crude Model | 0.314 (0.146, 0.481) <0.001 |
Adjusted Model Ia | 0.362 (0.205, 0.518) <0.001 | Adjusted Model Ib | 0.228 (0.0845, 0.372) 0.002 |
Adjusted Model IIa | 0.268 (0.123, 0.412) <0.001 | Adjusted Model IIb | 0.218 (0.0737, 0.363) 0.003 |
Item | r | SE | p | OR (95% CI ) |
---|---|---|---|---|
HSI | 0.211 | 0.069 | 0.002 | 1.234 (1.079~1.412) |
FLI | 0.082 | 0.035 | 0.018 | 1.085 (1.014~1.162) |
Galectin-1 (ng/mL) | 0.045 | 0.014 | 0.002 | 1.046 (1.017~1.076) |
Intercept | −18.747 | 3.463 | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, T.; Li, F.; Yang, M.; Wu, Y.; Cui, W.; Mou, H.; Luo, X. Feasibility of Serum Galectin-1 as a Diagnostic Biomarker for Metabolic Dysfunction-Associated Steatotic Liver Disease: A Study on a Segment of the Chinese Population Using Convenience Sampling. Biomedicines 2025, 13, 425. https://doi.org/10.3390/biomedicines13020425
Zeng T, Li F, Yang M, Wu Y, Cui W, Mou H, Luo X. Feasibility of Serum Galectin-1 as a Diagnostic Biomarker for Metabolic Dysfunction-Associated Steatotic Liver Disease: A Study on a Segment of the Chinese Population Using Convenience Sampling. Biomedicines. 2025; 13(2):425. https://doi.org/10.3390/biomedicines13020425
Chicago/Turabian StyleZeng, Ting, Fang Li, Min Yang, Yao Wu, Wei Cui, Huaming Mou, and Xiaohe Luo. 2025. "Feasibility of Serum Galectin-1 as a Diagnostic Biomarker for Metabolic Dysfunction-Associated Steatotic Liver Disease: A Study on a Segment of the Chinese Population Using Convenience Sampling" Biomedicines 13, no. 2: 425. https://doi.org/10.3390/biomedicines13020425
APA StyleZeng, T., Li, F., Yang, M., Wu, Y., Cui, W., Mou, H., & Luo, X. (2025). Feasibility of Serum Galectin-1 as a Diagnostic Biomarker for Metabolic Dysfunction-Associated Steatotic Liver Disease: A Study on a Segment of the Chinese Population Using Convenience Sampling. Biomedicines, 13(2), 425. https://doi.org/10.3390/biomedicines13020425