Advances in Image-Based Diagnosis of Diabetic Foot Ulcers Using Deep Learning and Machine Learning: A Systematic Review
Abstract
1. Introduction
Purpose and Motivation
- To engage in the efforts to find viable solutions for diabetic foot detection, thus assisting the DFU specialists in diagnosis and treatment.
- Analyze new trends of approaches used in the automatic DFU detection field. Thus, this paper focuses on presenting growth trends in the use of ML/DL techniques.
2. Materials and Methods
2.1. Research Questions
- Research Question 1 (RQ1): What is the most effective ML/DL model for providing an optimal diagnosis for DFUs?
- Research Question 2 (RQ2): How should the performance of the models be compared using the optimal set of validation metrics?
- Research Question 3 (RQ3): What are the characteristics of the DFU image database that are required for the training of the diagnostic model?
2.2. Inclusion and Exclusion Criteria
- Inclusion Criteria:
- –
- Articles must focus on ML/DL applications related to DFU detection, classification, or segmentation.
- –
- Articles must include references to or the creation of datasets used for model assessment.
- –
- Articles must provide a full-text version and include accuracy measurements for the results.
- Exclusion Criteria:
- –
- Preprinted articles or those without peer review were excluded [24].
- –
- –
- Articles focusing on tasks outside detection, classification, or segmentation (e.g., improving image quality for downstream tasks [29]) were excluded.
- –
- Articles without accuracy measurements for the reported results were excluded.
2.3. Resources Selection
2.4. Data Source
2.5. Assessment of Methodology Quality
2.6. Diagnostic Accuracy Measures
2.7. Data Synthesis and Analysis
3. Results
- In the detection of DFU domains based on color and thermal images:
- Most of the current work employing thermal images uses classical classifiers such as Support Vector Machine (SVM), k-nearest neighbour algorithm (k-NN), etc. [42].
- In the segmentation of DFU domains based on color and thermal images, approaches included:
- Using probability-based segmentation [43].
- Investigating the feasibility of using DL techniques to segment wounds under conditions of small datasets [50] although DL-based methods for automating the segmentation of wounds are currently known to require large datasets for training.
- Using U-Net and Mask Region-based Convolutional Neural Network (R-CNN) and their extension versions which are the most popular networks in segmenting DFUs (For U-Net: colored [50,51,52,53,54], thermal [55,56], Fully Convolutional Neural Network (FCNN) [50,56,57,58,59,60,61,62] and Faster R-CNN [63,64,65,66,67]).
- In the classification of the DFU domains based on color images, approaches included:
- Employing Class Knowledge Banks (CKBs) to improve the performance of DL classification [72].
- Combining a pre-trained CNN model with automatic classifiers, which showed promising results [73].
- Focusing on overcoming severe class imbalances [77] using extension strategy and use of synthetic images appears to improve classification results for less frequent classes significantly.
- Setting up challenges to enrich the field with data, data analysis, and ground truth annotation [69].
- In the classification of the DFU domains based on thermal images:
- Focusing on the gap of finding a way to Peripheral Arterial Disease (PAD), a circulatory disorder characterized by reduced blood flow to the limbs, which significantly increases the risk of diabetic foot complications [78].
- Combining NNs by fusions [84], which showed higher accuracy.
- Using ML and image processing-based algorithms to locate hotspots in the feet [87].
- In the classification of the DFU domains based on different images, combining untrained and pre-trained transferred NNs to the field gives high yields, providing consistency across all performance metrics [24].
- In the hybrid frameworks (segmentation and classification) of the DFU, approaches included:
3.1. Performance Metrics
3.2. Quality Assessment
3.3. Impact of Bias and Data Quality on DFU Model Performance
4. AI in Diabetic Foot Management
5. ML/DL Models Used in Diabetic Foot Detection, Segmentation, and Classification
6. Discussion
6.1. Addressing Research Questions: Models, Metrics, and Dataset Characteristics
6.2. Limitation of Included Research
6.3. Fairness, Generalization, and External Validation
7. Conclusions
- Development of Public Benchmarks: Establish centralized, publicly accessible repositories of multimodal DFU imaging datasets annotated with clinical metadata and severity grading (e.g., Wagner scale).
- Standardized Evaluation Metrics: Promote the consistent use of metrics such as area under the curve (AUC), Dice similarity coefficient (DSC), and Jaccard index to ensure comparability and facilitate meta-analyses.
