Pharmacological Interventions in Autism Spectrum Disorder: A Comprehensive Review of Mechanisms and Efficacy
Abstract
1. Introduction
- Part I. Medications Currently Used in Clinical Practice
2. SSRIs and Serotonergic Modulation
2.1. Mechanistic Rationale
2.2. Clinical Evidence
2.3. Preclinical Insights
2.4. Clinical Considerations
3. Antipsychotics
3.1. Historical and Mechanistic Context
3.2. FDA-Approved Atypical Antipsychotics: Risperidone and Aripiprazole
3.3. Other Atypical Antipsychotics
3.4. Safety Considerations
3.5. Clinical Guideline Recommendations
4. Stimulants
4.1. Methylphenidate and Other Stimulants
4.2. Modafinil and Novel Approaches
5. Anticonvulsants
5.1. Epilepsy and ASD
5.2. Valproate
5.3. Lamotrigine
5.4. Levetiracetam
5.5. Topiramate and Other Antiseizure Drugs
- Part II. Emerging and Investigational Pharmacological Therapies
6. Neurotrophic, Oxidative Stress, and Immune-Modulating Agents
6.1. N-Acetylcysteine (NAC)
6.2. Minocycline
6.3. Brain-Derived Neurotrophic Factor (BDNF) and Oxidative Stress
6.4. Immune and Inflammatory Mechanisms
6.5. Metabolic, Nutritional, and Microbiota-Directed Therapies
6.6. Gene Therapy and Molecular Approaches
7. Glutamatergic Agents and NMDA Modulators
7.1. Mechanistic Rationale
7.2. Riluzole
7.3. Ketamine and NMDA Antagonists
7.4. Broader NMDA-Targeting Strategies
8. Adrenergic Agents (Clonidine and Guanfacine)
8.1. Mechanistic Rationale
8.2. Clonidine
8.3. Guanfacine
8.4. Clinical Considerations
9. Discussion and Future Directions
9.1. Mechanistic Insights
9.2. Safety and Long-Term Outcomes
9.3. Guidelines and Consensus
9.4. Emerging and Preventive Approaches
9.5. Future Research Priorities
- Large, well-controlled trials of promising novel agents (e.g., NAC, riluzole, ketamine).
- Longitudinal safety studies, particularly for antipsychotics and stimulants used in children.
- Preventive strategies that target maternal immune activation and early neurodevelopmental pathways [97].
- Combination therapies that integrate behavioral interventions, psychopharmacology, and family support, reflecting the multifaceted nature of ASD.
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maenner, M.J.; Shaw, K.A.; Bak, J.; Washington, A.; Patrick, M.; DiRienzo, M.; Christensen, D.L.; Wiggins, L.D.; Pettygrove, S.; Andrews, J.G.; et al. Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2016. MMWR Surveill. Summ. 2020, 69, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.C.; Lombardo, M.V.; Baron-Cohen, S. Autism. Lancet 2014, 383, 896–910. [Google Scholar] [CrossRef]
- Lord, C.; Elsabbagh, M.; Baird, G.; Veenstra-Vanderweele, J. Autism spectrum disorder. Lancet 2018, 392, 508–520. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.R.; Gonda, X.; Tarazi, F.I. Autism Spectrum Disorder: Classification, diagnosis and therapy. Pharmacol. Ther. 2018, 190, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Ecker, C.; Bookheimer, S.Y.; Murphy, D.G. Neuroimaging in autism spectrum disorder: Brain structure and function across the lifespan. Lancet Neurol. 2015, 14, 1121–1134. [Google Scholar] [CrossRef]
- Courchesne, E.; Campbell, K.; Solso, S. Brain growth across the life span in autism: Age-specific changes in anatomical pathology. Brain Res. 2011, 1380, 138–145. [Google Scholar] [CrossRef]
- Kolevzon, A.; Gross, R.; Reichenberg, A. Prenatal and perinatal risk factors for autism: A review and integration of findings. Arch. Pediatr. Adolesc. Med. 2007, 161, 326–333. [Google Scholar] [CrossRef]
- Sandin, S.; Lichtenstein, P.; Kuja-Halkola, R.; Larsson, H.; Hultman, C.M.; Reichenberg, A. The familial risk of autism. JAMA 2014, 311, 1770–1777. [Google Scholar] [CrossRef]
- Chauhan, A.; Chauhan, V. Oxidative stress in autism. Pathophysiology 2006, 13, 171–181. [Google Scholar] [CrossRef]
- Uzunova, G.; Pallanti, S.; Hollander, E. Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics. World J. Biol. Psychiatry 2016, 17, 174–186. [Google Scholar] [CrossRef]
- Rose, S.; Frye, R.E.; Slattery, J.; Wynne, R.; Tippett, M.; Pavliv, O.; Melnyk, S.; James, S.J. Oxidative stress induces mitochondrial dysfunction in a subset of autism lymphoblastoid cell lines in a well-matched case control cohort. PLoS ONE 2014, 9, e85436. [Google Scholar] [CrossRef]
- Matta, S.M.; Hill-Yardin, E.L.; Crack, P.J. The influence of neuroinflammation in Autism Spectrum Disorder. Brain Behav. Immun. 2019, 79, 75–90. [Google Scholar] [CrossRef]
