Multimodal Prehabilitation for Hernia Repair: Linking Metabolic Modulation and Mechanical Methods
Abstract
1. Introduction
1.1. Global Epidemiology and Burden
1.2. The Metabolic-Mechanical Convergence
1.3. The Evolution of Preoperative Optimization
1.4. Objectives and Scope
- Pharmacologic metabolic optimization: Detailed examination of GLP-1 receptor agonists and dual GLP-1/GIP receptor agonists, including mechanisms of action, clinical efficacy, safety considerations, and perioperative management protocols
- Mechanical preparation techniques: Analysis of botulinum toxin A injections and progressive pneumoperitoneum for abdominal domain expansion
- Comparative effectiveness: Critical evaluation of pharmacologic versus procedural approaches across different patient populations and hernia types
- Integration strategies: Discussion of multimodal optimization protocols combining metabolic and mechanical interventions
- Future directions: Identification of research gaps and emerging trends in preoperative hernia optimization
2. Methods
3. Pathophysiological Foundations: The Hernia-Metabolism-Mechanics Triad
3.1. Metabolic Dysfunction and Hernia Pathogenesis
3.1.1. Obesity and Intra-Abdominal Pressure
3.1.2. Hyperglycemia and Tissue Healing Impairment
3.1.3. Systemic Inflammation and Surgical Risk
3.2. Mechanical Challenges in Complex Hernias
3.2.1. Loss of Domain and Abdominal Compliance
3.2.2. Fascial Tension and Recurrence Risk
4. GLP-1 and GLP-1/GIP Receptor Agonists: Pharmacologic Metabolic Optimization
4.1. Mechanisms of Action and Pleiotropic Effects
4.1.1. Incretin Physiology and Receptor Pharmacology
4.1.2. Weight Reduction and Body Composition Changes
4.1.3. Glycemic Control and HbA1c Reduction
4.1.4. Anti-Inflammatory and Cardiovascular Benefits
4.2. Clinical Evidence in Surgical Populations
4.2.1. Observational Studies and Cohort Analyses
- -
- 12% reduction in hospital readmissions
- -
- 29% reduction in wound dehiscence
- -
- 56% reduction in thromboembolic events
- -
- Lower rates of overall postoperative complications [83]
4.2.2. Bariatric Surgery Literature
4.2.3. Ongoing Clinical Trials
4.3. Perioperative Safety Considerations and Controversies
4.3.1. Delayed Gastric Emptying and Aspiration Risk
4.3.2. Updated Perioperative Management Guidelines
- Risk stratification: Most patients can continue GLP-1 receptor agonists perioperatively, particularly those undergoing procedures with advanced airway management
- High-risk identification: Patients with ongoing gastrointestinal symptoms (nausea, vomiting, dyspepsia, bloating) should be considered higher risk
- Procedural modifications: For high-risk patients, consider liquid diet 36–48 h preoperatively, prokinetic agents, or gastric ultrasound assessment
- Individualized decision-making: Shared decision-making weighing aspiration risks against benefits of continued therapy (glycemic control, cardiovascular protection)
- -
- Continuation of GLP-1 therapy in asymptomatic patients undergoing procedures with endotracheal intubation
- -
- Consideration of 2–3 week discontinuation in patients with gastrointestinal symptoms or those undergoing procedures under moderate sedation
- -
4.4. Practical Implementation in Hernia Surgery
4.4.1. Proposed Patient Selection Criteria
- -
- Obese patients (BMI > 35 kg/m2) awaiting elective hernia repair
- -
- Diabetic patients with suboptimal glycemic control (HbA1c > 7%)
- -
- Patients with metabolic syndrome and elevated cardiovascular risk
- -
- Those requiring delay of surgery for medical optimization
- -
- -
- Personal or family history of medullary thyroid carcinoma or MEN2 syndrome
- -
- History of pancreatitis (relative contraindication)
- -
- Severe gastroparesis or gastrointestinal motility disorders
- -
- Urgent or emergent surgical indications
- -
- Inability to afford therapy or lack of insurance coverage [104]
4.4.2. Proposed Timing and Duration Protocols
- -
- Minimum duration: 3–6 months to achieve substantial weight loss and metabolic improvements
- -
- Ideal duration: 6–12 months for maximal benefit, particularly in patients with BMI > 40 kg/m2
- -
- Dose escalation: Follow manufacturer protocols for gradual dose titration to minimize gastrointestinal side effects
- -
5. Mechanical Optimization Strategies: Botulinum Toxin and Progressive Pneumoperitoneum
5.1. Botulinum Toxin A (BTA) for Chemical Component Separation
5.1.1. Mechanism and Pharmacology
5.1.2. Clinical Applications and Indications
- -
- Complex ventral/incisional hernias with defects > 10 cm
- -
- Loss-of-domain hernias with VIH/VAC ratio > 20%
- -
- Recurrent hernias requiring revision surgery
- -
- -
- Increases lateral muscle length by 6.3 cm
- -
- Reduces fascial defect width by 3.5 cm
- -
- Improves primary fascial closure rates
- -
- Reduces need for surgical component separation
- -
- May reduce recurrence rates, though long-term data remain limited
5.1.3. Technical Considerations
- Timing: Injection 4–6 weeks preoperatively to allow maximal effect (onset 7–10 days, peak effect 2–4 weeks)
- Dosing: Most commonly 100 units per lateral abdominal wall (total 200 units), though doses up to 500 total units have been reported
- Injection technique: Ultrasound-guided injection into each of three muscle layers bilaterally (external oblique, internal oblique, transversus abdominis)
5.1.4. Advantages and Limitations
- -
- Minimally invasive outpatient procedure
- -
- Avoids surgical trauma to abdominal wall planes
- -
- Preserves vascular supply and innervation
- -
- Can be combined with other optimization strategies
- -
- Well tolerated with minimal complications
- -
- Temporary effect requiring timely surgical scheduling
- -
- No systemic metabolic benefits
- -
- Requires procedural expertise and ultrasound guidance
- -
- Cost considerations (approximately 2000 € per treatment)
- -
- Limited utility in small or easily reducible hernias
- -
5.2. Progressive Preoperative Pneumoperitoneum (PPP)
- -
- Progressive elongation of contracted lateral abdominal muscles
- -
- Expansion of peritoneal cavity volume to accommodate visceral reintegration
- -
- Gradual adaptation of cardiopulmonary function to elevated IAP
- -
- Reduction in postoperative compartment syndrome risk
- -
- Facilitation of tension-free fascial closure [119]
5.2.1. Technical Protocol and Methodology
- -
- Initial insufflation: 500–1000 cc, titrated to patient tolerance
- -
- Subsequent insufflations: 500–1500 cc every 1–3 days
- -
- Target volume: Variable, based on patient tolerance and volumetric goals (often 8000–15,000 cc total)
- -
- Duration: Typically, 7–21 days, depending on hernia size and patient adaptation
5.2.2. Evidence Base and Outcomes
- -
- Mean VAC increase
- -
- Reduction in VIH/VAC ratio by up to 15%
- -
- Successful primary fascial closure
- -
- Reduced postoperative respiratory complications
- -
5.2.3. Complications and Management
- ○
- Common:
- -
- Subcutaneous emphysema (most frequent, typically self-limited)
- -
- Shoulder/abdominal discomfort during insufflation
- -
- Mild respiratory symptoms
- ○
- Uncommon:
- -
- Pneumothorax or pneumomediastinum
- -
- Catheter migration or dislodgement
- -
- Port site infection
- -
- Metabolic acidosis (with large air volumes)
- ○
- Rare:
- -
- Visceral perforation
- -
- Significant bleeding
- -
- Cardiovascular decompensation
- -
- Respiratory failure requiring intervention
5.2.4. Combined BTA and PPP Protocols
6. Biomechanically Calculated Repair and Prehabilitation Programs
6.1. The GRIP/CRIP Concept: A Paradigm Shift in Hernia Repair
6.2. Collagen Metabolism and Prehabilitation Strategies
7. Comparative Analysis: Pharmacologic vs. Mechanical Optimization
8. Emerging Evidence and Recent Advances
8.1. GLP-1/GIP Formulations and Delivery Systems
8.2. Refined Perioperative Safety Protocols
- ○
- Gastric Ultrasound Assessment: Point-of-care ultrasound assessment of gastric contents is emerging as a valuable tool for risk stratification. Studies suggest that ultrasound can identify patients with retained gastric contents despite fasting, allowing individualized airway management decisions [99].
