Hearing Loss in Young Adults: Risk Factors, Mechanisms and Prevention Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Sources and Search Strategy
2.3. Eligibility Criteria
2.4. Data Extraction and Synthesis
3. Risk Factors for Hearing Loss
3.1. Noise Exposure
3.2. Genetic Susceptibility
3.3. Infections and Systemic Illnesses
3.4. Ototoxic Agents
3.5. Lifestyle Factors
3.6. Psychosocial and Sociodemographic Factors
4. Aggravating Factors of Hearing Loss
5. Assessment of Hearing Loss
6. Targeted Interventions and Prevention Modalities
6.1. Potential Targeted Interventions
6.2. Preventive Models
7. Discussions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2019 USA Hearing Loss Collaborators; Haile, L.M.; Orji, A.U.; Reavis, K.M.; Briant, P.S.; Lucas, K.M.; Alahdab, F.; Bärnighausen, T.W.; Bell, A.W.; Cao, C.; et al. Hearing Loss Prevalence, Years Lived With Disability, and Hearing Aid Use in the United States From 1990 to 2019: Findings From the Global Burden of Disease Study. Ear Hear. 2024, 45, 257–267. [Google Scholar] [CrossRef]
- Guo, Z.; Ji, W.; Song, P.; Zhao, J.; Yan, M.; Zou, X.; Bai, F.; Wu, Y.; Guo, Z.; Song, L. Global, Regional, and National Burden of Hearing Loss in Children and Adolescents, 1990-2021: A Systematic Analysis from the Global Burden of Disease Study 2021. BMC Public Health 2024, 24, 2521. [Google Scholar] [CrossRef]
- World Report on Hearing, 1st ed.; World Health Organization: Geneva, Switzerland, 2021; ISBN 978-92-4-002048-1.
- World Health Organization; International Telecommunication Union. Safe Listening Devices and Systems: A WHO-ITU Standard; World Health Organization: Geneva, Switzerland, 2019; ISBN 978-92-4-151527-6. [Google Scholar]
- Lin, F.R.; Niparko, J.K.; Ferrucci, L. Hearing Loss Prevalence in the United States. Arch. Intern. Med. 2011, 171, 1851–1852. [Google Scholar] [CrossRef]
- Stachler, R.J.; Chandrasekhar, S.S.; Archer, S.M.; Rosenfeld, R.M.; Schwartz, S.R.; Barrs, D.M.; Brown, S.R.; Fife, T.D.; Ford, P.; Ganiats, T.G.; et al. Clinical Practice Guideline: Sudden Hearing Loss. Otolaryngol. Neck Surg. 2012, 146, S1–S45. [Google Scholar] [CrossRef]
- Ryan, A.F.; Kujawa, S.G.; Hammill, T.; Le Prell, C.; Kil, J. Temporary and Permanent Noise-Induced Threshold Shifts: A Review of Basic and Clinical Observations. Otol. Neurotol. 2016, 37, e271–e275. [Google Scholar] [CrossRef]
- Kujawa, S.G.; Liberman, M.C. Adding Insult to Injury: Cochlear Nerve Degeneration after “Temporary” Noise-Induced Hearing Loss. J. Neurosci. 2009, 29, 14077–14085. [Google Scholar] [CrossRef] [PubMed]
- Mavrogeni, P.; Maihoub, S.; Molnár, A. Speech Recognition Thresholds Correlate with Tinnitus Intensity in Individuals with Primary Subjective Tinnitus. Front. Neurol. 2025, 16, 1672762. [Google Scholar] [CrossRef] [PubMed]
- Ponsot, E. Unravelling Hidden Hearing Loss. eLife 2024, 13, e104936. [Google Scholar] [CrossRef] [PubMed]
- Prendergast, G.; Guest, H.; Munro, K.J.; Kluk, K.; Léger, A.; Hall, D.A.; Heinz, M.G.; Plack, C.J. Effects of Noise Exposure on Young Adults with Normal Audiograms I: Electrophysiology. Hear. Res. 2017, 344, 68–81. [Google Scholar] [CrossRef]
- Hunter, L.L.; Monson, B.B.; Moore, D.R.; Dhar, S.; Wright, B.A.; Munro, K.J.; Zadeh, L.M.; Blankenship, C.M.; Stiepan, S.M.; Siegel, J.H. Extended High Frequency Hearing and Speech Perception Implications in Adults and Children. Hear. Res. 2020, 397, 107922. [Google Scholar] [CrossRef]
- Liberman, M.C.; Kujawa, S.G. Cochlear Synaptopathy in Acquired Sensorineural Hearing Loss: Manifestations and Mechanisms. Hear. Res. 2017, 349, 138–147. [Google Scholar] [CrossRef]
- Keppler, H.; Ingeborg, D.; Sofie, D.; Bart, V. The Effects of a Hearing Education Program on Recreational Noise Exposure, Attitudes and Beliefs toward Noise, Hearing Loss, and Hearing Protector Devices in Young Adults. Noise Health 2015, 17, 253–262. [Google Scholar] [CrossRef]
- Haruna, K.; Salisu, A.D.; Labaran, S.A.; Fufore, M.B. Prevalence and Pattern of Hearing Loss among Young Adults in Tertiary Institutions with Habitual Headphone/Earphone Usage in Kaduna Metropolis. J. West Afr. Coll. Surg. 2023, 13, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, N.; Batts, S.; Stankovic, K.M. Noise-Induced Hearing Loss. J. Clin. Med. 2023, 12, 2347. [Google Scholar] [CrossRef]