- Jobski, K.; Höfer, J.; Hoffmann, F.; Bachmann, C. Use of psychotropic drugs in patients with autism spectrum disorders: A systematic review. Acta Psychiat. Scand. 2017, 135, 8–28. [Google Scholar] [CrossRef]
- Coleman, D.M.; Adams, J.B.; Anderson, A.L.; Frye, R.E. Rating of the Effectiveness of 26 Psychiatric and Seizure Medications for Autism Spectrum Disorder: Results of a National Survey. J. Child Adolesc. Psychopharmacol. 2019, 29, 107–123. [Google Scholar] [CrossRef]
- Vasa, R.A.; Carroll, L.M.; Nozzolillo, A.A.; Mahajan, R.; Mazurek, M.O.; Bennett, A.E.; Wink, L.K.; Bernal, M.P. A systematic review of treatments for anxiety in youth with autism spectrum disorders. J. Autism Dev. Disord. 2014, 44, 3215–3229. [Google Scholar] [CrossRef]
- Deb, S.; Akrout Brizard, B.; Limbu, B. Association between epilepsy and challenging behaviour in adults with intellectual disabilities: Systematic review and meta-analysis. BJPsych Open 2020, 6, e114. [Google Scholar] [CrossRef]
- Tuchman, R.; Rapin, I. Epilepsy in autism. Lancet Neurol. 2002, 1, 352–358. [Google Scholar] [CrossRef]
- Frye, R.E.; Rossignol, D.; Casanova, M.F.; Brown, G.L.; Martin, V.; Edelson, S.; Coben, R.; Lewine, J.; Slattery, J.C.; Lau, C.; et al. A review of traditional and novel treatments for seizures in autism spectrum disorder: Findings from a systematic review and expert panel. Front. Public Health 2013, 1, 31. [Google Scholar] [CrossRef] [PubMed]
- Vohra, R.; Madhavan, S.; Sambamoorthi, U.; St Peter, C. Access to services, quality of care, and family impact for children with autism, other developmental disabilities, and other mental health conditions. Autism 2014, 18, 815–826. [Google Scholar] [CrossRef] [PubMed]
- McDougle, C.J.; Scahill, L.; Aman, M.G.; McCracken, J.T.; Tierney, E.; Davies, M.; Arnold, L.E.; Posey, D.J.; Martin, A.; Ghuman, J.K.; et al. Risperidone for the core symptom domains of autism: Results from the study by the autism network of the research units on pediatric psychopharmacology. Am. J. Psychiatry 2005, 162, 1142–1148. [Google Scholar] [CrossRef] [PubMed]
- Marcus, R.N.; Owen, R.; Kamen, L.; Manos, G.; McQuade, R.D.; Carson, W.H.; Aman, M.G. A placebo-controlled, fixed-dose study of aripiprazole in children and adolescents with irritability associated with autistic disorder. J. Am. Acad. Child Adolesc. Psychiatry 2009, 48, 1110–1119. [Google Scholar] [CrossRef] [PubMed]
- D’Alo, G.L.; De Crescenzo, F.; Amato, L.; Cruciani, F.; Davoli, M.; Fulceri, F.; Minozzi, S.; Mitrova, Z.; Morgano, G.P.; Nardocci, F.; et al. Impact of antipsychotics in children and adolescents with autism spectrum disorder: A systematic review and meta-analysis. Health Qual. Life Outcomes 2021, 19, 33. [Google Scholar] [CrossRef]
- Fung, L.K.; Mahajan, R.; Nozzolillo, A.; Bernal, P.; Krasner, A.; Jo, B.; Coury, D.; Whitaker, A.; Veenstra-Vanderweele, J.; Hardan, A.Y. Pharmacologic Treatment of Severe Irritability and Problem Behaviors in Autism: A Systematic Review and Meta-analysis. Pediatrics 2016, 137 (Suppl. S2), S124–S135. [Google Scholar] [CrossRef]
- Handen, B.L.; Johnson, C.R.; Lubetsky, M. Efficacy of methylphenidate among children with autism and symptoms of attention-deficit hyperactivity disorder. J. Autism Dev. Disord. 2000, 30, 245–255. [Google Scholar] [CrossRef]
- Scahill, L.; Aman, M.G.; McDougle, C.J.; McCracken, J.T.; Tierney, E.; Dziura, J.; Arnold, L.E.; Posey, D.; Young, C.; Shah, B.; et al. A prospective open trial of guanfacine in children with pervasive developmental disorders. J. Child Adolesc. Psychopharmacol. 2006, 16, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Chomiak, T.; Turner, N.; Hu, B. What We Have Learned about Autism Spectrum Disorder from Valproic Acid. Patholog. Res. Int. 2013, 2013, 712758. [Google Scholar] [CrossRef] [PubMed]
- Hollander, E.; Soorya, L.; Wasserman, S.; Esposito, K.; Chaplin, W.; Anagnostou, E. Divalproex sodium vs. placebo in the treatment of repetitive behaviours in autism spectrum disorder. Int. J. Neuropsychopharmacol. 2006, 9, 209–213. [Google Scholar] [CrossRef]
- Belsito, K.M.; Law, P.A.; Kirk, K.S.; Landa, R.J.; Zimmerman, A.W. Lamotrigine therapy for autistic disorder: A randomized, double-blind, placebo-controlled trial. J. Autism Dev. Disord. 2001, 31, 175–181. [Google Scholar] [CrossRef]