- ○
- ○
- Risk Prediction Models: Development of clinical prediction tools incorporating GI symptoms, duration of therapy, dose, and timing of last administration to stratify aspiration risk and guide perioperative management.
8.3. Advanced Imaging and Planning Technologies
- Visceral in hernia (VIH) volume
- Total visceral abdominal content (VAC) volume
- VIH/VAC ratio for LOD assessment
- Pre- and post-optimization changes in abdominal domain
8.4. Biomarker-Guided Optimization
8.5. Microbiome and Preoperative Optimization
9. Future Research Directions and Unanswered Questions
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Köckerling, F.; Simons, M.P. Current Concepts of Inguinal Hernia Repair. Visc. Med. 2018, 34, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Ortenzi, M.; Botteri, E.; Balla, A.; Podda, M.; Montori, G.; Sartori, A. Nationwide analysis of open groin hernia repairs in Italy from 2015 to 2020. Hernia 2023, 27, 1429–1437. [Google Scholar] [CrossRef] [PubMed]
- Stabilini, C.; van Veenendaal, N.; Aasvang, E.; Agresta, F.; Aufenacker, T.; Berrevoet, F.; Burgmans, I.; Chen, D.; de Beaux, A.; East, B.; et al. Update of the international HerniaSurge guidelines for groin hernia management. BJS Open 2023, 7, zrad080. [Google Scholar] [CrossRef] [PubMed]
- Hassler, K.R.; Saxena, P.; Baltazar-Ford, K.S. Open Inguinal Hernia Repair; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- HerniaSurge Group. International guidelines for groin hernia management. Hernia 2018, 22, 1–165. [Google Scholar] [CrossRef]
- Hope, W.W.; Tuma, F. Incisional Hernia; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Spear, K.; Davenport, D.L.; Butler, L.; Plymale, M.; Roth, J.S. Comparison of Incisional Hernia Rates Between General and Gynecological Surgery Procedures. Medicina 2025, 61, 435. [Google Scholar] [CrossRef]
- Gignoux, B.; Bayon, Y.; Martin, D.; Phan, R.; Augusto, V.; Darnis, B.; Sarazin, M. Incidence and risk factors for incisional hernia and recurrence: Retrospective analysis of the French national database. Color. Dis. 2021, 23, 1515–1523. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Huayllani, M.T.; Olson, M.A.; Janis, J.E. Year-Over-Year Ventral Hernia Recurrence Rates and Risk Factors. JAMA Surg. 2024, 159, 651–658. [Google Scholar] [CrossRef]
- Hiekkaranta, J.M.; Ahonen, M.; Mäkäräinen, E.; Saarnio, J.; Pinta, T.; Vironen, J.; Niemeläinen, S.; Vento, P.; Nikki, M.; Ohtonen, P.; et al. Laparoscopic versus hybrid approach for treatment of incisional ventral hernia: A 5–10-year follow-up of the randomized controlled multicenter study. Hernia 2023, 28, 191–197. [Google Scholar] [CrossRef]
- OECD; World Health Organization. Health at a Glance: Asia/Pacific 2024; Organisation for Economic Co-Operation and Development (OECD): Paris, France, 2024. [Google Scholar]
- Kerr, J.A.; Patton, G.C.; Cini, K.I.; Abate, Y.H.; Abbas, N.; Abd Al Magied, A.H.; Abd ElHafee, S.; Abd-Elsalam, S.; Abdollahi, A.; Abdoun, M.; et al. Global, regional, and national prevalence of child and adolescent overweight and obesity, 1990–2021, with forecasts to 2050: A forecasting study for the Global Burden of Disease Study 2021. Lancet 2025, 405, 785–812. [Google Scholar] [CrossRef]
- International Diabetes Federation. IDF Diabetes Atlas, 11th ed.; International Diabetes Federation: Brussels, Belgium, 2025. [Google Scholar]
- Ahmed, M.A.A.; Hussain, Z.; Rashid, N.U.A.; Tanvir, S.; Khaliq, M. Evaluating the Impact of Diabetes on Hernia Management by Exploring Pathologies and Comorbidities in High-Risk Patients. Cureus 2025, 17, e86329. [Google Scholar] [CrossRef]
- Plassmeier, L.; Hankir, M.K.; Seyfried, F. Impact of Excess Body Weight on Postsurgical Complications. Visc. Med. 2021, 37, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Tigora, A.; Paic, V.; Garofil, D.N.; Bratucu, M.N.; Zurzu, M.; Nuta, D.; Popa, F.; Surlin, V.; Patrascu, S.; Strambu, V.; et al. Preoperative Risk Factors in Hernia Recurrence: A Single-Center Study. J. Mind Med Sci. 2024, 11, 146–155. [Google Scholar] [CrossRef]
- Mohan, S.; Lim, Z.Y.; Chan, K.S.; Shelat, V.G. Impact of Obesity on Clinical Outcomes of Patients with Intra-Abdominal Hypertension and Abdominal Compartment Syndrome. Life 2023, 13, 330. [Google Scholar] [CrossRef] [PubMed]
- Dietz, U.A.; Kudsi, O.Y.; Gokcal, F.; Bou-Ayash, N.; Pfefferkorn, U.; Rudofsky, G.; Baur, J.; Wiegering, A. Excess Body Weight and Abdominal Hernia. Visc. Med. 2021, 37, 246–253. [Google Scholar] [CrossRef]
- Ortega-Deballon, P.; Renard, Y.; de Launay, J.; Lafon, T.; Roset, Q.; Passot, G. Incidence, risk factors, and burden of incisional hernia repair after abdominal surgery in France: A nationwide study. Hernia 2023, 27, 861–871. [Google Scholar] [CrossRef]
- Parker, S.G.; Mallett, S.; Quinn, L.; Wood, C.P.J.; Boulton, R.W.; Jamshaid, S.; Erotocritou, M.; Gowda, S.; Collier, W.; A O Plumb, A.; et al. Identifying predictors of ventral hernia recurrence: Systematic review and meta-analysis. BJS Open 2021, 5, zraa071. [Google Scholar] [CrossRef]
- McLurcan, N.; Sanders, D.L.; Hollyman, M.; Lamb, S.E.; Findlay, J.M. Randomized Controlled Trials of Weight Loss Before Hernia Surgery: A Systematic Review and Meta-Analysis. J. Abdom. Wall Surg. 2025, 4, 15234. [Google Scholar] [CrossRef]
- Findlay, J.M.; Sanders, D.L. Tailoring Weight Loss Before Hernia Surgery: Distinguishing Between Two Types of Obesity. J. Abdom. Wall Surg. 2025, 4, 14322. [Google Scholar] [CrossRef]
- Singh, J.P. Preoperative Optimization of Modifiable Risk Factors Affect Outcome in Complex Ventral Hernia Repair. J. Surg. 2018, 7, 1118. Available online: https://www.gavinpublishers.com/article/view/preoperative-optimization-of-modifiable-risk-factors-affect-outcome-in-complex-ventral-hernia-repair (accessed on 20 November 2025). [CrossRef]