- Vasilkov, V.; Caswell-Midwinter, B.; Zhao, Y.; De Gruttola, V.; Jung, D.H.; Liberman, M.C.; Maison, S.F. Evidence of Cochlear Neural Degeneration in Normal-Hearing Subjects with Tinnitus. Sci. Rep. 2023, 13, 19870. [Google Scholar] [CrossRef]
- Dillard, L.K.; Arunda, M.O.; Lopez-Perez, L.; Martinez, R.X.; Jiménez, L.; Chadha, S. Prevalence and Global Estimates of Unsafe Listening Practices in Adolescents and Young Adults: A Systematic Review and Meta-Analysis. BMJ Glob. Health 2022, 7, e010501. [Google Scholar] [CrossRef] [PubMed]
- Gajendran, A.; Devi Rajendiran, G.; Prateep, A.; Satindra, H.; Rajendran, R. Prevalence of High Frequency Noise-Induced Hearing Loss Among Medical Students Using Personalized Listening Devices. J. Clin. Med. 2024, 14, 49. [Google Scholar] [CrossRef] [PubMed]
- Elmazoska, I.; Mäki-Torkko, E.; Granberg, S.; Widén, S. Associations Between Recreational Noise Exposure and Hearing Function in Adolescents and Young Adults: A Systematic Review. J. Speech Lang. Hear. Res. 2024, 67, 688–710. [Google Scholar] [CrossRef]
- Masterson, E.A.; Themann, C.L. Prevalence of Hearing Loss among Noise-Exposed U.S. Workers within the Construction Sector, 2010–2019. J. Safety Res. 2025, 92, 158–165. [Google Scholar] [CrossRef]
- Molaug, I.; Aarhus, L.; Mehlum, I.S.; Stokholm, Z.A.; Kolstad, H.A.; Engdahl, B. Occupational Noise Exposure and Tinnitus: The HUNT Study. Int. J. Audiol. 2024, 63, 917–924. [Google Scholar] [CrossRef]
- Sommerfeldt, J.M.; Jermihov, A.P.; Erbele, I.D.; Chen, B.S. Sudden Hearing Loss in the Active Duty Population: An Epidemiological Study. Mil. Med. 2024, 189, 76–82. [Google Scholar] [CrossRef] [PubMed]
- CDC Construction Statistics. Available online: https://www.cdc.gov/niosh/noise/surveillance/construction.html (accessed on 23 August 2025).
- Le, T.N.; Straatman, L.V.; Lea, J.; Westerberg, B. Current Insights in Noise-Induced Hearing Loss: A Literature Review of the Underlying Mechanism, Pathophysiology, Asymmetry, and Management Options. J. Otolaryngol.—Head Neck Surg. 2017, 46, 41. [Google Scholar] [CrossRef]
- Zink, M.E.; Zhen, L.; McHaney, J.R.; Klara, J.; Yurasits, K.; Cancel, V.E.; Flemm, O.; Mitchell, C.; Datta, J.; Chandresekaran, B.; et al. Increased Listening Effort and Cochlear Neural Degeneration Underlie Speech-in-Noise Deficits in Normal-Hearing Middle-Aged Adults. eLife 2025, 13, RP102823. [Google Scholar] [CrossRef]
- Valderrama, J.T.; De La Torre, A.; McAlpine, D. The Hunt for Hidden Hearing Loss in Humans: From Preclinical Studies to Effective Interventions. Front. Neurosci. 2022, 16, 1000304. [Google Scholar] [CrossRef] [PubMed]
- Alford, R.L.; Arnos, K.S.; Fox, M.; Lin, J.W.; Palmer, C.G.; Pandya, A.; Rehm, H.L.; Robin, N.H.; Scott, D.A.; Yoshinaga-Itano, C. American College of Medical Genetics and Genomics Guideline for the Clinical Evaluation and Etiologic Diagnosis of Hearing Loss. Genet. Med. 2014, 16, 347–355. [Google Scholar] [CrossRef]
- Lai, R.; Fang, Q.; Wu, F.; Pan, S.; Haque, K.; Sha, S.-H. Prevention of Noise-Induced Hearing Loss by Calpain Inhibitor MDL-28170 Is Associated with Upregulation of PI3K/Akt Survival Signaling Pathway. Front. Cell. Neurosci. 2023, 17, 1199656. [Google Scholar] [CrossRef]
- Kurabi, A.; Keithley, E.M.; Housley, G.D.; Ryan, A.F.; Wong, A.C.-Y. Cellular Mechanisms of Noise-Induced Hearing Loss. Hear. Res. 2017, 349, 129–137. [Google Scholar] [CrossRef]
- Abdala, C.; Luo, P.; Guardia, Y. Swept-Tone Stimulus-Frequency Otoacoustic Emissions in Human Newborns. Trends Hear. 2019, 23, 2331216519889226. [Google Scholar] [CrossRef]
- Wang, H.; Aiken, S.J.; Wang, J. Consequences and Mechanisms of Noise-Induced Cochlear Synaptopathy and Hidden Hearing Loss, With Focuses on Signal Perception in Noise and Temporal Processing. Adv. Sci. 2025, 12, 2409322. [Google Scholar] [CrossRef]
- Kitama, T.; Nishiyama, T.; Hosoya, M.; Shimanuki, M.N.; Ueno, M.; You, F.; Ozawa, H.; Oishi, N. Noise-Induced Hearing Loss: Overview and Future Prospects for Research on Oxidative Stress. Int. J. Mol. Sci. 2025, 26, 4927. [Google Scholar] [CrossRef] [PubMed]