- Deriaz, N.; Willi, J.P.; Orihuela-Flores, M.; Galli Carminati, G.; Ratib, O. Treatment with levetiracetam in a patient with pervasive developmental disorders, severe intellectual disability, self-injurious behavior, and seizures: A case report. Neurocase 2012, 18, 386–391. [Google Scholar] [CrossRef]
- Farooq, M.U.; Bhatt, A.; Majid, A.; Gupta, R.; Khasnis, A.; Kassab, M.Y. Levetiracetam for managing neurologic and psychiatric disorders. Am. J. Health Syst. Pharm. 2009, 66, 541–561. [Google Scholar] [CrossRef]
- Halma, E.; de Louw, A.J.; Klinkenberg, S.; Aldenkamp, A.P.; DM, I.J.; Majoie, M. Behavioral side-effects of levetiracetam in children with epilepsy: A systematic review. Seizure 2014, 23, 685–691. [Google Scholar] [CrossRef]
- Rezaei, V.; Mohammadi, M.R.; Ghanizadeh, A.; Sahraian, A.; Tabrizi, M.; Rezazadeh, S.A.; Akhondzadeh, S. Double-blind, placebo-controlled trial of risperidone plus topiramate in children with autistic disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 1269–1272. [Google Scholar] [CrossRef]
- Mandell, D.S.; Morales, K.H.; Marcus, S.C.; Stahmer, A.C.; Doshi, J.; Polsky, D.E. Psychotropic medication use among Medicaid-enrolled children with autism spectrum disorders. Pediatrics 2008, 121, e441–e448. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.L.; Hsia, Y.; Glaser, K.; Simonoff, E.; Murphy, D.G.; Asherson, P.J.; Eklund, H.; Wong, I.C. Pharmacological treatments prescribed to people with autism spectrum disorder (ASD) in primary health care. Psychopharmacology 2014, 231, 1011–1021. [Google Scholar] [CrossRef] [PubMed]
- Deb, S.; Kwok, H.; Bertelli, M.; Salvador-Carulla, L.; Bradley, E.; Torr, J.; Barnhill, J.; Guideline Development Group of the WPA Section on Psychiatry of Intellectual Disability. International guide to prescribing psychotropic medication for the management of problem behaviours in adults with intellectual disabilities. World Psychiatry 2009, 8, 181–186. [Google Scholar] [CrossRef] [PubMed]
- da Rosa, A.; Bezerra, O.S.; Rohde, L.A.; Graeff-Martins, A.S. Exploring clozapine use in severe psychiatric symptoms associated with autism spectrum disorder: A scoping review. J. Psychopharmacol. 2024, 38, 324–343. [Google Scholar] [CrossRef]
- Wood, J.J.; Drahota, A.; Sze, K.; Har, K.; Chiu, A.; Langer, D.A. Cognitive behavioral therapy for anxiety in children with autism spectrum disorders: A randomized, controlled trial. J. Child Psychol. Psychiatry 2009, 50, 224–234. [Google Scholar] [CrossRef]
- Crowe, B.H.; Salt, A.T. Autism: The management and support of children and young people on the autism spectrum (NICE Clinical Guideline 170). Arch. Dis. Child. Educ. Pract. Ed. 2015, 100, 20–23. [Google Scholar] [CrossRef]
- Chugani, D.C. Role of altered brain serotonin mechanisms in autism. Mol. Psychiatry 2002, 7 (Suppl. S2), S16–S17. [Google Scholar] [CrossRef]
- Muller, C.L.; Anacker, A.M.J.; Veenstra-VanderWeele, J. The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience 2016, 321, 24–41. [Google Scholar] [CrossRef]
- Williams, K.; Brignell, A.; Randall, M.; Silove, N.; Hazell, P. Selective serotonin reuptake inhibitors (SSRIs) for autism spectrum disorders (ASD). Cochrane Database Syst. Rev. 2013, 2013, CD004677. [Google Scholar] [CrossRef] [PubMed]
- Reddihough, D.S.; Marraffa, C.; Mouti, A.; O’Sullivan, M.; Lee, K.J.; Orsini, F.; Hazell, P.; Granich, J.; Whitehouse, A.J.O.; Wray, J.; et al. Effect of Fluoxetine on Obsessive-Compulsive Behaviors in Children and Adolescents with Autism Spectrum Disorders: A Randomized Clinical Trial. JAMA 2019, 322, 1561–1569. [Google Scholar] [CrossRef] [PubMed]
- Golub, M.S.; Hogrefe, C.E.; Bulleri, A.M. Peer social interaction is facilitated in juvenile rhesus monkeys treated with fluoxetine. Neuropharmacology 2016, 105, 553–560. [Google Scholar] [CrossRef]
- He, Y.; Hogrefe, C.E.; Grapov, D.; Palazoglu, M.; Fiehn, O.; Turck, C.W.; Golub, M.S. Identifying individual differences of fluoxetine response in juvenile rhesus monkeys by metabolite profiling. Transl. Psychiatry 2014, 4, e478. [Google Scholar] [CrossRef]
- King, B.H.; Hollander, E.; Sikich, L.; McCracken, J.T.; Scahill, L.; Bregman, J.D.; Donnelly, C.L.; Anagnostou, E.; Dukes, K.; Sullivan, L.; et al. Lack of efficacy of citalopram in children with autism spectrum disorders and high levels of repetitive behavior: Citalopram ineffective in children with autism. Arch. Gen. Psychiatry 2009, 66, 583–590. [Google Scholar] [CrossRef]
