Long-Term Enzyme Replacement Therapy and Renal Outcomes in Fabry Disease: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Search Strategy
2.3. Study Selection
2.4. Main Outcome Measures
2.5. Data Extraction
2.6. Quality Assessment
2.7. Statistical Analysis
3. Results
3.1. Search Result
3.2. Study Characteristics
3.3. Risk of Bias of Included Studies
3.4. Annual eGFR Decline Across Cohorts and Meta-Regression by Treatment Status
3.5. eGFR Decline Compared with eGFR > 60 and eGFR < 60
3.6. UPCR Increase Compared with eGFR > 60 and eGFR < 60
3.7. eGFR Decline Compared with UPCR < 0.5 and UPCR > 0.5
3.8. UPCR Increase Compared with UPCR < 0.5 and UPCR > 0.5
3.9. Clinical Events Compared with eGFR > 60 and eGFR < 60
3.10. Assessment of Potential Publication Bias
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ERT | Enzyme replacement therapy |
| eGFR | Estimated glomerular filtration rate |
| GFR | Glomerular filtration rate |
| Gb3 | Globotriaosylceramide |
| CKD | Chronic kidney disease |
| UPCR | Urinary protein/creatinine ratio |
| EOW | Every other week |
| RCTs | Randomized controlled trials |
| PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
| TIA | Transient ischemic attack |
| QUIPS | Quality in Prognosis Studies |
| SMD | Standardized mean difference |
| CI | Confidence interval |
| ESRD | End-stage renal disease |
| HR | Hazard ratio |
| α-Gal A | Alpha-galactosidase A |
| I2 | Inconsistency index |
References
- Thompson, S.E.; Roy, A.; Geberhiwot, T.; Gehmlich, K.; Steeds, R.P. Fabry Disease: Insights into Pathophysiology and Novel Therapeutic Strategies. Biomedicines 2025, 13, 624. [Google Scholar] [CrossRef]
- Huang, Y.; Yuan, H.; Huang, Z. Cost-effectiveness analysis of enzyme replacement therapy for the treatment of Chinese patients with fabry disease: A Markov model. Front. Pharmacol. 2025, 16, 1546018. [Google Scholar] [CrossRef]
- Germain, D.P. Fabry disease. Orphanet J. Rare Dis. 2010, 5, 30. [Google Scholar] [CrossRef]
- Bernardes, T.P.; Foresto, R.D.; Kirsztajn, G.M. Fabry disease: Genetics, pathology, and treatment. Rev. Da Assoc. Médica Bras. 2020, 66, s10–s16. [Google Scholar] [CrossRef]
- Sugawara, K.; Ohno, K.; Saito, S.; Sakuraba, H. Structural characterization of mutant alpha-galactosidases causing Fabry disease. J. Hum. Genet. 2008, 53, 812–824. [Google Scholar] [CrossRef]
- Lin, C.J.; Chien, Y.H.; Lai, T.S.; Shih, H.M.; Chen, Y.C.; Pan, C.F.; Chen, H.H.; Hwu, W.L.; Wu, C.J. Results of Fabry Disease Screening in Male Pre-End Stage Renal Disease Patients with Unknown Etiology Found Through the Platform of a Chronic Kidney Disease Education Program in a Northern Taiwan Medical Center. Kidney Blood Press. Res. 2018, 43, 1636–1645. [Google Scholar] [CrossRef]
- Michaud, M.; Mauhin, W.; Belmatoug, N.; Garnotel, R.; Bedreddine, N.; Catros, F.; Ancellin, S.; Lidove, O.; Gaches, F. When and How to Diagnose Fabry Disease in Clinical Pratice. Am. J. Med. Sci. 2020, 360, 641–649. [Google Scholar] [CrossRef]
- Branton, M.H.; Schiffmann, R.; Sabnis, S.G.; Murray, G.J.; Quirk, J.M.; Altarescu, G.; Goldfarb, L.; Brady, R.O.; Balow, J.E.; Austin Iii, H.A.; et al. Natural history of Fabry renal disease: Influence of alpha-galactosidase A activity and genetic mutations on clinical course. Medicine 2002, 81, 122–138. [Google Scholar] [CrossRef]