- Molnár, A.; Molnár, V.; Mavrogeni, P.; Maihoub, S. Fasting Glucose, Haemoglobin A1C (HbA1c), Blood Lipid, and Triglyceride–Glucose Index Parameters in Relation to Subjective Tinnitus. Biomedicines 2025, 13, 824. [Google Scholar] [CrossRef]
- Canlon, B.; Meltser, I.; Johansson, P.; Tahera, Y. Glucocorticoid Receptors Modulate Auditory Sensitivity to Acoustic Trauma. Hear. Res. 2007, 226, 61–69. [Google Scholar] [CrossRef]
- Graham, C.E.; Basappa, J.; Vetter, D.E. A Corticotropin-Releasing Factor System Expressed in the Cochlea Modulates Hearing Sensitivity and Protects against Noise-Induced Hearing Loss. Neurobiol. Dis. 2010, 38, 246–258. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.P.C.; Miranda Filho, A.L.; Monteiro, G.T.R. Prevalência de Perda Auditiva Em Adolescentes e Adultos —Jovens Decorrentes de Exposição a Ruído Social: Meta-Análise. Rev. CEFAC 2015, 17, 2056–2064. [Google Scholar] [CrossRef]
- Su, B.M.; Chan, D.K. Prevalence of Hearing Loss in US Children and Adolescents: Findings from NHANES 1988-2010. JAMA Otolaryngol. Neck Surg. 2017, 143, 920. [Google Scholar] [CrossRef]
- Rabinowitz, P.M.; Slade, M.D.; Galusha, D.; Dixon-Ernst, C.; Cullen, M.R. Trends in the Prevalence of Hearing Loss Among Young Adults Entering An Industrial Workforce 1985 to 2004. Ear Hear. 2006, 27, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Anand, A.; Chakraborty, P.; Pravin, T.; Khalilullah, M.; Tarafdar, R.; Raj, D.; Mukherjee, S. Use of Headphones and Its Impact on Hearing: A Cross-Sectional Survey of Medical, Nursing, and Pharmacy Students. Cureus 2025, 17, e96900. [Google Scholar] [CrossRef]
- Huß, J.; Gerstner, D.; Senninger, S.; Szperalski, J.; Schreiber, F.; Weilnhammer, V.; Herr, C.; Quartucci, C.; Heinze, S. Risky Leisure Noise Exposure during the Transition to Adulthood and the Impact of Major Life Events—Results of the OHRKAN Cohort Study. Int. J. Audiol. 2024, 64, 926–933. [Google Scholar] [CrossRef]
- Shearer, A.E.; Smith, R.J.H. Massively Parallel Sequencing for Genetic Diagnosis of Hearing Loss: The New Standard of Care. Otolaryngol. Neck Surg. 2015, 153, 175–182. [Google Scholar] [CrossRef]
- Bałdyga, N.; Sarosiak, A.; Oziębło, D.; Furmanek, M.; Szulborski, K.; Szaflik, J.P.; Skarżyński, H.; Ołdak, M. Complex Phenotypic Presentation of Syndromic Hearing Loss Deciphered as Three Separate Clinical Entities: How Genetic Testing Guides Final Diagnosis. Audiol. Neurootol. 2021, 26, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, M.D.; Moorchung, N.; Puri, B. Genetics of Non Syndromic Hearing Loss. Med. J. Armed Forces India 2015, 71, 363–368. [Google Scholar] [CrossRef]
- Sloan-Heggen, C.M.; Bierer, A.O.; Shearer, A.E.; Kolbe, D.L.; Nishimura, C.J.; Frees, K.L.; Ephraim, S.S.; Shibata, S.B.; Booth, K.T.; Campbell, C.A.; et al. Comprehensive Genetic Testing in the Clinical Evaluation of 1119 Patients with Hearing Loss. Hum. Genet. 2016, 135, 441–450. [Google Scholar] [CrossRef]
- Van Laer, L.; Carlsson, P.-I.; Ottschytsch, N.; Bondeson, M.-L.; Konings, A.; Vandevelde, A.; Dieltjens, N.; Fransen, E.; Snyders, D.; Borg, E.; et al. The Contribution of Genes Involved in Potassium-Recycling in the Inner Ear to Noise-Induced Hearing Loss. Hum. Mutat. 2006, 27, 786–795. [Google Scholar] [CrossRef]
- Rim, J.H.; Choi, J.Y.; Jung, J.; Gee, H.Y. Activation of KCNQ4 as a Therapeutic Strategy to Treat Hearing Loss. Int. J. Mol. Sci. 2021, 22, 2510. [Google Scholar] [CrossRef]
- Snoeckx, R.L.; Huygen, P.L.M.; Feldmann, D.; Marlin, S.; Denoyelle, F.; Waligora, J.; Mueller-Malesinska, M.; Pollak, A.; Ploski, R.; Murgia, A.; et al. GJB2 Mutations and Degree of Hearing Loss: A Multicenter Study. Am. J. Hum. Genet. 2005, 77, 945–957. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Jiang, Y.; Lin, Y.; Wang, X.; Wang, Z.; Tang, Z.; Wang, Y.; Wang, J.; Gao, Y.; et al. Biallelic p.V37I Variant in GJB2 Is Associated with Increasing Incidence of Hearing Loss with Age. Genet. Med. Off. J. Am. Coll. Med. Genet. 2022, 24, 915–923. [Google Scholar] [CrossRef]