- Potter, L.A.; Scholze, D.A.; Biag, H.M.B.; Schneider, A.; Chen, Y.; Nguyen, D.V.; Rajaratnam, A.; Rivera, S.M.; Dwyer, P.S.; Tassone, F.; et al. A Randomized Controlled Trial of Sertraline in Young Children with Autism Spectrum Disorder. Front. Psychiatry 2019, 10, 810. [Google Scholar] [CrossRef]
- Anderson, L.T.; Campbell, M.; Grega, D.M.; Perry, R.; Small, A.M.; Green, W.H. Haloperidol in the treatment of infantile autism: Effects on learning and behavioral symptoms. Am. J. Psychiatry 1984, 141, 1195–1202. [Google Scholar] [CrossRef]
- Stavrakaki, C.; Antochi, R.; Emery, P.C. Olanzapine in the treatment of pervasive developmental disorders: A case series analysis. J. Psychiatry Neurosci. 2004, 29, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Golubchik, P.; Sever, J.; Weizman, A. Low-dose quetiapine for adolescents with autistic spectrum disorder and aggressive behavior: Open-label trial. Clin. Neuropharmacol. 2011, 34, 216–219. [Google Scholar] [CrossRef]
- Dominick, K.; Wink, L.K.; McDougle, C.J.; Erickson, C.A. A Retrospective Naturalistic Study of Ziprasidone for Irritability in Youth with Autism Spectrum Disorder. J. Child Adolesc. Psychopharmacol. 2015, 25, 397–401. [Google Scholar] [CrossRef]
- Stigler, K.A.; Mullett, J.E.; Erickson, C.A.; Posey, D.J.; McDougle, C.J. Paliperidone for irritability in adolescents and young adults with autistic disorder. Psychopharmacology 2012, 223, 237–245. [Google Scholar] [CrossRef]
- Jaselskis, C.A.; Cook, E.H., Jr.; Fletcher, K.E.; Leventhal, B.L. Clonidine treatment of hyperactive and impulsive children with autistic disorder. J. Clin. Psychopharmacol. 1992, 12, 322–327. [Google Scholar] [CrossRef]
- Banas, K.; Sawchuk, B. Clonidine as a Treatment of Behavioural Disturbances in Autism Spectrum Disorder: A Systematic Literature Review. J. Can. Acad. Child Adolesc. Psychiatry 2020, 29, 110–120. [Google Scholar]
- Sturman, N.; Deckx, L.; van Driel, M.L. Methylphenidate for children and adolescents with autism spectrum disorder. Cochrane Database Syst. Rev. 2017, 11, CD011144. [Google Scholar] [CrossRef]
- Calderon, P.D.; de la Puente, A.I.; Moreno, M.G.; Fernandez, R.F. Lisdexamfetamine in combination with guanfacine as an effective treatment in the management of behavioral disturbances in patients with Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD). Case report. Eur. Psychiat. 2023, 66, S739–S740. [Google Scholar] [CrossRef]
- Faraone, S.V. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci. Biobehav. Rev. 2018, 87, 255–270. [Google Scholar] [CrossRef]
- Bagcioglu, E.; Solmaz, V.; Erbas, O.; Ozkul, B.; Cakar, B.; Uyanikgil, Y.; Sogut, I. Modafinil Improves Autism-like Behavior in Rats by Reducing Neuroinflammation. J. Neuroimmune Pharmacol. 2023, 18, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Gerrard, P.; Malcolm, R. Mechanisms of modafinil: A review of current research. Neuropsychiatr. Dis. Treat. 2007, 3, 349–364. [Google Scholar] [PubMed]
- Hardan, A.Y.; Fung, L.K.; Libove, R.A.; Obukhanych, T.V.; Nair, S.; Herzenberg, L.A.; Frazier, T.W.; Tirouvanziam, R. A randomized controlled pilot trial of oral N-acetylcysteine in children with autism. Biol. Psychiatry 2012, 71, 956–961. [Google Scholar] [CrossRef] [PubMed]
- Ghanizadeh, A.; Derakhshan, N. N-acetylcysteine for treatment of autism, a case report. J. Res. Med. Sci. 2012, 17, 985–987. [Google Scholar]
- Ghaleiha, A.; Alikhani, R.; Kazemi, M.R.; Mohammadi, M.R.; Mohammadinejad, P.; Zeinoddini, A.; Hamedi, M.; Shahriari, M.; Keshavarzi, Z.; Akhondzadeh, S. Minocycline as Adjunctive Treatment to Risperidone in Children with Autistic Disorder: A Randomized, Double-Blind Placebo-Controlled Trial. J. Child Adolesc. Psychopharmacol. 2016, 26, 784–791. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, L.; Zhu, T.; Huang, J.; Qu, Y.; Mu, D. Peripheral brain-derived neurotrophic factor in autism spectrum disorder: A systematic review and meta-analysis. Sci. Rep. 2016, 6, 31241. [Google Scholar] [CrossRef]
- de Boer, J.N.; Vingerhoets, C.; Hirdes, M.; McAlonan, G.M.; Amelsvoort, T.V.; Zinkstok, J.R. Efficacy and tolerability of riluzole in psychiatric disorders: A systematic review and preliminary meta-analysis. Psychiatry Res. 2019, 278, 294–302. [Google Scholar] [CrossRef]