- Community-driven Benchmarking Initiatives: Encourage reproducibility through organized challenges (e.g., DFU Grand Challenge) that provide standardized tasks and evaluation protocols.
- FAIR Data Principles: Ensure that datasets adhere to FAIR principles (Findable, Accessible, Interoperable, Reusable) to support long-term usability and collaboration.
- Reporting Standards: Recommend adoption of AI-specific reporting guidelines such as CONSORT-AI and PRISMA-DTA in DFU-related research publications.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| AUC | Area Under Curve |
| CNN | Convolutional Neural Network |
| CT | Computed Tomography |
| DCNN | Deep Convolutional Neural Network |
| DFU | Diabetic Foot Ulcer |
| DL | Deep Learning |
| DM | Diabetes Mellitus |
| DSC | Dice Similarity Coefficient |
| FPR | False Positive Rate |
| mAP | mean Average Precision |
| MCC | Matthews Correlation Coefficient |
| ML | Machine Learning |
| MRI | Magnetic Resonance Imaging |
| NN | Neural Network |
| PAD | Peripheral Arterial Disease |
| QUADAS-2 | Quality Assessment of Diagnostic Accuracy Studies-2 |
| RGB | Red, Green, Blue |
| RMSE | Root Mean Square Error |
| ROC | Receiver Operating Characteristic curve |
| SUS | System Usability Scale |
| SVM | Support Vector Machine |
| YOLO | You Only Look Once |
References
- Kondaveeti, S.B.; Kaur, K.; Gupta, V.; Tanwar, R.; Choudhary, N.; Kumar, D.; Gupta, S.; Rani, P.; Vk, A. Next-generation microneedle platforms for site-specific management of diabetic neuropathy. Diabetol. Metab. Syndr. 2025, 17, 418. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.G.; Boulton, A.J.; Bus, S.A. Diabetic foot ulcers and their recurrence. N. Engl. J. Med. 2017, 376, 2367–2375. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Parker, C.N.; Parker, T.J.; Kinnear, E.M.; Derhy, P.H.; Alvarado, A.M.; Huygens, F.; Lazzarini, P.A.; Diabetic Foot Working Group, Queensland Statewide Diabetes Clinical Network. Incidence and risk factors for developing infection in patients presenting with uninfected diabetic foot ulcers. PLoS ONE 2017, 12, e0177916. [Google Scholar] [CrossRef]
- Degu, H.; Wondimagegnehu, A.; Yifru, Y.M.; Belachew, A. Is health related quality of life influenced by diabetic neuropathic pain among type II diabetes mellitus patients in Ethiopia? PLoS ONE 2019, 14, e0211449. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Mahbod, A.; Ellinger, I.; Galdran, A.; Gopalakrishnan, S.; Niezgoda, J.; Yu, Z. FUSeg: The foot ulcer segmentation challenge. Information 2024, 15, 140. [Google Scholar] [CrossRef]
- Kerr, M.; Rayman, G.; Jeffcoate, W. Cost of diabetic foot disease to the National Health Service in England. Diabet. Med. 2014, 31, 1498–1504. [Google Scholar] [CrossRef]
- Bharara, M.; Cobb, J.; Claremont, D. Thermography and thermometry in the assessment of diabetic neuropathic foot: A case for furthering the role of thermal techniques. Int. J. Low. Extrem. Wounds 2006, 5, 250–260. [Google Scholar] [CrossRef]
- Jodheea-Jutton, A.; Hindocha, S.; Bhaw-Luximon, A. Health economics of diabetic foot ulcer and recent trends to accelerate treatment. Foot 2022, 52, 101909. [Google Scholar] [CrossRef]
- Woodbury, M.G.; Sibbald, R.G.; Ostrow, B.; Persaud, R.; Lowe, J.M. Tool for rapid & easy identification of high risk diabetic foot: Validation & clinical pilot of the simplified 60 second diabetic foot screening tool. PLoS ONE 2015, 10, e0125578. [Google Scholar]
- Ramirez, H.A.; Liang, L.; Pastar, I.; Rosa, A.M.; Stojadinovic, O.; Zwick, T.G.; Kirsner, R.S.; Maione, A.G.; Garlick, J.A.; Tomic-Canic, M. Comparative genomic, microRNA, and tissue analyses reveal subtle differences between non-diabetic and diabetic foot skin. PLoS ONE 2015, 10, e0137133. [Google Scholar] [CrossRef]