- Giovannini, S.C.; Pawlak, M.; Antoniou, S.A.; Bougard, H.; Bracale, U.; Deerenberg, E.; Fortelny, R.H.; Gaarder, C.; García-Ureña, M.Á.; Gilmore, K.; et al. Protocol for EHS Guideline on Treatment of Ventral and Incisional Hernias in Emergency. J. Abdom. Wall Surg. 2025, 4, 14644. [Google Scholar] [CrossRef]
- Sanders, D.L.; Pawlak, M.M.; Simons, M.P.; Aufenacker, T.; Balla, A.; Berger, C.; Berrevoet, F.; de Beaux, A.C.; East, B.; A Henriksen, N.; et al. Midline incisional hernia guidelines: The European Hernia Society. Br. J. Surg. 2023, 110, 1732–1768. [Google Scholar] [CrossRef]
- Fafaj, A.; de Figueiredo, S.M.P.; Rosen, M.J.; Petro, C.C. Preoperative optimization in hernia surgery: Are we really helping or are we just stalling? Hernia 2024, 28, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Kallinowski, F.; Gutjahr, D.; Harder, F.; Sabagh, M.; Ludwig, Y.; Lozanovski, V.J.; Löffler, T.; Rinn, J.; Görich, J.; Grimm, A.; et al. The Grip Concept of Incisional Hernia Repair—Dynamic Bench Test, CT Abdomen With Valsalva and 1-Year Clinical Results. Front. Surg. 2021, 8, 602181. [Google Scholar] [CrossRef] [PubMed]
- Nessel, R.; Löffler, T.; Rinn, J.; Kallinowski, F. Three-year follow-up of the grip concept: An open, prospective, observational registry study on biomechanically calculated abdominal wall repair for complex incisional hernias. Hernia 2024, 28, 913–924. [Google Scholar] [CrossRef] [PubMed]
- Lesch, C.; Nessel, R.; Adolf, D.; Hukauf, M.; Köckerling, F.; Kallinowski, F.; For the STRONGHOLD/Herniamed-Collaborators GROUP; Willms, A.; Schwab, R.; Zarras, K. STRONGHOLD first-year results of biomechanically calculated abdominal wall repair: A propensity score matching. Hernia 2023, 28, 63–73. [Google Scholar] [CrossRef]
- A Henriksen, N. Systemic and local collagen turnover in hernia patients. Dan Med. J. 2016, 63, B5265. [Google Scholar]
- Kjaer, M.; Frederiksen, A.K.S.; Nissen, N.I.; Willumsen, N.; Van Hall, G.; Jorgensen, L.N.; Andersen, J.R.; Ågren, M.S. Multinutrient Supplementation Increases Collagen Synthesis during Early Wound Repair in a Randomized Controlled Trial in Patients with Inguinal Hernia. J. Nutr. 2020, 150, 792–799. [Google Scholar] [CrossRef]
- de Oliveira, G.P.; Maillo, C. Prehabilitation: Enhancing Recovery and Outcomes inHernia Surgery. In Hernia Updates and Approaches; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Sakers, A.; De Siqueira, M.K.; Seale, P.; Villanueva, C.J. Adipose-tissue plasticity in health and disease. Cell 2022, 185, 419–446. [Google Scholar] [CrossRef]
- Smit, M.; Werner, M.J.M.; Lansink-Hartgring, A.O.; Dieperink, W.; Zijlstra, J.G.; van Meurs, M. How central obesity influences intra-abdominal pressure: A prospective, observational study in cardiothoracic surgical patients. Ann. Intensiv. Care 2016, 6, 99. [Google Scholar] [CrossRef]
- George, T.; De Jesus, O. Physiology, Fascia; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Pyrina, I.; Chung, K.-J.; Michailidou, Z.; Koutsilieris, M.; Chavakis, T.; Chatzigeorgiou, A. Fate of Adipose Progenitor Cells in Obesity-Related Chronic Inflammation. Front. Cell Dev. Biol. 2020, 8, 644. [Google Scholar] [CrossRef]
- Dobre, M.-Z.; Virgolici, B.; Timnea, O. Key Roles of Brown, Subcutaneous, and Visceral Adipose Tissues in Obesity and Insulin Resistance. Curr. Issues Mol. Biol. 2025, 47, 343. [Google Scholar] [CrossRef] [PubMed]
- Duan, F.; Wu, J.; Chang, J.; Peng, H.; Liu, Z.; Liu, P.; Han, X.; Sun, T.; Shang, D.; Yang, Y.; et al. Deciphering endocrine function of adipose tissue and its significant influences in obesity-related diseases caused by its dysfunction. Differentiation 2024, 141, 100832. [Google Scholar] [CrossRef] [PubMed]
- Van Putte, L.; De Schrijver, S.; Moortgat, P. The effects of advanced glycation end products (AGEs) on dermal wound healing and scar formation: A systematic review. Scars Burn. Heal. 2016, 2, 2059513116676828. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Z.; Tu, C.; Chen, X.; He, R. Advanced Glycation End Products in Disease Development and Potential Interventions. Antioxidants 2025, 14, 492. [Google Scholar] [CrossRef]
- Thimmappa, P.Y.; Vasishta, S.; Ganesh, K.; Nair, A.S.; Joshi, M.B. Neutrophil (dys)function due to altered immuno-metabolic axis in type 2 diabetes: Implications in combating infections. Hum. Cell 2023, 36, 1265–1282. [Google Scholar] [CrossRef]
- Hemling, P.; Zibrova, D.; Strutz, J.; Sohrabi, Y.; Desoye, G.; Schulten, H.; Findeisen, H.; Heller, R.; Godfrey, R.; Waltenberger, J. Hyperglycemia-induced endothelial dysfunction is alleviated by thioredoxin mimetic peptides through the restoration of VEGFR-2-induced responses and improved cell survival. Int. J. Cardiol. 2020, 308, 73–81. [Google Scholar] [CrossRef]
- Pahwa, H.; Khan, T.; Sharan, K. Hyperglycemia impairs osteoblast cell migration and chemotaxis due to a decrease in mitochondrial biogenesis. Mol. Cell. Biochem. 2020, 469, 109–118. [Google Scholar] [CrossRef]
- Chávez-Reyes, J.; Escárcega-González, C.E.; Chavira-Suárez, E.; León-Buitimea, A.; Vázquez-León, P.; Morones-Ramírez, J.R.; Villalón, C.M.; Quintanar-Stephano, A.; Marichal-Cancino, B.A. Susceptibility for Some Infectious Diseases in Patients With Diabetes: The Key Role of Glycemia. Front. Public Heal. 2021, 9, 559595. [Google Scholar] [CrossRef]
- Dasari, N.; Jiang, A.; Skochdopole, A.; Chung, J.; Reece, E.M.; Vorstenbosch, J.; Winocour, S. Updates in Diabetic Wound Healing, Inflammation, and Scarring. Semin. Plast. Surg. 2021, 35, 153–158. [Google Scholar] [CrossRef]