- Burke, W.F.; Warnecke, A.; Schöner-Heinisch, A.; Lesinski-Schiedat, A.; Maier, H.; Lenarz, T. Prevalence and Audiological Profiles of GJB2 Mutations in a Large Collective of Hearing Impaired Patients. Hear. Res. 2016, 333, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Božanić Urbančič, N.; Battelino, S.; Tesovnik, T.; Trebušak Podkrajšek, K. The Importance of Early Genetic Diagnostics of Hearing Loss in Children. Medicina 2020, 56, 471. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, A.; Romano, A.; Maurizi, P.; Talloa, D.; Fuccillo, F.; Mastrangelo, S.; Attinà, G. Platinum-Induced Ototoxicity in Pediatric Cancer Patients:A Comprehensive Approach to Monitoring Strategies, Management Interventions, and Future Directions. Children 2025, 12, 901. [Google Scholar] [CrossRef]
- Lei, S.; Huang, L.; Liu, Y.; Xu, L.; Wang, D.; Yang, L. Association between Polymorphisms of Heat-Shock Protein 70 Genes and Noise-Induced Hearing Loss: A Meta-Analysis. PLoS ONE 2017, 12, e0188539. [Google Scholar] [CrossRef] [PubMed]
- Robijn, S.M.M.; Smits, J.J.; Sezer, K.; Huygen, P.L.M.; Beynon, A.J.; Van Wijk, E.; Kremer, H.; De Vrieze, E.; Lanting, C.P.; Pennings, R.J.E. Genotype-Phenotype Correlations of Pathogenic COCH Variants in DFNA9: A HuGE Systematic Review and Audiometric Meta-Analysis. Biomolecules 2022, 12, 220. [Google Scholar] [CrossRef] [PubMed]
- Molnár, A.; Maihoub, S.; Tamás, L.; Szirmai, Á. Conservative Treatment Possibilities of Ménière Disease, Involving Vertigo Diaries. Ear. Nose. Throat J. 2021, 100, 536–542. [Google Scholar] [CrossRef] [PubMed]
- McDermott, J.H.; Wolf, J.; Hoshitsuki, K.; Huddart, R.; Caudle, K.E.; Whirl-Carrillo, M.; Steyger, P.S.; Smith, R.J.H.; Cody, N.; Rodriguez-Antona, C.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline for the Use of Aminoglycosides Based on MT-RNR1 Genotype. Clin. Pharmacol. Ther. 2022, 111, 366–372. [Google Scholar] [CrossRef]
- Bałdyga, N.; Oziębło, D.; Gan, N.; Furmanek, M.; Leja, M.L.; Skarżyński, H.; Ołdak, M. The Genetic Background of Hearing Loss in Patients with EVA and Cochlear Malformation. Genes 2023, 14, 335. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Jeong, S.; Kim, K.; Lee, J.D.; Oh, Y.H.; Suh, M.J. Incidence of Hearing Loss Following COVID-19 among Young Adults in South Korea: A Nationwide Cohort Study. EClinicalMedicine 2024, 75, 102759. [Google Scholar] [CrossRef]
- Jeong, M.; Ocwieja, K.E.; Han, D.; Wackym, P.A.; Zhang, Y.; Brown, A.; Moncada, C.; Vambutas, A.; Kanne, T.; Crain, R.; et al. Direct SARS-CoV-2 Infection of the Human Inner Ear May Underlie COVID-19-Associated Audiovestibular Dysfunction. Commun. Med. 2021, 1, 44. [Google Scholar] [CrossRef]
- Niemczak, C.; Skoe, E.; Leigh, S.; Zhang, L.; Dotzenrod, M.; Kieley, A.; Stone, S.; Parsonnet, J.; Martin, C.; Ealer, C.; et al. Altered Auditory Brainstem Responses Are Post-Acute Sequela of SARS-CoV-2 (PASC). Sci. Rep. 2025, 15, 9387. [Google Scholar] [CrossRef]
- Mielle, L.P.; Maximiano, M.V.A.; Neves-Lobo, I.F.; Silva, L.A.F.; Goulart, A.C.; Romagnolli, C.; de Oliveira, G.S.S.; Samelli, A.G.; Matas, C.G. Peripheral and Brainstem Auditory Evaluation in Post-COVID-19 Individuals. Clin. Sao Paulo Braz. 2024, 79, 100472. [Google Scholar] [CrossRef]
- Hamdy, M.M.; Hosny, N.A.; Farag, R.G.; Elbohy, Z.M.Y. Assessment of Cortical Evoked Potential (P300) and Auditory Brainstem Response (ABR) in Post-COVID-19 Patients. Egypt. J. Otolaryngol. 2024, 40, 49. [Google Scholar] [CrossRef]
- Aldè, M.; Ambrosetti, U.; Piatti, G.; Romanini, C.; Filipponi, E.; Di Berardino, F.; Zanetti, D.; Pignataro, L.; Cantarella, G.; Barozzi, S. Sudden Sensorineural Hearing Loss in Patients Aged from 15 to 40 Years. J. Clin. Med. 2024, 13, 3303. [Google Scholar] [CrossRef]
- Jensen, E.S.; Cayé-Thomasen, P.; Bodilsen, J.; Nielsen, H.; Friis-Hansen, L.; Christensen, T.; Christiansen, M.; Kirchmann, M.; Brandt, C.T. Hearing Loss in Bacterial Meningitis Revisited—Evolution and Recovery. Open Forum Infect. Dis. 2023, 10, ofad056. [Google Scholar] [CrossRef]
- Hohman, M.H.; Backous, D.D. Techniques for Cochlear Implant Electrode Placement in the Ossified Cochlea. Oper. Tech. Otolaryngol.-Head Neck Surg. 2010, 21, 239–242. [Google Scholar] [CrossRef]