- Dessus-Gilbert, M.L.; Nourredine, M.; Zimmer, L.; Rolland, B.; Geoffray, M.M.; Auffret, M.; Jurek, L. NMDA antagonist agents for the treatment of symptoms in autism spectrum disorder: A systematic review and meta-analysis. Front. Pharmacol. 2024, 15, 1395867. [Google Scholar] [CrossRef]
- Qin, X.Y.; Feng, J.C.; Cao, C.; Wu, H.T.; Loh, Y.P.; Cheng, Y. Association of Peripheral Blood Levels of Brain-Derived Neurotrophic Factor with Autism Spectrum Disorder in Children: A Systematic Review and Meta-analysis. JAMA Pediatr. 2016, 170, 1079–1086. [Google Scholar] [CrossRef]
- Erickson, C.A.; Posey, D.J.; Stigler, K.A.; Mullett, J.; Katschke, A.R.; McDougle, C.J. A retrospective study of memantine in children and adolescents with pervasive developmental disorders. Psychopharmacology 2007, 191, 141–147. [Google Scholar] [CrossRef]
- Ming, X.; Gordon, E.; Kang, N.; Wagner, G.C. Use of clonidine in children with autism spectrum disorders. Brain Dev. 2008, 30, 454–460. [Google Scholar] [CrossRef]
- Scahill, L.; McCracken, J.T.; King, B.H.; Rockhill, C.; Shah, B.; Politte, L.; Sanders, R.; Minjarez, M.; Cowen, J.; Mullett, J.; et al. Extended-Release Guanfacine for Hyperactivity in Children with Autism Spectrum Disorder. Am. J. Psychiatry 2015, 172, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Charman, T. Mapping Early Symptom Trajectories in Autism Spectrum Disorder: Lessons and Challenges for Clinical Practice and Science. J. Am. Acad. Child Adolesc. Psychiatry 2018, 57, 820–821. [Google Scholar] [CrossRef] [PubMed]
- Posey, D.J.; Puntney, J.I.; Sasher, T.M.; Kem, D.L.; McDougle, C.J. Guanfacine treatment of hyperactivity and inattention in pervasive developmental disorders: A retrospective analysis of 80 cases. J. Child Adolesc. Psychopharmacol. 2004, 14, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Albert, P.R. Transcriptional regulation of the 5-HT1A receptor: Implications for mental illness. Philos. Trans. R. Soc. B Biol. Sci 2012, 367, 2402–2415. [Google Scholar] [CrossRef]
- Blier, P. Crosstalk between the norepinephrine and serotonin systems and its role in the antidepressant response. J. Psychiatry Neurosci. 2001, 26 (Suppl. S3), S3–S10. [Google Scholar]
- David, S.P.; Murthy, N.V.; Rabiner, E.A.; Munafo, M.R.; Johnstone, E.C.; Jacob, R.; Walton, R.T.; Grasby, P.M. A functional genetic variation of the serotonin (5-HT) transporter affects 5-HT1A receptor binding in humans. J. Neurosci. 2005, 25, 2586–2590. [Google Scholar] [CrossRef] [PubMed]
- Pawlowski, T.; Malyszczak, K.; Pawlak, D.; Inglot, M.; Zalewska, M.; Grzywacz, A.; Radkowski, M.; Laskus, T.; Janocha-Litwin, J.; Frydecka, D. HTR1A, TPH2, and 5-HTTLPR Polymorphisms and Their Impact on the Severity of Depressive Symptoms and on the Concentration of Tryptophan Catabolites during Hepatitis C Treatment with Pegylated Interferon-alpha2a and Oral Ribavirin (PEG-IFN-alpha2a/RBV). Cells 2023, 12, 970. [Google Scholar] [CrossRef]
- Bauman, M.D.; Schumann, C.M. Advances in nonhuman primate models of autism: Integrating neuroscience and behavior. Exp. Neurol. 2018, 299, 252–265. [Google Scholar] [CrossRef]
- Watson, K.K.; Ghodasra, J.H.; Platt, M.L. Serotonin transporter genotype modulates social reward and punishment in rhesus macaques. PLoS ONE 2009, 4, e4156. [Google Scholar] [CrossRef]
- Baudat, M.; de Kort, A.R.; van den Hove, D.L.A.; Joosten, E.A. Early-life exposure to selective serotonin reuptake inhibitors: Long-term effects on pain and affective comorbidities. Eur. J. Neurosci. 2022, 55, 295–317. [Google Scholar] [CrossRef]
- Zanni, G.; van Dijk, M.T.; Cagliostro, M.C.; Sepulveda, P.; Pini, N.; Rose, A.L.; Kesin, A.L.; Lugo-Candelas, C.; Goncalves, P.D.; MacKay, A.S.; et al. Perinatal SSRI exposure impacts innate fear circuit activation and behavior in mice and humans. Nat. Commun. 2025, 16, 4002. [Google Scholar] [CrossRef] [PubMed]
- Strawn, J.R.; Mills, J.A.; Schroeder, H.; Mossman, S.A.; Varney, S.T.; Ramsey, L.B.; Poweleit, E.A.; Desta, Z.; Cecil, K.; DelBello, M.P. Escitalopram in Adolescents with Generalized Anxiety Disorder: A Double-Blind, Randomized, Placebo-Controlled Study. J. Clin. Psychiatry 2020, 81, 6584. [Google Scholar] [CrossRef] [PubMed]
- Strawn, J.R.; Poweleit, E.A.; Mills, J.A.; Schroeder, H.K.; Neptune, Z.A.; Specht, A.M.; Farrow, J.E.; Zhang, X.; Martin, L.J.; Ramsey, L.B. Pharmacogenetically Guided Escitalopram Treatment for Pediatric Anxiety Disorders: Protocol for a Double-Blind Randomized Trial. J. Pers. Med. 2021, 11, 1188. [Google Scholar] [CrossRef]