- Svarstad, E.; Marti, H.P. The Changing Landscape of Fabry Disease. Clin. J. Am. Soc. Nephrol. 2020, 15, 569–576. [Google Scholar] [CrossRef]
- Pisani, A.; Visciano, B.; Imbriaco, M.; Di Nuzzi, A.; Mancini, A.; Marchetiello, C.; Riccio, E. The kidney in Fabry’s disease. Clin. Genet. 2014, 86, 301–309. [Google Scholar] [CrossRef]
- Tapia, D.; Kimonis, V. Stroke and Chronic Kidney Disease in Fabry Disease. J. Stroke Cerebrovasc. Dis. 2021, 30, 105423. [Google Scholar] [CrossRef]
- Chimenz, R.; Chirico, V.; Cuppari, C.; Ceravolo, G.; Concolino, D.; Monardo, P.; Lacquaniti, A. Fabry disease and kidney involvement: Starting from childhood to understand the future. Pediatr. Nephrol. 2022, 37, 95–103. [Google Scholar] [CrossRef]
- Del Pino, M.; Andres, A.; Bernabeu, A.A.; de Juan-Rivera, J.; Fernandez, E.; de Dios Garcia Diaz, J.; Hernandez, D.; Luno, J.; Fernandez, I.M.; Paniagua, J.; et al. Fabry Nephropathy: An Evidence-Based Narrative Review. Kidney Blood Press. Res. 2018, 43, 406–421. [Google Scholar] [CrossRef]
- Azevedo, O.; Gago, M.F.; Miltenberger-Miltenyi, G.; Sousa, N.; Cunha, D. Fabry Disease Therapy: State-of-the-Art and Current Challenges. Int. J. Mol. Sci. 2020, 22, 206. [Google Scholar] [CrossRef]
- van der Veen, S.J.; Hollak, C.E.M.; van Kuilenburg, A.B.P.; Langeveld, M. Developments in the treatment of Fabry disease. J. Inherit. Metab. Dis. 2020, 43, 908–921. [Google Scholar] [CrossRef]
- Lenders, M.; Brand, E. Fabry Disease: The Current Treatment Landscape. Drugs 2021, 81, 635–645. [Google Scholar] [CrossRef]
- Banikazemi, M.; Bultas, J.; Waldek, S.; Wilcox, W.R.; Whitley, C.B.; McDonald, M.; Finkel, R.; Packman, S.; Bichet, D.G.; Warnock, D.G.; et al. Agalsidase-beta therapy for advanced Fabry disease: A randomized trial. Ann. Intern. Med. 2007, 146, 77–86. [Google Scholar] [CrossRef]
- Schiffmann, R.; Ries, M.; Timmons, M.; Flaherty, J.T.; Brady, R.O. Long-term therapy with agalsidase alfa for Fabry disease: Safety and effects on renal function in a home infusion setting. Nephrol. Dial. Transplant. 2006, 21, 345–354. [Google Scholar] [CrossRef]
- Schwarzer, G.; Rucker, G.; Semaca, C. LFK index does not reliably detect small-study effects in meta-analysis: A simulation study. Res. Synth. Methods 2024, 15, 603–615. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef]
- Breunig, F.; Weidemann, F.; Strotmann, J.; Knoll, A.; Wanner, C. Clinical benefit of enzyme replacement therapy in Fabry disease. Kidney Int. 2006, 69, 1216–1221. [Google Scholar] [CrossRef]
- Vedder, A.C.; Linthorst, G.E.; Houge, G.; Groener, J.E.; Ormel, E.E.; Bouma, B.J.; Aerts, J.M.; Hirth, A.; Hollak, C.E. Treatment of Fabry disease: Outcome of a comparative trial with agalsidase alfa or beta at a dose of 0.2 mg/kg. PLoS ONE 2007, 2, e598. [Google Scholar] [CrossRef]
- Tahir, H.; Jackson, L.L.; Warnock, D.G. Antiproteinuric therapy and fabry nephropathy: Sustained reduction of proteinuria in patients receiving enzyme replacement therapy with agalsidase-beta. J. Am. Soc. Nephrol. 2007, 18, 2609–2617. [Google Scholar] [CrossRef]
- West, M.; Nicholls, K.; Mehta, A.; Clarke, J.T.; Steiner, R.; Beck, M.; Barshop, B.A.; Rhead, W.; Mensah, R.; Ries, M.; et al. Agalsidase alfa and kidney dysfunction in Fabry disease. J. Am. Soc. Nephrol. 2009, 20, 1132–1139. [Google Scholar] [CrossRef]