- Lamounier, P.; Carasek, N.; Daher, V.B.; Costa, C.C.; Ramos, H.V.L.; Martins, S.D.C.; Borges, A.L.D.F.; Oliveira, L.A.T.; Bahmad, F., Jr. Cochlear Implants after Meningitis and Otosclerosis: A Comparison between Cochlear Ossification and Speech Perception Tests. J. Pers. Med. 2024, 14, 428. [Google Scholar] [CrossRef] [PubMed]
- Kuschke, S.; Goncalves, N.; Peer, S. Hearing Outcomes in Children with Meningitis at Red Cross War Memorial Children’s Hospital, Cape Town, South Africa: A Silent Crisis. S. Afr. Med. J. 2018, 108, 944. [Google Scholar] [CrossRef]
- Rybak, L.P.; Ramkumar, V. Ototoxicity. Kidney Int. 2007, 72, 931–935. [Google Scholar] [CrossRef]
- Fu, X.; Wan, P.; Li, P.; Wang, J.; Guo, S.; Zhang, Y.; An, Y.; Ye, C.; Liu, Z.; Gao, J.; et al. Mechanism and Prevention of Ototoxicity Induced by Aminoglycosides. Front. Cell. Neurosci. 2021, 15, 692762. [Google Scholar] [CrossRef]
- Orasan, A.; Negru, M.-C.; Morgovan, A.I.; Fleser, R.C.; Sandu, D.; Sitaru, A.M.; Motofelea, A.-C.; Balica, N.C. Strategies to Mitigate Cisplatin-Induced Ototoxicity: A Literature Review of Protective Agents, Mechanisms, and Clinical Gaps. Audiol. Res. 2025, 15, 22. [Google Scholar] [CrossRef]
- Steyger, P.S. Mechanisms of Aminoglycoside- and Cisplatin-Induced Ototoxicity. Am. J. Audiol. 2021, 30, 887–900. [Google Scholar] [CrossRef] [PubMed]
- Joo, Y.; Cruickshanks, K.J.; Klein, B.E.K.; Klein, R.; Hong, O.; Wallhagen, M.I. The Contribution of Ototoxic Medications to Hearing Loss Among Older Adults. J. Gerontol. Ser. A 2020, 75, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.-D.; Stolzberg, D.; Lobarinas, E.; Sun, W.; Ding, D.; Salvi, R. Salicylate-Induced Cochlear Impairments, Cortical Hyperactivity and Re-Tuning, and Tinnitus. Hear. Res. 2013, 295, 100–113. [Google Scholar] [CrossRef]
- Jiang, C.; Luo, B.; Manohar, S.; Chen, G.-D.; Salvi, R. Plastic Changes along Auditory Pathway during Salicylate-Induced Ototoxicity: Hyperactivity and CF Shifts. Hear. Res. 2017, 347, 28–40. [Google Scholar] [CrossRef]
- Wood, N.J.; Lowe, A.S.; Walton, J.P. Sodium Salicylate Alters Temporal Integration Measured through Increasing Stimulus Presentation Rates. Int. J. Audiol. 2019, 58, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Rizk, H.G.; Lee, J.A.; Liu, Y.F.; Endriukaitis, L.; Isaac, J.L.; Bullington, W.M. Drug-Induced Ototoxicity: A Comprehensive Review and Reference Guide. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2020, 40, 1265–1275. [Google Scholar] [CrossRef] [PubMed]
- Dawes, P.; Cruickshanks, K.J.; Moore, D.R.; Edmondson-Jones, M.; McCormack, A.; Fortnum, H.; Munro, K.J. Cigarette Smoking, Passive Smoking, Alcohol Consumption, and Hearing Loss. J. Assoc. Res. Otolaryngol. 2014, 15, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Münzel, T.; Schmidt, F.P.; Steven, S.; Herzog, J.; Daiber, A.; Sørensen, M. Environmental Noise and the Cardiovascular System. J. Am. Coll. Cardiol. 2018, 71, 688–697. [Google Scholar] [CrossRef]
- Eichwald, J.; Themann, C.L.; Scinicariello, F. Safe Listening at Venues and Events with Amplified Music—United States, 2022. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 338–341. [Google Scholar] [CrossRef]
- Qiu, X.; Jiang, Q.; Guo, W.; Yu, N.; Yang, S. A Preliminary Study of the Mechanism of Compound Hearing Loss Caused by Ototoxic Drugs Combined with Impulse Noise. iLABMED 2024, 2, 38–52. [Google Scholar] [CrossRef]
- Ergun, O.; Cakmak, E.; Alniacik, A. Recreational Music Exposure and Hearing Health in Young Adults. Eur. Arch. Oto-Rhino-Laryngol. Off. J. Eur. Fed. Oto-Rhino-Laryngol. Soc. EUFOS Affil. Ger. Soc. Oto-Rhino-Laryngol.—Head Neck Surg. 2024, 281, 4373–4378. [Google Scholar] [CrossRef]
- Cristiano, N. “Everyone Does Cocaine”: The Impact of Normalization on Practices of Club Drug Use and Risk Management. Contemp. Drug Probl. 2025, 52, 154–169. [Google Scholar] [CrossRef]
- Health Canada & Statistics Canada. Canadian Alcohol and Drugs Survey (CADS): Summary of Results for 2019. Health Canada; Health Canada & Statistics Canada: Ottawa, ON, Canada, 2021. Available online: https://www.canada.ca/en/health-canada/services/canadian-alcohol-drugs-survey/2019-summary.html#a4 (accessed on 4 September 2025).