- Rink, L.; Adams, A.; Braun, C.; Bschor, T.; Kuhr, K.; Baethge, C. Dose-Response Relationship in Selective Serotonin and Norepinephrine Reuptake Inhibitors in the Treatment of Major Depressive Disorder: A Meta-Analysis and Network Meta-Analysis of Randomized Controlled Trials. Psychother. Psychosom. 2022, 91, 84–93. [Google Scholar] [CrossRef]
- Weiss, M.D.; Wasdell, M.B.; Bomben, M.M.; Rea, K.J.; Freeman, R.D. Sleep hygiene and melatonin treatment for children and adolescents with ADHD and initial insomnia. J. Am. Acad. Child Adolesc. Psychiatry 2006, 45, 512–519. [Google Scholar] [CrossRef]
- Robinson, D.G.; Gallego, J.A.; John, M.; Petrides, G.; Hassoun, Y.; Zhang, J.P.; Lopez, L.; Braga, R.J.; Sevy, S.M.; Addington, J.; et al. A Randomized Comparison of Aripiprazole and Risperidone for the Acute Treatment of First-Episode Schizophrenia and Related Disorders: 3-Month Outcomes. Schizophr. Bull. 2015, 41, 1227–1236. [Google Scholar] [CrossRef]
- Hirota, T.; Veenstra-Vanderweele, J.; Hollander, E.; Kishi, T. Antiepileptic medications in autism spectrum disorder: A systematic review and meta-analysis. J. Autism Dev. Disord. 2014, 44, 948–957. [Google Scholar] [CrossRef]
- Davico, C.; Canavese, C.; Vittorini, R.; Gandione, M.; Vitiello, B. Anticonvulsants for Psychiatric Disorders in Children and Adolescents: A Systematic Review of Their Efficacy. Front. Psychiatry 2018, 9, 270. [Google Scholar] [CrossRef]
- Jawed, B.; Esposito, J.E.; Pulcini, R.; Zakir, S.K.; Botteghi, M.; Gaudio, F.; Savio, D.; Martinotti, C.; Martinotti, S.; Toniato, E. The Evolving Role of Cannabidiol-Rich Cannabis in People with Autism Spectrum Disorder: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 12453. [Google Scholar] [CrossRef]
- Hassan, M.A.; Awad, A.A.; Marey, A.; Amin, A.M.; Elshahat, A.; El-Moslemani, M.; Mansour, A.; Ramadan, S.; Aldemerdash, M.A. Efficacy and safety of Brivaracetam as adjunctive therapy in pediatric epilepsy: A systematic review and meta-analysis. Neurol. Sci. 2025, 46, 3525–3536. [Google Scholar] [CrossRef]
- Zheng, W.; Xiang, Y.T.; Xiang, Y.Q.; Li, X.B.; Ungvari, G.S.; Chiu, H.F.; Correll, C.U. Efficacy and safety of adjunctive topiramate for schizophrenia: A meta-analysis of randomized controlled trials. Acta Psychiatr. Scand. 2016, 134, 385–398. [Google Scholar] [CrossRef] [PubMed]
- Okuyama, Y.; Oya, K.; Matsunaga, S.; Kishi, T.; Iwata, N. Efficacy and tolerability of topiramate-augmentation therapy for schizophrenia: A systematic review and meta-analysis of randomized controlled trials. Neuropsychiatr. Dis. Treat. 2016, 12, 3221–3236. [Google Scholar] [CrossRef] [PubMed]
- Loth, E.; Poline, J.B.; Thyreau, B.; Jia, T.; Tao, C.; Lourdusamy, A.; Stacey, D.; Cattrell, A.; Desrivieres, S.; Ruggeri, B.; et al. Oxytocin receptor genotype modulates ventral striatal activity to social cues and response to stressful life events. Biol. Psychiatry 2014, 76, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.F.; Dai, Y.C.; Wu, J.; Jia, M.X.; Zhang, J.S.; Shou, X.J.; Han, S.P.; Zhang, R.; Han, J.S. Plasma Oxytocin and Arginine-Vasopressin Levels in Children with Autism Spectrum Disorder in China: Associations with Symptoms. Neurosci. Bull. 2016, 32, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Konopaske, G.T.; Dorph-Petersen, K.A.; Pierri, J.N.; Wu, Q.; Sampson, A.R.; Lewis, D.A. Effect of chronic exposure to antipsychotic medication on cell numbers in the parietal cortex of macaque monkeys. Neuropsychopharmacology 2007, 32, 1216–1223. [Google Scholar] [CrossRef]
- Davico, C.; Secci, I.; Vendrametto, V.; Vitiello, B. Pharmacological treatments in autism spectrum disorder: A narrative review. J. Psychopathol. 2023, 29, 38–52. [Google Scholar] [CrossRef]
- Aishworiya, R.; Valica, T.; Hagerman, R.; Restrepo, B. An Update on Psychopharmacological Treatment of Autism Spectrum Disorder. Neurotherapeutics 2022, 19, 248–262. [Google Scholar] [CrossRef]
- Asadabadi, M.; Mohammadi, M.R.; Ghanizadeh, A.; Modabbernia, A.; Ashrafi, M.; Hassanzadeh, E.; Forghani, S.; Akhondzadeh, S. Celecoxib as adjunctive treatment to risperidone in children with autistic disorder: A randomized, double-blind, placebo-controlled trial. Psychopharmacology 2013, 225, 51–59. [Google Scholar] [CrossRef]