- Wong, J.K.L.; Ke, Y.; Ong, Y.J.; Li, H.; Wong, T.H.; Abdullah, H.R. The impact of preoperative glycated hemoglobin (HbA1c) on postoperative complications after elective major abdominal surgery: A meta-analysis. Korean J. Anesthesiol. 2022, 75, 47–60. [Google Scholar] [CrossRef]
- Shivganesh, B.R.D.; Karim, H.M.R.; Agrawal, N.; Kumar, M. The Relation of Preoperative HbA1c Level With Intraoperative and Postoperative Complications in Type-2 Diabetic Patients: An Observational Study. Cureus 2024, 16, e64487. [Google Scholar] [CrossRef]
- Yu, A.; Truong, Q.; Whitfield, K.; Hale, A.; Taing, M.; Barker, N.; D’eMden, M. Impact of preoperative haemoglobin A1c levels on postoperative outcomes in adults undergoing major noncardiac surgery: A systematic review. Diabet. Med. 2024, 41, e15380. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, A.; Alzamel, H.; Aljabr, A.; Alsalem, O.; Momen, I.; Mujammami, O.; Alyami, R. The association between HBA1C level and the outcome of hernia surgery in diabetic patients managed at a tertiary center: A retrospective cohort study. F1000Research 2025, 14, 394. [Google Scholar] [CrossRef]
- Islam, S.; Wei, P.; Suzauddula; Nime, I.; Feroz, F.; Acharjee, M.; Pan, F. The interplay of factors in metabolic syndrome: Understanding its roots and complexity. Mol. Med. 2024, 30, 279. [Google Scholar] [CrossRef] [PubMed]
- Dri, E.; Lampas, E.; Lazaros, G.; Lazarou, E.; Theofilis, P.; Tsioufis, C.; Tousoulis, D. Inflammatory Mediators of Endothelial Dysfunction. Life 2023, 13, 1420. [Google Scholar] [CrossRef]
- Theofilis, P.; Sagris, M.; Oikonomou, E.; Antonopoulos, A.S.; Siasos, G.; Tsioufis, C.; Tousoulis, D. Inflammatory Mechanisms Contributing to Endothelial Dysfunction. Biomedicines 2021, 9, 781. [Google Scholar] [CrossRef]
- Parker, S.G.; Halligan, S.; Blackburn, S.; Plumb, A.A.O.; Archer, L.; Mallett, S.; Windsor, A.C.J. What Exactly is Meant by “Loss of Domain” for Ventral Hernia? Systematic Review of Definitions. World J. Surg. 2018, 43, 396–404. [Google Scholar] [CrossRef]
- Girieasen, M.S.; Lakshmanan, A.; Farook, M. A Preoperative Algorithm for Loss of Domain Hernia Repair: Stratified Management Using the Tanaka Index in 50 Cases. J. Abdom. Wall Surg. 2025, 4, 14769. [Google Scholar] [CrossRef]
- Łagosz, P.; Sokolski, M.; Biegus, J.; Tycinska, A.; Zymlinski, R. Elevated intra-abdominal pressure: A review of current knowledge. World J. Clin. Cases 2022, 10, 3005–3013. [Google Scholar] [CrossRef]
- Levy, A.S.; Bernstein, J.L.; Celie, K.-B.; Spector, J.A. Quantifying fascial tension in ventral hernia repair and component separation. Hernia 2020, 25, 107–114. [Google Scholar] [CrossRef]
- Hatewar, A.; Mahakalkar, C.; Kshirsagar, S.; Sohan, P.R.; Dixit, S.; Bikkumalla, S. From Meshes to Minimally Invasive Techniques: A Comprehensive Review of Modern Hernia Repair Approaches. Cureus 2024, 16, e66206. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.M.; Poveromo, L.P.; Glisson, R.R.; Cornejo, A.; Farjat, A.E.; Gall, K.; Levinson, H. Modifying hernia mesh design to improve device mechanical performance and promote tension-free repair. J. Biomech. 2018, 71, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Kenawy, D.M.; Underhill, J.M.; Jacobs, A.G.; Olson, M.A.; Renshaw, S.M.; Gabanic, B.T.; Garcia-Neuer, M.I.; Kanga, P.; Gunacar, A.; Poulose, B.K. Ten-year outcomes following ventral hernia repair: Making the case for better post-market surveillance in the USA. Surg. Endosc. 2022, 37, 5612–5622. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.; Finan, B.; Bloom, S.; D’ALessio, D.; Drucker, D.; Flatt, P.; Fritsche, A.; Gribble, F.; Grill, H.; Habener, J.; et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 2019, 30, 72–130. [Google Scholar] [CrossRef]
- Zheng, Z.; Zong, Y.; Ma, Y.; Tian, Y.; Pang, Y.; Zhang, C.; Gao, J. Glucagon-like peptide-1 receptor: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2024, 9, 234. [Google Scholar] [CrossRef]
- Nauck, M.A.; D‘aLessio, D.A. Tirzepatide, a dual GIP/GLP-1 receptor co-agonist for the treatment of type 2 diabetes with unmatched effectiveness regrading glycaemic control and body weight reduction. Cardiovasc. Diabetol. 2022, 21, 169. [Google Scholar] [CrossRef]
- Fisman, E.Z.; Tenenbaum, A. The dual glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) receptor agonist tirzepatide: A novel cardiometabolic therapeutic prospect. Cardiovasc. Diabetol. 2021, 20, 225. [Google Scholar] [CrossRef]
- Xie, Z.; Liang, Z.; Xie, Y.; Zheng, G.; Cao, W. Comparative Safety of GLP-1/GIP Co-Agonists Versus GLP-1 Receptor Agonists for Weight Loss in Patients with Obesity or Overweight: A Systematic Review. Diabetes, Metab. Syndr. Obes. Targets Ther. 2025, 2025, 2837–2849. [Google Scholar] [CrossRef]
- Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; Van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.; Wadden, T.A.; et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N. Engl. J. Med. 2021, 384, 989–1002. [Google Scholar] [CrossRef]
- Davies, M.; Færch, L.; Jeppesen, O.K.; Pakseresht, A.; Pedersen, S.D.; Perreault, L.; Rosenstock, J.; Shimomura, I.; Viljoen, A.; A Wadden, T.; et al. Semaglutide 2·4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): A randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. Lancet 2021, 397, 971–984. [Google Scholar] [CrossRef]
- Wadden, T.A.; Bailey, T.S.; Billings, L.K.; Davies, M.; Frias, J.P.; Koroleva, A.; Lingvay, I.; O’neil, P.M.; Rubino, D.M.; Skovgaard, D.; et al. Effect of Subcutaneous Semaglutide vs Placebo as an Adjunct to Intensive Behavioral Therapy on Body Weight in Adults With Overweight or Obesity. JAMA 2021, 325, 1403–1413. [Google Scholar] [CrossRef] [PubMed]