- Lin, P.-T.; Li, I.-H.; Yang, H.-W.; Chiang, K.-W.; Wang, C.-H.; Kao, L.-T. Illegal Drug Use and Risk of Hearing Loss in the United States: A National Health and Nutrition Examination Survey. Int. J. Environ. Res. Public Health 2021, 18, 11945. [Google Scholar] [CrossRef]
- Chiao, A.; Hughes, M.L.; Karimuddanahalli Premkumar, P.; Zoucha, K. The Effects of Substance Misuse on Auditory and Vestibular Function: A Systematic Review. Ear Hear. 2024, 45, 276–296. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.L.; Rodriguez, A.I.; Hatch, J.; Zoucha, K. Hearing and Vestibular Loss with Misuse of Opioids and Illicit Drugs: A Review of the Literature. Audiol. Neurotol. 2022, 27, 271–281. [Google Scholar] [CrossRef]
- Billings, C.J.; Olsen, T.M.; Charney, L.; Madsen, B.M.; Holmes, C.E. Speech-in-Noise Testing: An Introduction for Audiologists. Semin. Hear. 2024, 45, 55–82. [Google Scholar] [CrossRef]
- Dhrruvakumar, S.; Shambhu, T.; Konadath, S. Assessment of Hidden Hearing Loss in Individuals Exposed to Occupational Noise Using Cochlear, Neural, Temporal Functions and Quality of Life Measures. Indian J. Otolaryngol. Head Neck Surg. 2022, 74, 524–531. [Google Scholar] [CrossRef]
- Aryal, S.; Trevino, M.; Rodrigo, H.; Mishra, S. Is Noise Exposure Associated with Impaired Extended High Frequency Hearing Despite a Normal Audiogram? A Systematic Review and Meta-Analysis. Trends Hear. 2025, 29, 23312165251343757. [Google Scholar] [CrossRef]
- Luengrungrus, K.; Thanawirattananit, P.; Teeramatwanich, W. Normative Data of Extended High Frequency Audiometry in Normal Hearing Subjects with Different Aged Groups. Audiol. Res. 2024, 14, 1084–1092. [Google Scholar] [CrossRef]
- Kerneis, S.; Caillaud, E.; Bakhos, D. Auditory Brainstem Response: Key Parameters for Good-Quality Recording. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2023, 140, 181–185. [Google Scholar] [CrossRef]
- Layman, W.S.; Zuo, J. Epigenetic Regulation in the Inner Ear and Its Potential Roles in Development, Protection, and Regeneration. Front. Cell. Neurosci. 2015, 8, 446. [Google Scholar] [CrossRef]
- Yu, D.; Gu, J.; Chen, Y.; Kang, W.; Wang, X.; Wu, H. Current Strategies to Combat Cisplatin-Induced Ototoxicity. Front. Pharmacol. 2020, 11, 999. [Google Scholar] [CrossRef] [PubMed]
- Salt, A.N.; Plontke, S.K. Principles of Local Drug Delivery to the Inner Ear. Audiol. Neurotol. 2009, 14, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Dindelegan, M.G.; Blebea, C.; Perde-Schrepler, M.; Buzoianu, A.D.; Maniu, A.A. Recent Advances and Future Research Directions for Hearing Loss Treatment Based on Nanoparticles. J. Nanomater. 2022, 2022, 7794384. [Google Scholar] [CrossRef]
- Dindelegan, M.G.; Pașcalău, V.; Suciu, M.; Neamțu, B.; Perde-Schrepler, M.; Blebea, C.M.; Maniu, A.A.; Necula, V.; Buzoianu, A.D.; Filip, M.; et al. Biopolymer Lipid Hybrid Microcarrier for Transmembrane Inner Ear Delivery of Dexamethasone. Gels 2022, 8, 483. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Ding, Y.; Mu, Y.; Xu, X.; Kong, W.; Chai, R.; Chen, X. Stem Cell-Based Therapies in Hearing Loss. Front. Cell Dev. Biol. 2021, 9, 730042. [Google Scholar] [CrossRef]
- Shearer, A.E.; Hansen, M.R. Auditory Synaptopathy, Auditory Neuropathy, and Cochlear Implantation. Laryngoscope Investig. Otolaryngol. 2019, 4, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Abrahamse, R.; Beynon, A.; Piai, V. Long-Term Auditory Processing Outcomes in Early Implanted Young Adults with Cochlear Implants: The Mismatch Negativity vs. P300 Response. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2021, 132, 258–268. [Google Scholar] [CrossRef]
- Vaid, N.; Jana, J.J.; Kothadiya, A.; Deshpande, S.; Vaid, S. Bilateral Cochlear Implantation under Local Anaesthesia in a Young Adult—A Case Report. Cochlear Implants Int. 2016, 17, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Consumers: EU Acts to Limit Health Risks from Exposure to Noise from Personal Music Players. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_09_1364 (accessed on 28 August 2025).
- Commission Decision of 23 June 2009 on the Safety Requirements to Be Met by European Standards for Personal Music Players Pursuant to Directive 2001/95/EC of the European Parliament and of the Council (Text with EEA Relevance) (2009/490/EC). Available online: https://www.legislation.gov.uk/eudn/2009/490 (accessed on 28 August 2025).