- Schiffmann, R.; Warnock, D.G.; Banikazemi, M.; Bultas, J.; Linthorst, G.E.; Packman, S.; Sorensen, S.A.; Wilcox, W.R.; Desnick, R.J. Fabry disease: Progression of nephropathy, and prevalence of cardiac and cerebrovascular events before enzyme replacement therapy. Nephrol. Dial. Transplant. 2009, 24, 2102–2111. [Google Scholar] [CrossRef]
- Feriozzi, S.; Torras, J.; Cybulla, M.; Nicholls, K.; Sunder-Plassmann, G.; West, M.; on behalf of the FOS Investigators. The effectiveness of long-term agalsidase alfa therapy in the treatment of Fabry nephropathy. Clin. J. Am. Soc. Nephrol. 2012, 7, 60–69. [Google Scholar] [CrossRef]
- Rombach, S.M.; Hollak, C.E.; Linthorst, G.E.; Dijkgraaf, M.G. Cost-effectiveness of enzyme replacement therapy for Fabry disease. Orphanet J. Rare Dis. 2013, 8, 29. [Google Scholar] [CrossRef]
- Warnock, D.G.; Thomas, C.P.; Vujkovac, B.; Campbell, R.C.; Charrow, J.; Laney, D.A.; Jackson, L.L.; Wilcox, W.R.; Wanner, C. Antiproteinuric therapy and Fabry nephropathy: Factors associated with preserved kidney function during agalsidase-beta therapy. J. Med. Genet. 2015, 52, 860–866. [Google Scholar] [CrossRef]
- Golan, L.; Goker-Alpan, O.; Holida, M.; Kantola, I.; Klopotowski, M.; Kuusisto, J.; Linhart, A.; Musial, J.; Nicholls, K.; Gonzalez-Rodriguez, D.; et al. Evaluation of the efficacy and safety of three dosing regimens of agalsidase alfa enzyme replacement therapy in adults with Fabry disease. Drug Des. Dev. Ther. 2015, 9, 3435–3444. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, B.H.; Hyang Cho, J.; Kang, E.; Choi, J.H.; Kim, G.H.; Yoo, H.W. Long-term enzyme replacement therapy for Fabry disease: Efficacy and unmet needs in cardiac and renal outcomes. J. Hum. Genet. 2016, 61, 923–929. [Google Scholar] [CrossRef]
- Arends, M.; Wanner, C.; Hughes, D.; Mehta, A.; Oder, D.; Watkinson, O.T.; Elliott, P.M.; Linthorst, G.E.; Wijburg, F.A.; Biegstraaten, M.; et al. Characterization of Classical and Nonclassical Fabry Disease: A Multicenter Study. J. Am. Soc. Nephrol. 2017, 28, 1631–1641. [Google Scholar] [CrossRef]
- Feriozzi, S.; Linhart, A.; Ramaswami, U.; Kalampoki, V.; Gurevich, A.; Hughes, D.; on behalf of the Fabry Outcome Survey Study Group. Effects of Baseline Left Ventricular Hypertrophy and Decreased Renal Function on Cardiovascular and Renal Outcomes in Patients with Fabry Disease Treated with Agalsidase Alfa: A Fabry Outcome Survey Study. Clin. Ther. 2020, 42, 2321–2330.eo. [Google Scholar] [CrossRef]
- Goicoechea, M.; Gomez-Preciado, F.; Benito, S.; Torras, J.; Torra, R.; Huerta, A.; Restrepo, A.; Ugalde, J.; Astudillo, D.E.; Agraz, I.; et al. Predictors of outcome in a Spanish cohort of patients with Fabry disease on enzyme replacement therapy. Nefrol. (Engl. Ed.) 2021, 41, 652–660. [Google Scholar] [CrossRef]
- Hopkin, R.J.; Cabrera, G.H.; Jefferies, J.L.; Yang, M.; Ponce, E.; Brand, E.; Feldt-Rasmussen, U.; Germain, D.P.; Guffon, N.; Jovanovic, A.; et al. Clinical outcomes among young patients with Fabry disease who initiated agalsidase beta treatment before 30 years of age: An analysis from the Fabry Registry. Mol. Genet. Metab. 2023, 138, 106967. [Google Scholar] [CrossRef]
- Lin, H.Y.; Liu, H.C.; Huang, Y.H.; Liao, H.C.; Hsu, T.R.; Shen, C.I.; Li, S.T.; Li, C.F.; Lee, L.H.; Lee, P.C.; et al. Effects of enzyme replacement therapy for cardiac-type Fabry patients with a Chinese hotspot late-onset Fabry mutation (IVS4+919G>A). BMJ Open 2013, 3, e003146. [Google Scholar] [CrossRef]