- Garvey, W.T.; Batterham, R.L.; Bhatta, M.; Buscemi, S.; Christensen, L.N.; Frias, J.P.; Jódar, E.; Kandler, K.; Rigas, G.; Wadden, T.A.; et al. Two-year effects of semaglutide in adults with overweight or obesity: The STEP 5 trial. Nat. Med. 2022, 28, 2083–2091. [Google Scholar] [CrossRef] [PubMed]
- Rubino, D.; Abrahamsson, N.; Davies, M.; Hesse, D.; Greenway, F.L.; Jensen, C.; Lingvay, I.; Mosenzon, O.; Rosenstock, J.; Rudofsky, G.; et al. Effect of Continued Weekly Subcutaneous Semaglutide vs Placebo on Weight Loss Maintenance in Adults With Overweight or Obesity. JAMA 2021, 325, 1414–1425. [Google Scholar] [CrossRef] [PubMed]
- Rubino, D.M.; Greenway, F.L.; Khalid, U.; O’neil, P.M.; Rosenstock, J.; Sørrig, R.; Wadden, T.A.; Wizert, A.; Garvey, W.T. STEP 8 Investigators; et al. Effect of Weekly Subcutaneous Semaglutide vs Daily Liraglutide on Body Weight in Adults With Overweight or Obesity Without Diabetes. JAMA 2022, 327, 138–150. [Google Scholar] [CrossRef]
- Aronne, L.J.; Sattar, N.; Horn, D.B.; Bays, H.E.; Wharton, S.; Lin, W.-Y.; Ahmad, N.N.; Zhang, S.; Liao, R.; Bunck, M.C.; et al. Continued Treatment With Tirzepatide for Maintenance of Weight Reduction in Adults With Obesity. JAMA 2024, 331, 38–48. [Google Scholar] [CrossRef]
- Tinsley, G.M.; Nadolsky, S. Preservation of lean soft tissue during weight loss induced by GLP-1 and GLP-1/GIP receptor agonists: A case series. SAGE Open Med Case Rep. 2025, 13, 2050313X251388724. [Google Scholar] [CrossRef]
- Ceasovschih, A.; Asaftei, A.; Lupo, M.G.; Kotlyarov, S.; Bartušková, H.; Balta, A.; Sorodoc, V.; Sorodoc, L.; Banach, M. Glucagon-like peptide-1 receptor agonists and muscle mass effects. Pharmacol. Res. 2025, 220, 107927. [Google Scholar] [CrossRef]
- Karakasis, P.; Patoulias, D.; Fragakis, N.; Mantzoros, C.S. Effect of glucagon-like peptide-1 receptor agonists and co-agonists on body composition: Systematic review and network meta-analysis. Metabolism 2024, 164, 156113. [Google Scholar] [CrossRef]
- Sattar, N.; Neeland, I.J.; Leinhard, O.D.; Landó, L.F.; Bray, R.; Linge, J.; Rodriguez, A. Tirzepatide and muscle composition changes in people with type 2 diabetes (SURPASS-3 MRI): A post-hoc analysis of a randomised, open-label, parallel-group, phase 3 trial. Lancet Diabetes Endocrinol. 2025, 13, 482–493. [Google Scholar] [CrossRef]
- Vilsbøll, T.; Malecki, M.T.; Sharma, P.; Thieu, V.T.; Chivukula, K.K.; Kiljanski, J. HbA1c reduction with tirzepatide in people with type 2 diabetes: The contribution of weight loss assessed by a mediation analysis. Diabetes, Obes. Metab. 2025, 27, 5498–5505. [Google Scholar] [CrossRef]
- Lingvay, I.; Cheng, A.Y.; Levine, J.A.; Gomez-Valderas, E.; Allen, S.E.; Ranta, K.; Torcello-Gómez, A.; Thieu, V.T. Achievement of glycaemic targets with weight loss and without hypoglycaemia in type 2 diabetes with the once-weekly glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 receptor agonist tirzepatide: A post hoc analysis of the SURPASS -1 to -5 studies. Diabetes Obes. Metab. 2022, 25, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Luo, X.; Jin, X.; Lv, M.; Li, X.; Dou, J.; Zeng, J.; An, P.; Chen, Y.; Chen, K.; et al. Effects of Preoperative HbA1c Levels on the Postoperative Outcomes of Coronary Artery Disease Surgical Treatment in Patients with Diabetes Mellitus and Nondiabetic Patients: A Systematic Review and Meta-Analysis. J. Diabetes Res. 2020, 2020, 3547491. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Chen, Y.; Zheng, W.; Kong, W.; Liao, Y.; Zhang, J.; Wang, M.; Zeng, T. The effect of GLP -1 receptor agonists on circulating inflammatory markers in type 2 diabetes patients: A systematic review and meta-analysis. Diabetes, Obes. Metab. 2025, 27, 3607–3626. [Google Scholar] [CrossRef] [PubMed]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.E.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef]
- Gerstein, H.C.; Colhoun, H.M.; Dagenais, G.R.; Diaz, R.; Lakshmanan, M.; Pais, P.; Probstfield, J.; Riesmeyer, J.S.; Riddle, M.C.; Rydén, L.; et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): A double-blind, randomised placebo-controlled trial. Lancet 2019, 394, 121–130. [Google Scholar] [CrossRef]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef]
- Aschen, S.Z.M.; Zhang, A.B.; O’cOnnell, G.M.; Salingaros, S.B.; Andy, C.; Rohde, C.H.; Spector, J.A. Association of Perioperative Glucagon-like Peptide-1 Receptor Agonist Use and Postoperative Outcomes. Ann. Surg. 2024, 281, 600–607. [Google Scholar] [CrossRef]
- Seddio, A.E.; Wilhelm, C.V.; Gouzoulis, M.J.; Islam, W.; Vasudevan, R.S.; Halperin, S.J.; Rubin, L.E.; Medvecky, M.J.; Donohue, K.W.; Grauer, J.N. Improved total shoulder arthroplasty outcomes associated with semaglutide utilization in patients with type II diabetes: A promising new addition to preoperative optimization. JSES Int. 2024, 9, 735–740. [Google Scholar] [CrossRef]
- Rubio-Herrera, M.A.; Mera-Carreiro, S.; Sánchez-Pernaute, A.; Ramos-Levi, A.M. Impact of Treatment with GLP1 Receptor Agonists, Liraglutide 3.0 mg and Semaglutide 1.0 mg, While on a Waiting List for Bariatric Surgery. Biomedicines 2023, 11, 2785. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Study of GLP-1 Receptor Agonists in Elective Surgery for Adults with Type 2 Diabetes. 2024. Available online: https://clinicaltrials.gov/study/NCT06721507 (accessed on 10 November 2025).
- ClinicalTrials.gov. Pre-Surgical Tirzepatide-Assisted Weight Loss in Overweight and Obese Men with Intermediate Risk Prostate Cancer: A Pilot Feasibility Study. Available online: https://clinicaltrials.gov/study/NCT06759701 (accessed on 10 November 2025).