- Bornman, M.; Swanepoel, D.W.; De Jager, L.B.; Eikelboom, R.H. Extended High-Frequency Smartphone Audiometry: Validity and Reliability. J. Am. Acad. Audiol. 2019, 30, 217–226. [Google Scholar] [CrossRef]
- Shenoy, S.; Bhatt, K.; Yazdani, Y.; Rahimian, H.; Djalilian, H.R.; Abouzari, M. A Systematic Review: State of the Science on Diagnostics of Hidden Hearing Loss. Diagnostics 2025, 15, 742. [Google Scholar] [CrossRef]
- Polspoel, S.; Moore, D.R.; Swanepoel, D.W.; Kramer, S.E.; Smits, C. Automatic Development of Speech-in-Noise Hearing Tests Using Machine Learning. Sci. Rep. 2025, 15, 12878. [Google Scholar] [CrossRef]
- Lin, F. Johns Hopkins Makes It Easy and Free to Know Your Hearing Numbers with New Hearing Test App|Johns Hopkins|Bloomberg School of Public Health. Available online: https://publichealth.jhu.edu/2025/johns-hopkins-makes-it-easy-and-free-to-know-your-hearing-numbers-with-new-hearing-test-app (accessed on 4 September 2025).
| Feature | Temporary Threshold Shift (TTS) | Permanent Threshold Shift (PTS) |
|---|---|---|
| Definition | Reversible elevation of hearing thresholds following short-term or moderate noise exposure | Irreversible elevation of hearing thresholds following prolonged or intense noise exposure |
| Duration | Minutes to hours; typically resolves within 24–72 h | Persistent hearing loss lasting days to lifelong |
| Mechanism | Metabolic fatigue, stereocilia stiffness, reversible reduction in cochlear amplifier function | Structural injury: outer/inner hair cell loss, synaptopathy, stereocilia destruction, neural degeneration |
| Cochlear structures involved | Primarily outer hair cell dysfunction without cell death | Outer and inner hair cell death, ribbon synapse loss, cochlear nerve fiber degeneration |
| Otoacustic emissions (OAE) | Temporarily reduced but recover | Persistently reduced or absent |
| Audiometric findings | High-frequency threshold elevation that returns to baseline | Permanent high-frequency threshold elevation; may progress to affect speech frequencies |
| Associated symptoms | Temporary tinnitus, aural fullness, mild hyperacusis | Persistent tinnitus, distortion, difficulty hearing in noise |
| Typical causes | Short-term exposure to loud music, concerts, recreational noise | Repeated or continuous noise exposure (occupational or recreational), acoustic trauma |
| Reversibility | Fully reversible with adequate rest and protection | Irreversible; reflects permanent cochlear damage |
| Clinical relevance | Early warning sign of excessive noise exposure | Established noise-induced sensorineural hearing loss |
| Study/Year | Age Group | Findings (Prevalence/High-Frequency Loss/Tinnitus) | Trend Summary/Key Message |
|---|---|---|---|
| Marques et al., 2015 [37] | 10–25 years (adolescents and young adults) | Social/recreational noise exposure associated with measurable hearing loss in a substantial proportion of participants; high-frequency involvement predominates. | Early NIHL already present in adolescents and young adults with leisure noise exposure, suggesting a growing public health problem. |
| Su & Chan, 2017 [38] | 12–19 years (US adolescents) | Prevalence of hearing loss (>15 dB) increased from 17.0% (NHANES III) to 22.5% (2007–2008), then fluctuated to 15.2% (2009–2010). | Data show a notable proportion of adolescents with measurable hearing loss and periods of increased prevalence, raising concern about recreational noise and other modern exposures. |
| Dillard et al., 2022 [18] | 12–34 years (adolescents and young adults) | Estimated 0.67–1.35 billion young people worldwide at risk of hearing loss from unsafe listening practices via personal listening devices and loud entertainment venues. | Demonstrates the massive global scale and growing burden of unsafe listening in adolescents and young adults, underscoring the need for policy action. |
| Haruna et al., 2023 [15] | Young adults in tertiary institutions | Hearing impairment is significantly more common in prolonged headphone/earphone users; predominantly mild, bilateral, high-frequency SNHL. | Confirms that habitual headphone/earphone use among young adults is associated with early HF-SNHL, supporting the role of recreational listening as a key risk factor. |
| Rabinowitz et al., 2006 [39] | Young adults entering industrial work | Over two decades, incoming young workers showed worsening baseline hearing thresholds, particularly at high frequencies. | Suggests that recreational noise (in addition to occupational factors) may have contributed to poorer hearing status in successive cohorts of young adults. |
| Kaur et al., 2025 [40] | Medical, nursing and pharmacy students (young adults) | High prevalence of unsafe headphone use; early auditory symptoms and measurable high-frequency threshold shifts reported in a significant subset. | Reinforces that unsafe personal listening habits in young adults are an emerging and ongoing contributor to early-onset hearing problems. |
| Huß et al., 2024 [41] | Young adults (17–25 years) | High prevalence of unsafe noise exposure with self-reported auditory symptoms and early OAE changes | Adds longitudinal insight into leisure noise transitions in young adults |
| Feature | Pediatric Population | Young Adults | Older Adults |
|---|---|---|---|
| Typical onset | Congenital, early childhood | Late adolescence to 30 s | Mid-life to advanced age |