- Sirrs, S.M.; Bichet, D.G.; Casey, R.; Clarke, J.T.R.; Lemoine, K.; Doucette, S.; West, M.L.; CFDI Investigators. Outcomes of patients treated through the Canadian Fabry disease initiative. Mol. Genet. Metab. 2014, 111, 499–506. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The 14 PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Tsuboi, K.; Yamamoto, H.; Somura, F.; Goto, H. Successful management of enzyme replacement therapy in related fabry disease patients with severe adverse events by switching from agalsidase Beta (fabrazyme®) to agalsidase alfa (replagal ®). In JIMD Reports; Springer: Berlin/Heidelberg, Germany, 2015; Volume 15, pp. 105–111. [Google Scholar] [CrossRef]
- Tsurumi, M.; Suzuki, S.; Hokugo, J.; Ueda, K. Long-term safety and efficacy of agalsidase beta in Japanese patients with Fabry disease: Aggregate data from two post-authorization safety studies. Expert Opin. Drug Saf. 2021, 20, 589–601. [Google Scholar] [CrossRef] [PubMed]
- Arends, M.; Biegstraaten, M.; Wanner, C.; Sirrs, S.; Mehta, A.; Elliott, P.M.; Oder, D.; Watkinson, O.T.; Bichet, D.G.; Khan, A.; et al. Agalsidase alfa versus agalsidase beta for the treatment of Fabry disease: An international cohort study. J. Med. Genet. 2018, 55, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Cybulla, M.; Walter, K.N.; Schwarting, A.; Divito, R.; Feriozzi, S.; Sunder-Plassmann, G.; on behalf of the European FOS Investigators Group. Kidney transplantation in patients with Fabry disease. Transpl. Int. 2009, 22, 475–481. [Google Scholar] [CrossRef]
- Tondel, C.; Bostad, L.; Larsen, K.K.; Hirth, A.; Vikse, B.E.; Houge, G.; Svarstad, E. Agalsidase benefits renal histology in young patients with Fabry disease. J. Am. Soc. Nephrol. 2013, 24, 137–148. [Google Scholar] [CrossRef]
- Skrunes, R.; Tondel, C.; Leh, S.; Larsen, K.K.; Houge, G.; Davidsen, E.S.; Hollak, C.; van Kuilenburg, A.B.P.; Vaz, F.M.; Svarstad, E. Long-Term Dose-Dependent Agalsidase Effects on Kidney Histology in Fabry Disease. Clin. J. Am. Soc. Nephrol. 2017, 12, 1470–1479. [Google Scholar] [CrossRef]
- Prabakaran, T.; Birn, H.; Bibby, B.M.; Regeniter, A.; Sorensen, S.S.; Feldt-Rasmussen, U.; Nielsen, R.; Christensen, E.I. Long-term enzyme replacement therapy is associated with reduced proteinuria and preserved proximal tubular function in women with Fabry disease. Nephrol. Dial. Transplant. 2014, 29, 619–625. [Google Scholar] [CrossRef]
- Schiffmann, R. Fabry disease. Handb. Clin. Neurol. 2015, 132, 231–248. [Google Scholar] [CrossRef]
- Nowak, A.; Koch, G.; Huynh-Do, U.; Siegenthaler, M.; Marti, H.P.; Pfister, M. Disease Progression Modeling to Evaluate the Effects of Enzyme Replacement Therapy on Kidney Function in Adult Patients with the Classic Phenotype of Fabry Disease. Kidney Blood Press. Res. 2017, 42, 1–15, Erratum in Kidney Blood Press Res. 2017, 42, 389. [Google Scholar] [CrossRef]
- Madsen, C.V.; Granqvist, H.; Petersen, J.H.; Rasmussen, A.K.; Lund, A.M.; Oturai, P.; Sorensen, S.S.; Feldt-Rasmussen, U. Age-related renal function decline in Fabry disease patients on enzyme replacement therapy: A longitudinal cohort study. Nephrol. Dial. Transplant. 2019, 34, 1525–1533. [Google Scholar] [CrossRef]