- Manter, M.A.; Birtwell, K.B.; Bath, J.; Friedman, N.D.B.; Keary, C.J.; Neumeyer, A.M.; Palumbo, M.L.; Thom, R.P.; Stonestreet, E.; Brooks, H.; et al. Pharmacological treatment in autism: A proposal for guidelines on common co-occurring psychiatric symptoms. BMC Med. 2025, 23, 11. [Google Scholar] [CrossRef]
- Bolandparvaz, A.; Harriman, R.; Alvarez, K.; Lilova, K.; Zang, Z.; Lam, A.; Edmiston, E.; Navrotsky, A.; Vapniarsky, N.; Van De Water, J.; et al. Towards a nanoparticle-based prophylactic for maternal autoantibody-related autism. Nanomedicine 2019, 21, 102067. [Google Scholar] [CrossRef]
- Neuchat, E.E.; Bocklud, B.E.; Kingsley, K.; Barham, W.T.; Luther, P.M.; Ahmadzadeh, S.; Shekoohi, S.; Cornett, E.M.; Kaye, A.D. The Role of Alpha-2 Agonists for Attention Deficit Hyperactivity Disorder in Children: A Review. Neurol. Int. 2023, 15, 697–707. [Google Scholar] [CrossRef]
- Loe, I.M.; Blum, N.J.; Shults, J.; Barbaresi, W.; Bax, A.; Cacia, J.; Deavenport-Saman, A.; Friedman, S.; LaRosa, A.; Mittal, S.; et al. Adverse Effects of alpha-2 Adrenergic Agonists and Stimulants in Preschool-age Attention-deficit/Hyperactivity Disorder: A Developmental-Behavioral Pediatrics Research Network Study. J. Pediatr. 2023, 257, 113325. [Google Scholar] [CrossRef] [PubMed]
- Kaye, A.D.; Green, A.M.; Claude, J.T., 2nd; Daniel, C.P.; Cooley, J.F.; Sala, K.R.; Potharaju, P.; Rieger, R.; Patil, S.; Ahmadzadeh, S.; et al. Efficacy and Safety of Alpha-2 Agonists in Autism Spectrum Disorder: A Systematic Review. Adv. Ther. 2024, 41, 4299–4311. [Google Scholar] [CrossRef] [PubMed]
- Connor, D.F.; Findling, R.L.; Kollins, S.H.; Sallee, F.; Lopez, F.A.; Lyne, A.; Tremblay, G. Effects of guanfacine extended release on oppositional symptoms in children aged 6–12 years with attention-deficit hyperactivity disorder and oppositional symptoms: A randomized, double-blind, placebo-controlled trial. CNS Drugs 2010, 24, 755–768. [Google Scholar] [CrossRef] [PubMed]
- Cinnamon Bidwell, L.; Dew, R.E.; Kollins, S.H. Alpha-2 adrenergic receptors and attention-deficit/hyperactivity disorder. Curr. Psychiatry Rep. 2010, 12, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Dell’Osso, L.; Bonelli, C.; Giovannoni, F.; Poli, F.; Anastasio, L.; Cerofolini, G.; Nardi, B.; Cremone, I.M.; Pini, S.; Carpita, B. Available Treatments for Autism Spectrum Disorder: From Old Strategies to New Options. Pharmaceuticals 2025, 18, 324. [Google Scholar] [CrossRef] [PubMed]
| Drug Class | Target Symptoms | Drugs | Mechanism | Pathways/Targets | Supporting References |
|---|---|---|---|---|---|
| SSRIs (Selective Serotonin Reuptake Inhibitors) | Anxiety, obsessive–compulsive behaviors | Fluoxetine, Sertraline | Inhibit serotonin reuptake, increasing serotonin availability in the synapse | Serotonin transporter (SERT), 5-HT signaling | [37,39,40,41,42,43,44,45,46] |
| Antipsychotics | Irritability, aggression, tantrums | Risperidone, Aripiprazole | Block D2 and 5-HT2A receptors to regulate dopamine and serotonin signaling | Dopamine D2, serotonin 5-HT2A receptors | [20,21,22,23,35,36,47,48,49,50,51] |
| Stimulants | ADHD-like symptoms (inattention, impulsivity, hyperactivity) | Methylphenidate, Amphetamine, Modafinil, Lisdexamfetamine, Guanfacine | Increase dopamine and norepinephrine by inhibiting reuptake; modafinil also reduces neuroinflammation and enhances arousal | Dopamine transporter (DAT), norepinephrine transporter (NET), glutamatergic excitotoxicity (for modafinil) | [24,25,52,53,54,55,56,57,58] |
| Anticonvulsants | Seizures, aggression, mood lability | Valproic acid, Lamotrigine, Topiramate | Inhibit Na+/Ca2+ channels, increase GABA activity | Sodium channels (Na+), calcium channels (Ca2+), GABA receptors | [17,18,26,27,28,29,30,31,32] |
| Neurotrophic and Anti-inflammatory Agents | Brain connectivity, neuroinflammation | Minocycline, N-acetylcysteine (NAC), Baclofen | Modulate microglial activation and oxidative stress; influence BDNF pathways | Microglia, BDNF signaling, oxidative stress markers | [9,59,60,61,62] |
| NMDA Modulators | Rigidity, repetitive behaviors | Riluzole | Reduce glutamatergic excitotoxicity by inhibiting glutamate release and receptor activity | NMDA receptors, glutamatergic pathways | [10,63,64,65,66] |