| Primary causes | Genetic (syndromic and non-syndromic), congenital infections (CMV, rubella), otitis media, anatomical malformations | Recreational noise exposure, unsafe listening practices, personal listening devices, early occupational noise, ototoxic exposures, synaptopathy | Presbycusis (age-related), long-term metabolic degeneration, cumulative noise exposure, vascular factors |
| Dominant mechanism of injury | Abnormal cochlear development, genetic mutations, inflammatory damage | Outer hair cell dysfunction, early high-frequency loss, cochlear synaptopathy (“hidden hearing loss”) | Stria vascularis atrophy, reduced endocochlear potential, widespread hair cell and neural degeneration |
| Audiometric pattern | Flat or sloping SNHL; may include conductive components | High-frequency notch or early HF-SNHL with normal speech frequencies | Symmetric down-sloping high-frequency SNHL progressing to speech frequencies |
| Speech perception | Delayed language development; difficulty with speech recognition | Difficulty hearing in noise, early speech-in-noise deficits, tinnitus | Marked speech-in-noise impairment, reduced temporal processing |
| Reversibility/progression | Often stable but may be progressive depending on etiology | Potentially preventable; progression depends on ongoing noise exposure | Progressive and age-dependent |
| Associated symptoms | Developmental delay, balance issues in syndromic forms | Tinnitus, hyperacusis, temporary threshold shifts, “hidden” deficits | Poor sound discrimination, tinnitus, central auditory decline |
| Preventability | Limited (genetic/infectious) | High—modifiable behavioral exposures | Limited—age-related mechanisms dominate |
| Public health implications | Importance of screening for congenital hearing loss | Highest prevention potential; rising global burden | Large burden due to aging demographics |
| Diagnostic considerations | Genetic testing, newborn hearing screening | OAEs, extended high-frequency audiometry, speech-in-noise testing, synaptopathy markers | Conventional audiometry + central auditory processing evaluation |
| Risk Factor | Pathophysiology/Mechanism | Assessment Method | Prevention/Mitigation |
|---|---|---|---|
| Noise Exposure (Recreational and Occupational) | Cochlear hair cell damage, synaptopathy, hidden hearing loss | Pure-tone audiometry, Extended high-frequency audiometry (EHF 9–20 kHz), Otoacoustic emissions (OAEs), Speech-in-noise tests | Safe listening campaigns, volume limits on headphones, earplugs in loud environments, occupational noise regulations [3,4,10,14,18,20,21,22,23,26] |
| Genetic Susceptibility | Mutations (e.g., GJB2, mitochondrial DNA) increase vulnerability to cochlear damage and ototoxicity | Family history screening, Genetic testing in high-risk individuals | Genetic counseling, avoid excessive noise and ototoxic drugs in susceptible individuals [28,32] |
| Infections (Viral and Bacterial) | Cochlear inflammation, direct viral injury (e.g., SARS-CoV-2, mumps, rubella), meningitis-related cochlear damage | Audiometry, OAEs, MRI if indicated | Vaccination, prompt treatment of infections, monitoring post-infection [29,58,89,90] |
| Ototoxic Medications and Chemicals | Aminoglycosides, cisplatin, loop diuretics damage hair cells; recreational drugs affect cochlear vasculature; antidepressants interfere with GABA receptors in the inner ear | Baseline and serial audiometry, OAEs for early detection | Limit use of ototoxic drugs, dose adjustment, periodic monitoring, avoidance of recreational ototoxic drugs [32,33,72,76] |
| Lifestyle Factors (Smoking, Alcohol, Diet, Stress) | Oxidative stress, vascular compromise, reduced cochlear resilience | Audiometry, OAEs, lifestyle questionnaires | Smoking cessation, balanced diet, moderate alcohol use, stress management [33] |
| Psychosocial and Sociodemographic Factors | Limited awareness, peer influence, delayed care | Questionnaires, awareness surveys | Public education, school/university hearing campaigns, access to hearing care [17,18] |
| Aggravating Factors (Cumulative Exposure and Delayed Diagnosis) | Accelerates cochlear damage, progression from subclinical to overt hearing loss | Serial audiometry, EHF, OAEs, speech-in-noise tests | Early screening programs, combined risk mitigation strategies [9,26,51,52,89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fleser, R.C.; Necula, V.; Ujvary, L.P.; Osman, A.; Orasan, A.; Maniu, A.A. Hearing Loss in Young Adults: Risk Factors, Mechanisms and Prevention Models. Biomedicines 2025, 13, 3116. https://doi.org/10.3390/biomedicines13123116
Fleser RC, Necula V, Ujvary LP, Osman A, Orasan A, Maniu AA. Hearing Loss in Young Adults: Risk Factors, Mechanisms and Prevention Models. Biomedicines. 2025; 13(12):3116. https://doi.org/10.3390/biomedicines13123116
Chicago/Turabian StyleFleser, Razvan Claudiu, Violeta Necula, Laszlo Peter Ujvary, Andrei Osman, Alexandru Orasan, and Alma Aurelia Maniu. 2025. "Hearing Loss in Young Adults: Risk Factors, Mechanisms and Prevention Models" Biomedicines 13, no. 12: 3116. https://doi.org/10.3390/biomedicines13123116
APA StyleFleser, R. C., Necula, V., Ujvary, L. P., Osman, A., Orasan, A., & Maniu, A. A. (2025). Hearing Loss in Young Adults: Risk Factors, Mechanisms and Prevention Models. Biomedicines, 13(12), 3116. https://doi.org/10.3390/biomedicines13123116