- Fortis-Olmedo, L.L.; Serna-Muñoz, R.; Cruz-Villaseñor, J.A.; Achar-Farca, T.; Calva-Ruíz, D.S. Semaglutide and delayed gastric emptying: Case report and analysis of anesthetic implications. Colomb. J. Anesthesiol. 2025. [Google Scholar] [CrossRef]
- Shankar, A.; Sharma, A.; Vinas, A.; Chilton, R.J. GLP-1 receptor agonists and delayed gastric emptying: Implications for invasive cardiac interventions and surgery. Cardiovasc. Endocrinol. Metab. 2024, 14, e00321. [Google Scholar] [CrossRef]
- Ho, C.N.; Ayers, A.T.; A Kohn, M.; E Umpierrez, G.; Klonoff, D.C. Glucagon-Like Peptide-1 Receptor Agonists and Peri-Procedural Aspiration Risk. J. Endocr. Soc. 2025, 9, bvaf088. [Google Scholar] [CrossRef]
- Pillarisetti, L.; Agrawal, D.K. Semaglutide: Double-edged Sword with Risks and Benefits. Arch. Intern. Med. Res. 2025, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Milder, D.A.; Milder, T.Y.; Liang, S.S.; Kam, P.C. Glucagon-like peptide-1 receptor agonists: A narrative review of clinical pharmacology and implications for peri-operative practice. Anaesthesia 2024, 79, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Y.; Jin, Y.; Feng, X.-Y.; Wang, R.-C.; Chen, J.-P.; Lu, B. Perioperative management of patients on GLP-1 receptor agonists: Risks, recommendations, and future directions—A narrative review. J. Clin. Anesthesia 2025, 104, 111871. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-H.; Zink, T.; Chen, Y.-W.; Nin, D.Z.; Talmo, C.T.; Hollenbeck, B.L.; Grant, A.R.; Niu, R.; Chang, D.C.; Smith, E.L. Postoperative Aspiration Pneumonia Among Adults Using GLP-1 Receptor Agonists. JAMA Netw. Open 2025, 8, e250081. [Google Scholar] [CrossRef]
- Santos, L.B.; Mizubuti, G.B.; da Silva, L.M.; Silveira, S.Q.; Nersessian, R.S.F.; Abib, A.d.C.V.; Bellicieri, F.N.; Lima, H.d.O.; Ho, A.M.-H.; dos Anjos, G.S.; et al. Effect of various perioperative semaglutide interruption intervals on residual gastric content assessed by esophagogastroduodenoscopy: A retrospective single center observational study. J. Clin. Anesthesia 2024, 99, 111668. [Google Scholar] [CrossRef]
- Wright, J.D.; Chen, L.; Xu, X.; Hur, C.; Matsuo, K.; Elkin, E.B.; Hershman, D.L. Glucagon-like-peptide-1 (GLP-1) receptor agonist use and the risk of pulmonary aspiration in patients undergoing surgery. Int. J. Surg. 2025, 111, 4090–4093. [Google Scholar] [CrossRef]
- Jacobsen, L.V.; Flint, A.; Olsen, A.K.; Ingwersen, S.H. Liraglutide in Type 2 Diabetes Mellitus: Clinical Pharmacokinetics and Pharmacodynamics. Clin. Pharmacokinet. 2015, 55, 657–672. [Google Scholar] [CrossRef]
- Hall, S.; Isaacs, D.; Clements, J.N. Pharmacokinetics and Clinical Implications of Semaglutide: A New Glucagon-Like Peptide (GLP)-1 Receptor Agonist. Clin. Pharmacokinet. 2018, 57, 1529–1538. [Google Scholar] [CrossRef]
- Asokan, R.; Bhardwaj, B.B.; Agrawal, N.; Chauhan, U.; Pillai, A.; Shankar, T.; Lalneiruol, D.J.; Baid, H.; Chawang, H.; Patel, S.M. Point of care gastric ultrasound to predict aspiration in patients undergoing urgent endotracheal intubation in the emergency medicine department. BMC Emerg. Med. 2023, 23, 111. [Google Scholar] [CrossRef] [PubMed]
- Kindel, T.L.; Wang, A.Y.; Wadhwa, A.; Schulman, A.R.; Sharaiha, R.Z.; Kroh, M.; Ghanem, O.M.; Levy, S.; Joshi, G.P.; LaMasters, T.L. Multisociety Clinical Practice Guidance for the Safe Use of Glucagon-like Peptide-1 Receptor Agonists in the Perioperative Period. Clin. Gastroenterol. Hepatol. 2024, 23, 2083–2085. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.C.N.; Lim, C.E.D. Perioperative Management of GLP-1 Receptor Agonists: Balancing Aspiration Risk with Therapeutic Benefit. SN Compr. Clin. Med. 2025, 7, 313. [Google Scholar] [CrossRef]
- Spurzem, G.J.; Broderick, R.C.; Ruiz-Cota, P.; Hollandsworth, H.M.; Sandler, B.J.; Horgan, S.; Grunvald, E.; Jacobsen, G.R. GLP-1 receptor agonists are a transformative prehabilitation tool for weight loss in obese patients undergoing elective hernia repair. Surg. Endosc. 2024, 39, 440–447. [Google Scholar] [CrossRef]
- Romain, B.; Pfirsch, V.; Manfredelli, S.; Leroi, T.; Salman, F.; Sami, O.; Westerfeld-Ruillier, D.; Ledoux, S.; Moszkowicz, D. Patients With Severe Obesity Are Made Eligible for Complex Abdominal Wall Repair After Preoptimization With GLP-1 Agonists: Results of a Bicentric Pilot Study. World J. Surg. 2025, 49, 898–905. [Google Scholar] [CrossRef]
- Latif, W.; Lambrinos, K.J.; Patel, P.; Rodriguez, R. Compare and Contrast the Glucagon-Like Peptide-1 Receptor Agonists (GLP1RAs); StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Anderson, S.L. Emerging concepts in obesity management: Focus on glucagon receptor agonist combinations. Drugs Context 2025, 14, 1–11. [Google Scholar] [CrossRef]
- Li, Y.R.; Wu, B.; Nik, C.; Wu, L.; Tse, T. Glucagon-like peptide-1 receptor agonists for weight loss: Consider the case for selective pharmacotherapy. Aust. J. Gen. Pr. 2025, 54, 192–195. [Google Scholar] [CrossRef]
- Ibarra-Hurtado, T.R.; Nuño-Guzmán, C.M.; Echeagaray-Herrera, J.E.; Robles-Vélez, E.; González-Jaime, J.d.J. Use of Botulinum Toxin Type A Before Abdominal Wall Hernia Reconstruction. World J. Surg. 2009, 33, 2553–2556. [Google Scholar] [CrossRef]
- Zielinski, M.D.; Goussous, N.; Schiller, H.J.; Jenkins, D. Chemical components separation with botulinum toxin A: A novel technique to improve primary fascial closure rates of the open abdomen. Hernia 2012, 17, 101–107. [Google Scholar] [CrossRef]
- Wegdam, J.A.; Reilingh, T.S.d.V.; Bouvy, N.D.; Nienhuijs, S.W. Prehabilitation of complex ventral hernia patients with Botulinum: A systematic review of the quantifiable effects of Botulinum. Hernia 2020, 25, 1427–1442. [Google Scholar] [CrossRef]
- A Henriksen, N.; Bougard, H.; Gonçalves, M.R.; Hope, W.; Khare, R.; Shao, J.; Quiroga-Centeno, A.C.; Deerenberg, E.B. Primary ventral and incisional hernias: Comprehensive review. BJS Open 2024, 9, zrae145. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, M.; Biolchini, F.; Capelli, P.; Banchini, F.; Perrone, G. Botulinum Toxin and Progressive Pneumoperitoneum in Loss of Domain Ventral Hernias: A Systematic Review. J. Abdom. Wall Surg. 2024, 3, 12650. [Google Scholar] [CrossRef] [PubMed]
- Timmer, A.S.; Claessen, J.J.M.; Atema, J.J.; Rutten, M.V.H.; Hompes, R.; Boermeester, M.A. A systematic review and meta-analysis of technical aspects and clinical outcomes of botulinum toxin prior to abdominal wall reconstruction. Hernia 2021, 25, 1413–1425. [Google Scholar] [CrossRef] [PubMed]