- Parini, R.; Pintos-Morell, G.; Hennermann, J.B.; Hsu, T.R.; Karabul, N.; Kalampoki, V.; Gurevich, A.; Ramaswami, U.; FOS Study Group. Analysis of Renal and Cardiac Outcomes in Male Participants in the Fabry Outcome Survey Starting Agalsidase Alfa Enzyme Replacement Therapy Before and After 18 Years of Age. Drug Des. Dev. Ther. 2020, 14, 2149–2158. [Google Scholar] [CrossRef] [PubMed]
- Wanner, C.; Feldt-Rasmussen, U.; Jovanovic, A.; Linhart, A.; Yang, M.; Ponce, E.; Brand, E.; Germain, D.P.; Hughes, D.A.; Jefferies, J.L.; et al. Cardiomyopathy and kidney function in agalsidase beta-treated female Fabry patients: A pre-treatment vs. post-treatment analysis. ESC Heart Fail. 2020, 7, 825–834. [Google Scholar] [CrossRef]
- Germain, D.P.; Waldek, S.; Banikazemi, M.; Bushinsky, D.A.; Charrow, J.; Desnick, R.J.; Lee, P.; Loew, T.; Vedder, A.C.; Abichandani, R.; et al. Sustained, long-term renal stabilization after 54 months of agalsidase beta therapy in patients with Fabry disease. J. Am. Soc. Nephrol. 2007, 18, 1547–1557. [Google Scholar] [CrossRef] [PubMed]
- Warnock, D.G.; Ortiz, A.; Mauer, M.; Linthorst, G.E.; Oliveira, J.P.; Serra, A.L.; Marodi, L.; Mignani, R.; Vujkovac, B.; Beitner-Johnson, D.; et al. Renal outcomes of agalsidase beta treatment for Fabry disease: Role of proteinuria and timing of treatment initiation. Nephrol. Dial. Transplant. 2012, 27, 1042–1049. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.; Abiose, A.; Bichet, D.G.; Cabrera, G.; Charrow, J.; Germain, D.P.; Hopkin, R.J.; Jovanovic, A.; Linhart, A.; Maruti, S.S.; et al. Time to treatment benefit for adult patients with Fabry disease receiving agalsidase beta: Data from the Fabry Registry. J. Med. Genet. 2016, 53, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Weidemann, F.; Niemann, M.; Stork, S.; Breunig, F.; Beer, M.; Sommer, C.; Herrmann, S.; Ertl, G.; Wanner, C. Long-term outcome of enzyme-replacement therapy in advanced Fabry disease: Evidence for disease progression towards serious complications. J. Intern. Med. 2013, 274, 331–341. [Google Scholar] [CrossRef]
- Wagner, M.; Krämer, J.; Blohm, E.; Vergho, D.; Weidemann, F.; Breunig, F.; Wanner, C. Kidney function as an underestimated factor for reduced health related quality of life in patients with Fabry disease. BMC Nephrol. 2014, 15, 188. [Google Scholar] [CrossRef]
- Germain, D.P.; Charrow, J.; Desnick, R.J.; Guffon, N.; Kempf, J.; Lachmann, R.H.; Lemay, R.; Linthorst, G.E.; Packman, S.; Scott, C.R.; et al. Ten-year outcome of enzyme replacement therapy with agalsidase beta in patients with Fabry disease. J. Med. Genet. 2015, 52, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Wanner, C.; Ortiz, A.; Wilcox, W.R.; Hopkin, R.J.; Johnson, J.; Ponce, E.; Ebels, J.T.; Batista, J.L.; Maski, M.; Politei, J.M.; et al. Global reach of over 20 years of experience in the patient-centered Fabry Registry: Advancement of Fabry disease expertise and dissemination of real-world evidence to the Fabry community. Mol. Genet. Metab. 2023, 139, 107603. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, A.; Miller-Hodges, E.; Castriota, F.; Evuarherhe, O.; Ayodele, O.; Hughes, D.; Pintos-Morell, G.; Giugliani, R.; Feriozzi, S.; Siffel, C. Clinical Efficacy and Real-World Effectiveness of Fabry Disease Treatments: A Systematic Literature Review. J. Clin. Med. 2025, 14, 5131. [Google Scholar] [CrossRef]