| α2-Adrenergic Agonists | Hyperactivity, sleep disturbance, aggression | Clonidine, Guanfacine | Decrease norepinephrine release, calming CNS hyperarousal | α2-adrenergic receptors (α2) | [25,52,53,67,68,69,70] |
| Sleep Agents | Sleep-onset insomnia, nighttime awakenings | Melatonin | Regulates circadian rhythms through MT1 and MT2 receptor activation, promoting physiological sleep initiation | Melatonin receptors (MT1/MT2), circadian timing pathways | [18] |
| Sedating Antidepressants | Insomnia with co-occurring anxiety, mood dysregulation, or hyperarousal | Trazodone, Mirtazapine | Trazodone: Serotonin antagonist and reuptake inhibitor with sedative properties Mirtazapine: Noradrenergic and specific serotonergic modulator with potent antihistaminergic activity | 5-HT2A/5-HT2C receptors, histamine H1 receptors, noradrenergic pathways | [52,53,67] |
| Appetite-Stimulating/Feeding Interventions | Low appetite, poor weight gain, feeding selectivity | Cyproheptadine | Antihistamine with antiserotonergic effects that enhance appetite and feeding behavior | Histamine H1 receptor blockade; serotonin receptor antagonism | [18] |
| Therapy | Proposed Mechanism | Primary Targets/Rationale: | Supporting References |
|---|---|---|---|
| Oxytocin and Oxytocinergic Modulators | Enhances social salience, reward processing, and affiliative behavior via oxytocin receptor signaling | Social communication, social motivation, emotional reciprocity | [33,90,91,92] |
| Vasopressin Receptor Agents | Modulates social behavior, stress responses, and emotional regulation via V1A receptor pathways | Social behavior, anxiety-related symptoms, irritability | [54,92] |
| N-Acetylcysteine (NAC) | Antioxidant activity, glutathione enhancement, and modulation of glutamatergic transmission | Irritability, repetitive behaviors, oxidative stress imbalance | [9,59,60,93] |
| Minocycline and Other Anti-inflammatory Agents | Reduces microglial activation; decreases neuroinflammation and oxidative stress | Irritability, neuroinflammation-driven behavioral symptoms | [61,94] |
| Riluzole | Reduces presynaptic glutamate release; enhances glutamate clearance | Cognitive rigidity, repetitive behaviors, mood dysregulation | [64] |
| NMDA Receptor Modulators (e.g., Memantine, Ketamine-like agents) | Modulates NMDA receptor signaling to improve synaptic plasticity and reduce excitotoxicity | Repetitive behaviors, cognitive inflexibility, treatment-resistant irritability | [64,65,66] |
| COX-2 Inhibitors (e.g., Celecoxib) | Attenuates neuroinflammation by inhibiting cyclooxygenase-2 pathways | Adjunctive reduction of irritability, aggression, and inflammatory-driven behavior | [94,95] |
| Microbiota-Directed Therapies (Probiotics, Prebiotics, Diet-based interventions) | Modulates gut–brain axis, immune–metabolic signaling, and microbial metabolite production | Gastrointestinal dysfunction, behavioral regulation, mood stability | [18,94] |
| Metabolic and One-Carbon Pathway Supports (e.g., Folinic Acid) | Targets methylation cycles, oxidative stress pathways, and folate receptor dysfunction | Language development, adaptive function, global behavior in biologically defined subgroups | [9,18,93] |
| Gene and Molecular Therapies | Gene replacement, antisense oligonucleotides, RNA-targeted therapeutics, CRISPR-based editing | Syndromic ASD variants (Rett, Fragile X, Phelan–McDermid), severe neurodevelopmental impairment | [3,8,93,96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sclabassi, E.; Peret, S.; Qian, C.; Gao, Y. Pharmacological Interventions in Autism Spectrum Disorder: A Comprehensive Review of Mechanisms and Efficacy. Biomedicines 2025, 13, 3025. https://doi.org/10.3390/biomedicines13123025
Sclabassi E, Peret S, Qian C, Gao Y. Pharmacological Interventions in Autism Spectrum Disorder: A Comprehensive Review of Mechanisms and Efficacy. Biomedicines. 2025; 13(12):3025. https://doi.org/10.3390/biomedicines13123025
Chicago/Turabian StyleSclabassi, Eva, Sophie Peret, Chunqi Qian, and Yuen Gao. 2025. "Pharmacological Interventions in Autism Spectrum Disorder: A Comprehensive Review of Mechanisms and Efficacy" Biomedicines 13, no. 12: 3025. https://doi.org/10.3390/biomedicines13123025
APA StyleSclabassi, E., Peret, S., Qian, C., & Gao, Y. (2025). Pharmacological Interventions in Autism Spectrum Disorder: A Comprehensive Review of Mechanisms and Efficacy. Biomedicines, 13(12), 3025. https://doi.org/10.3390/biomedicines13123025