- Serrano, S.P.; Lledó, J.B.; Pastor, P.G.; Saenz, O.C.; Ibars, V.P.; Diana, S.B.; Moreno, A.M.G.; Martínez-Hoed, J.; Rodríguez, J.A.P.; Menchero, J.G.; et al. Utilización de la toxina botulínica tipo A en la prehabilitación de la musculatura de la pared abdominal para la reparación herniaria. Una propuesta de consenso. Cirugia Espanola 2024, 102, 391–399. [Google Scholar] [CrossRef]
- Whitehead-Clarke, T.; Windsor, A. The Use of Botulinum Toxin in Complex Hernia Surgery: Achieving a Sense of Closure. Front. Surg. 2021, 8, 753889. [Google Scholar] [CrossRef]
- Śmietański, M.; Zamkowski, M.; Śmietańska, I.A.; Putko, M.; Lerchuk, O.; Porytsky, A.; Ushnevych, Z.; Khomyak, V. Preoperative Botulinum Toxin A and Its Impact on Pulmonary Function in Giant Abdominal Wall Hernias: A Prospective Spirometry-Based Analysis. J. Abdom. Wall Surg. 2025, 4, 14753. [Google Scholar] [CrossRef]
- Quintens, J.; Zwaans, W.A.R.; Have, T.T.; Lubbers, T.; Wevers, K.P. SURGEON PERFORMED ABDOMINAL WALL BOTULINUM TOXIN A INJECTION IN THE OUTPATIENT SETTING MAY RESULT IN SIGNIFICANT REDUCTION OF COMPLEX LOGISTICS AND COSTS. Br. J. Surg. 2024, 111, znae122.085. [Google Scholar] [CrossRef]
- Mancini, A.; Mougin, N.; Venchiarutti, V.; Shen, Z.; Risse, O.; Abba, J.; Arvieux, C. Goni Moreno progressive preoperative pneumoperitoneum for giant hernias: A monocentric retrospective study of 162 patients. Hernia 2020, 24, 545–550. [Google Scholar] [CrossRef]
- Elstner, K.E.; Moollan, Y.; Chen, E.; Jacombs, A.S.W.; Rodriguez-Acevedo, O.; Ibrahim, N.; Ho-Shon, K.; Magnussen, J.; Read, J.W. Preoperative Progressive Pneumoperitoneum Revisited. Front. Surg. 2021, 8, 754543. [Google Scholar] [CrossRef]
- Subirana, H.; Comas, J.; Crusellas, O.; Robres, J.; Barri, J.; Domenech, A.; Borlado, C.; Castellví, J. Preoperative Progressive Pneumoperitoneum in the Treatment of Hernias With Loss of Domain. Our Experience in 50 Cases. J. Abdom. Wall Surg. 2023, 2, 11230. [Google Scholar] [CrossRef]
- Abbas, A.A.; Ahmad, A.; McCleary, A.; Nicholls, M.; Chitsabesan, P.; Chintapatla, S. A structured protocol for Preoperative Progressive Pneumoperitoneum (PPP) in Complex Abdominal Wall Reconstruction (CAWR): Our York protocol. Hernia 2025, 29, 207. [Google Scholar] [CrossRef] [PubMed]
- Marques-Antunes, J.; Rodrigues, E.; Guimarães, M.; Pereira, A.M. Complex Abdominal Wall Hernias: Structured Use of Adjuvant Therapies. J. Abdom. Wall Surg. 2025, 4, 14515. [Google Scholar] [CrossRef] [PubMed]
- Bueno-Lledó, J.; Martínez-Hoed, J.; Bonafé-Diana, S.; García-Pastor, P.; Torregrosa-Gallud, A.; Pareja-Ibars, V.; Carreño-Sáenz, O.; Pous-Serrano, S. Complications related to the prehabilitation with preoperative pneumoperitoneum in loss of domain hernias: Our experience in 180 consecutive cases. Hernia 2023, 28, 1591–1598. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Hoed, J.; Bonafe-Diana, S.; Bueno-Lledó, J. A systematic review of the use of progressive preoperative pneumoperitoneum since its inception. Hernia 2020, 25, 1443–1458. [Google Scholar] [CrossRef]
- Agarwal, D.; Singh, Y.; Sudhakaran, D.; Khan, W.F.; Behera, R.K. Preoperative Progressive Pneumoperitoneum for Giant Inguinal Hernia: Useful Adjunct Prior to Surgical Management. J. Clin. Interv. Radiol. ISVIR 2025. [Google Scholar] [CrossRef]
- Bueno-Lledó, J.; Torregrosa, A.; Jiménez, R.; Pastor, P.G. Preoperative combination of progressive pneumoperitoneum and botulinum toxin type A in patients with loss of domain hernia. Surg. Endosc. 2018, 32, 3599–3608. [Google Scholar] [CrossRef]
- Tang, F.-X.; Ma, N.; Huang, E.; Ma, T.; Liu, C.-X.; Chen, S.; Zong, Z.; Zhou, T.-C. Botulinum Toxin A Facilitated Laparoscopic Repair of Complex Ventral Hernia. Front. Surg. 2022, 8, 803023. [Google Scholar] [CrossRef]
- Dawi, J.; Misakyan, Y.; Gonzalez, E.; Kafaja, K.; Affa, S.; Tumanyan, K.; Qumsieh, K.; Venketaraman, V. ECM Remodeling in Direct Inguinal Hernia: The Role of Aging, Oxidative Stress, and Antioxidants Defenses. Clin. Pr. 2025, 15, 219. [Google Scholar] [CrossRef]
- Prasanna, S.; Sekaran, P.G.; Sivakumar, A.; Govindan, V.K. Role of Collagen in the Etiology of Inguinal Hernia Patients: A Case-Control Study. Cureus 2023, 15, e43479. [Google Scholar] [CrossRef]
- Radu, P.A.; Paic, V.; Tigora, A.; Zurzu, M.; Bratucu, M.; Pasnicu, C.; Purcaru, A.; Stavar, P.; Surlin, V.; Cartu, D.; et al. Collagen metabolism and incisional hernia recurrence: A comparative study between oncologic and non-oncologic patients. J. Med. Life 2025, 18, 133–139. [Google Scholar] [CrossRef]
- Chalidis, B.; Givissis, P.; Papadopoulos, P.; Pitsilos, C. Molecular and Biologic Effects of Platelet-Rich Plasma (PRP) in Ligament and Tendon Healing and Regeneration: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 2744. [Google Scholar] [CrossRef]
- Kandhwal, M.; Behl, T.; Singh, S.; Sharma, N.; Arora, S.; Bhatia, S.; Al-Harrasi, A.; Sachdeva, M.; Bungau, S. Role of matrix metalloproteinase in wound healing. Am. J. Transl. Res. 2022, 14, 4391–4405. [Google Scholar] [PubMed]
- Timmer, A.S.; Claessen, J.J.M.; Boermeester, M.A. Risk Factor-Driven Prehabilitation Prior to Abdominal Wall Reconstruction to Improve Postoperative Outcome. A Narrative Review. J. Abdom. Wall Surg. 2022, 1, 10722. [Google Scholar] [CrossRef] [PubMed]
- Eliaschewitz, F.G.; Canani, L.H. Advances in GLP-1 treatment: Focus on oral semaglutide. Diabetol. Metab. Syndr. 2021, 13, 99. [Google Scholar] [CrossRef] [PubMed]
- Horii, T.; Masudo, C.; Takayanagi, Y.; Oikawa, Y.; Shimada, A.; Mihara, K. Adherence and treatment discontinuation of oral semaglutide and once-weekly semaglutide injection at 12 month follow-up: Japanese real-world data. J. Diabetes Investig. 2024, 15, 1578–1584. [Google Scholar] [CrossRef]
- Khin, K.L.S.; Crabtree, T.S.; Liarakos, A.L.; Oguntolu, V.; Adamson, K.; Gough, A.; Mudiyanselage, G.R.; Wilmot, E.G.; Idris, I.R.; Ryder, R.E. 756-P: Real-World Data Comparing the Effectiveness of Injectable vs. Oral Semaglutide—Association of British Clinical Diabetologist (ABCD) National Audit. Diabetes 2025, 74. [Google Scholar] [CrossRef]
- Moiz, A.; Filion, K.B.; Tsoukas, M.A.; Yu, O.H.; Peters, T.M.; Eisenberg, M.J. The expanding role of GLP-1 receptor agonists: A narrative review of current evidence and future directions. eClinicalMedicine 2025, 86, 103363. [Google Scholar] [CrossRef]
- Goldney, J.; Hamza, M.; Surti, F.; Davies, M.J.; Papamargaritis, D. Triple Agonism Based Therapies for Obesity. Curr. Cardiovasc. Risk Rep. 2025, 19, 18. [Google Scholar] [CrossRef]
- Sanyal, A.J.; Kaplan, L.M.; Frias, J.P.; Brouwers, B.; Wu, Q.; Thomas, M.K.; Harris, C.; Schloot, N.C.; Du, Y.; Mather, K.J.; et al. Triple hormone receptor agonist retatrutide for metabolic dysfunction-associated steatotic liver disease: A randomized phase 2a trial. Nat. Med. 2024, 30, 2037–2048. [Google Scholar] [CrossRef]