| Included Patient Number | Treatment | Follow-Up Duration | ||||||
|---|---|---|---|---|---|---|---|---|
| Male | Female | Mix | eGFR Slope | Proteinuria (UPCR) | Clinical Events | |||
| Mary H. Branton, 2002 [8] | 105 | naïve | data from 1970 to 2000 | ✓ | ||||
| F Breunig, 2006 [21] | 25 | agalsidase beta | median of 23 months | ✓ | ✓ | |||
| Raphael Schiffmann, 2006 [18] | 24 | agalsidase alpha | 2 years | ✓ | ||||
| Anouk C. Vedder, 2007 [22] | 12 | 16 | agalsidase alpha or beta | 24 months | ✓ | |||
| Hindia Tahir, 2007 [23] | 10 | agalsidase beta | 30 months | ✓ | ✓ | |||
| Michael West, 2009 [24] | 162 | naïve, agalsidase alpha | 48 months | ✓ | ||||
| Raphael Schiffmann, 2009 [25] | 279 | 168 | naïve | 48 months | ✓ | |||
| Sandro Feriozzi, 2012 [26] | 208 | agalsidase alpha | 7.4 years (range: 5.0–11.2 years) | ✓ | ✓ | |||
| Saskia M Rombach, 2013 [27] | 30 | 27 | agalsidase alpha | 5.2 years (range: 0.05–11.0 years) | ✓ | |||
| David G Warnock, 2015 [28] | 24 | agalsidase beta | 21 months | ✓ | ||||
| Lubor Goláň, 2015 [29] | 16 | agalsidase alpha | 53 weeks | ✓ | ||||
| Ja Hye Kim, 2016 [30] | 15 | 4 | agalsidase beta | median of 8.1 years | ✓ | ✓ | ||
| Arends M, 2017 [31] | 293 | agalsidase alpha, beta | 6.8 years (range: 0.8–15.4) | ✓ | ✓ | |||
| Feriozzi S, 2020 [32] | 269 | 291 | agalsidase alpha | 180 months | ✓ | ✓ | ||
| Goicoechea M, 2021 [33] | 42 | 27 | agalsidase alpha, beta | 60 months | ✓ | ✓ | ||
| Robert J. Hopkin, 2023 [34] | 140 | agalsidase beta | median of 6.3 years | ✓ | ||||
| Subgroup | Point Estimate | SE | 95%CI | Z-Value | p-Value | |
|---|---|---|---|---|---|---|
| Lower Limit | Upper Limit | |||||
| Intercept | −2.974 | 1.152 | −5.231 | −0.717 | −2.580 | 0.010 |
| ERT vs. no ERT | 1.555 | 1.241 | −0.878 | 3.987 | 1.250 | 0.210 |
| Subgroup | Point Estimate | SE | 95%CI | Z-Value | p-Value | |
|---|---|---|---|---|---|---|
| Lower Limit | Upper Limit | |||||
| Intercept | −3.387 | 0.432 | −4.235 | −2.540 | −7.87 | <0.001 |
| ERT vs. no ERT | 0.508 | 0.508 | −0.487 | 1.503 | 1.00 | 0.317 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-Y.; Li, C.-T.; Lin, C.-J.; Shih, H.-M.; Liu, S.-J.; Sun, F.-J.; Wu, C.-J. Long-Term Enzyme Replacement Therapy and Renal Outcomes in Fabry Disease: A Systematic Review and Meta-Analysis. Biomedicines 2025, 13, 2989. https://doi.org/10.3390/biomedicines13122989
Chen C-Y, Li C-T, Lin C-J, Shih H-M, Liu S-J, Sun F-J, Wu C-J. Long-Term Enzyme Replacement Therapy and Renal Outcomes in Fabry Disease: A Systematic Review and Meta-Analysis. Biomedicines. 2025; 13(12):2989. https://doi.org/10.3390/biomedicines13122989
Chicago/Turabian StyleChen, Chih-Yang, Chun-Ting Li, Cheng-Jui Lin, Hong-Mou Shih, Shu-Jung Liu, Fang-Ju Sun, and Chih-Jen Wu. 2025. "Long-Term Enzyme Replacement Therapy and Renal Outcomes in Fabry Disease: A Systematic Review and Meta-Analysis" Biomedicines 13, no. 12: 2989. https://doi.org/10.3390/biomedicines13122989
APA StyleChen, C.-Y., Li, C.-T., Lin, C.-J., Shih, H.-M., Liu, S.-J., Sun, F.-J., & Wu, C.-J. (2025). Long-Term Enzyme Replacement Therapy and Renal Outcomes in Fabry Disease: A Systematic Review and Meta-Analysis. Biomedicines, 13(12), 2989. https://doi.org/10.3390/biomedicines13122989