- Oprea, A.D.; Ostapenko, L.J.; Sweitzer, B.; Selzer, A.; Irizarry-Alvarado, J.M.; Andrade, M.D.H.; Mendez, C.E.; Kelley, K.D.; Stewart, E.; Robles, C.R.F.; et al. Perioperative management of patients taking glucagon-like peptide 1 receptor agonists: Society for Perioperative Assessment and Quality Improvement (SPAQI) multidisciplinary consensus statement. Br. J. Anaesth. 2025, 135, 48–78. [Google Scholar] [CrossRef]
- Elmati, P.; Jagirdhar, G.; Qasba, R.; Perez, A.; Qasba, R.; Bains, Y.; Shah, M.; Surani, S. GLP-1 Agonists and the Risk of Pulmonary Aspiration during Elective Upper Endoscopy: A Systematic Review and Meta-analysis. Open Respir. Med. J. 2025, 19, e18743064372550. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Pan, Z.-Y.; Chen, J.; Yang, S.; Jiang, T.; Shen, Y.-M. Application of 3D reconstruction through CT to measure the abdominal cavity volume in the treatment of external abdominal hernia. Hernia 2020, 25, 971–976. [Google Scholar] [CrossRef] [PubMed]
- Nachtergaele, S.; Khalil, H.; Martre, P.; Baste, J.-M.; Roussel, E. Area of Focus in 3D Volumetry and Botulinum Toxin A Injection for Giant Diaphragmatic Hernia with Loss of Domain: A Case Report with Video Illustration. J. Abdom. Wall Surg. 2024, 3, 13448. [Google Scholar] [CrossRef] [PubMed]
- Spadoni, S.; Todros, S.; Pavan, P.G. Numerical modeling of the abdominal wall biomechanics and experimental analysis for model validation. Front. Bioeng. Biotechnol. 2024, 12, 1472509. [Google Scholar] [CrossRef]
- Department of Clinical Medicine and Dentistry Kampala International University Uganda; Kalukusu, A.T. Augmented Reality in Surgical Planning: Enhancing Precision. IAA J. Biol. Sci. 2025, 13, 59–66. [Google Scholar] [CrossRef]
- Ahmed, M.W.; Elshoura, Y.; Mohamedahmed, A.; Ramasamy, S.; Kakaniaris, G.; Muras, Z.; Marzook, H. Risk Factors for Wound Complications and Hernia Recurrence in Abdominal Wall Reconstruction: A Single-Institution Retrospective Study. Cureus 2025, 17, e88565. [Google Scholar] [CrossRef]
- Wang, B.; He, K.; Zhu, Y.; Fu, X.; Yao, Q.; Chen, H.; Wang, X. Quantitative Analysis of Abdominal Muscles Using Elastography in Female Patients With Incisional Hernia. Front. Surg. 2022, 9, 831184. [Google Scholar] [CrossRef]
- Gofron, K.K.; Wasilewski, A.; Małgorzewicz, S. Effects of GLP-1 Analogues and Agonists on the Gut Microbiota: A Systematic Review. Nutrients 2025, 17, 1303. [Google Scholar] [CrossRef]
- Yaqub, M.O.; Jain, A.; Joseph, C.E.; Edison, L.K. Microbiome-Driven Therapeutics: From Gut Health to Precision Medicine. Gastrointest. Disord. 2025, 7, 7. [Google Scholar] [CrossRef]
- Ruiz, N.I.; Giron, C.G.H.; Lezama, C.A.A.; Redroban, S.J.F.; Herrera, M.O.V.; Coj, G.A.S. Timing and Protocols for Microbiome Intervention in Surgical Patients: A Literature Review of Current Evidence. Cureus 2025, 17, e86104. [Google Scholar] [CrossRef]
| Feature | Pharmacologic Optimization (GLP-1/GIP Agonists) | Mechanical Optimization (BTA/PPP) | Preoperative Collagen Optimization | Biomechanically Controlled Repair (BCR) |
|---|---|---|---|---|
| Primary target | Systemic metabolic dysfunction | Local abdominal wall mechanics | Extracellular matrix quality and collagen synthesis | Force distribution, tissue load-sharing, and mesh vector optimization |
| Mechanisms | Weight loss, improved glycemic control, inflammation reduction, cardiovascular protection | Muscle elongation (BTA), intra-abdominal cavity expansion and compliance enhancement (PPP) | Nutrient supplementation (collagen peptides, vitamin C, arginine, zinc), reduced collagen degradation, improved ECM turnover | Preoperative CT-based biomechanical analysis, personalized mesh shape/overlap, optimized suture vectors |
| Physiologic effects/Benefits | ↓ Intra-abdominal pressure, improved tissue healing, ↓ infection risk, cardiovascular protection | Facilitated fascial closure, reduced compartment syndrome risk | ↑ Collagen type I production, improved tensile strength, enhanced wound healing, better mesh incorporation | ↓ Mechanical strain at repair site, ↓ recurrence rate, improved long-term durability, ↓ chronic pain |
| Timeline to effect | Months (typically 3–12 months for optimal response) | Weeks (≈2–4 weeks for BTA; 1–3 weeks for PPP) | Weeks to months (2–8 weeks depending on regimen) | Immediate intraoperatively; long-term durability over months–years |
| Ideal candidates | Obese or diabetic patients (BMI > 35 kg/m2 or HbA1c > 7%) with any hernia type | Loss-of-domain hernias, large fascial defects > 10 cm, VIH/VAC > 20%, irrespective of metabolic status | Patients with suspected collagen dysregulation, recurrent hernias, smokers, elderly, poor nutritional status | All complex hernias, recurrent hernias, large defects, patients with high mechanical strain risk |
| Representative goal | Metabolic and systemic optimization prior to surgery | Anatomic and biomechanical optimization enabling tension-free closure | Improve ECM integrity and healing capacity before and after repair | Achieve physiologically balanced force distribution to minimize recurrence |
| Complementarity | Addresses systemic contributors to poor healing and recurrence | Addresses local mechanical tension; synergistic when combined with pharmacologic optimization | Enhances biological capacity to maintain repair; synergistic with BCR and metabolic optimization | Integrates mechanical and physiologic data; synergistic with PPP/BTA and metabolic optimization |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paduraru, D.N.; Palcau, A.C.; Ion, D.; Seicaru, R. Multimodal Prehabilitation for Hernia Repair: Linking Metabolic Modulation and Mechanical Methods. Biomedicines 2025, 13, 3117. https://doi.org/10.3390/biomedicines13123117
Paduraru DN, Palcau AC, Ion D, Seicaru R. Multimodal Prehabilitation for Hernia Repair: Linking Metabolic Modulation and Mechanical Methods. Biomedicines. 2025; 13(12):3117. https://doi.org/10.3390/biomedicines13123117
Chicago/Turabian StylePaduraru, Dan Nicolae, Alexandru Cosmin Palcau, Daniel Ion, and Razvan Seicaru. 2025. "Multimodal Prehabilitation for Hernia Repair: Linking Metabolic Modulation and Mechanical Methods" Biomedicines 13, no. 12: 3117. https://doi.org/10.3390/biomedicines13123117
APA StylePaduraru, D. N., Palcau, A. C., Ion, D., & Seicaru, R. (2025). Multimodal Prehabilitation for Hernia Repair: Linking Metabolic Modulation and Mechanical Methods. Biomedicines, 13(12), 3117. https://doi.org/10.3390/biomedicines13123117