- Tulloch, J.; Zamani, R.; Akrami, M. Machine learning in the prevention, diagnosis and management of diabetic foot ulcers: A systematic review. IEEE Access 2020, 8, 198977–199000. [Google Scholar] [CrossRef]
- Ferreira, A.C.B.H.; Ferreira, D.D.; Barbosa, B.H.G.; Aline de Oliveira, U.; Aparecida Padua, E.; Oliveira Chiarini, F.; Baena de Moraes Lopes, M.H. Neural network-based method to stratify people at risk for developing diabetic foot: A support system for health professionals. PLos ONE 2023, 18, e0288466. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, H.U.; Spruce, M.; Alty, S.R.; Dudley, S. Automated peripheral neuropathy assessment using optical imaging and foot anthropometry. IEEE Trans. Biomed. Eng. 2015, 62, 1911–1917. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Huang, J.; Zhao, Z.; Zahid, A.; Heidari, H.; Ghannam, R.; Abbasi, Q.H. A compact wearable system for detection and estimation of open wound status in diabetic patient. In Proceedings of the 2018 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), Chengdu, China, 26–30 October 2018; pp. 60–63. [Google Scholar]
- Najafi, B.; Mishra, R. Harnessing digital health technologies to remotely manage diabetic foot syndrome: A narrative review. Medicina 2021, 57, 377. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Abbood, A.A.; Fadhel, M.A.; Al-Shamma, O.; Zhang, J. Comparison of hybrid convolutional neural networks models for diabetic foot ulcer classification. J. Eng. Sci. Technol. 2021, 16, 2001–2017. [Google Scholar]
- Fard, A.S.; Esmaelzadeh, M.; Larijani, B. Assessment and treatment of diabetic foot ulcer. Int. J. Clin. Pract. 2007, 61, 1931–1938. [Google Scholar] [CrossRef]
- Aalaa, M.; Malazy, O.T.; Sanjari, M.; Peimani, M.; Mohajeri-Tehrani, M. Nurses’ role in diabetic foot prevention and care: A review. J. Diabetes Metab. Disord. 2012, 11, 1–6. [Google Scholar] [CrossRef]
- Aziz, Z.; Lin, W.K.; Nather, A.; Huak, C.Y. Predictive factors for lower extremity amputations in diabetic foot infections. Diabet. Foot Ankle 2011, 2, 7463. [Google Scholar] [CrossRef]
- Arcadu, F.; Benmansour, F.; Maunz, A.; Willis, J.; Haskova, Z.; Prunotto, M. Deep learning algorithm predicts diabetic retinopathy progression in individual patients. NPJ Digit. Med. 2019, 2, 92, Erratum in NPJ Digit. Med. 2020, 3, 160. [Google Scholar] [CrossRef]
- Yap, M.H.; Kendrick, C.; Reeves, N.D.; Goyal, M.; Pappachan, J.M.; Cassidy, B. Development of Diabetic Foot Ulcer Datasets: An Overview. Diabet. Foot Ulcers Grand Chall. 2021, 1–18. [Google Scholar]
- Pradhan, G.; Pradhan, R.; Khandelwal, B. A study on various machine learning algorithms used for prediction of diabetes mellitus. In Soft Computing Techniques and Applications: Proceeding of the International Conference on Computing and Communication (IC3 2020); Springer: Singapore, 2021; pp. 553–561. [Google Scholar]
- Yap, M.H.; Hachiuma, R.; Alavi, A.; Brüngel, R.; Cassidy, B.; Goyal, M.; Zhu, H.; Rückert, J.; Olshansky, M.; Huang, X.; et al. Deep learning in diabetic foot ulcers detection: A comprehensive evaluation. Comput. Biol. Med. 2021, 135, 104596. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Luévano, J.; Guerrero-Viramontes, J.; Romo-Andrade, J.R.; Funes-Gallanzi, M. DFU_VIRnet: A Novel Visible-Infrared CNN to Improve Diabetic Foot Ulcer Classification and Early Detection of Ulcer Risk Zones. Biomed. Signal Process. Control 2023, 86, 105341. [Google Scholar] [CrossRef]
- Jung, K.; Covington, S.; Sen, C.K.; Januszyk, M.; Kirsner, R.S.; Gurtner, G.C.; Shah, N.H. Rapid identification of slow healing wounds. Wound Repair Regen. 2016, 24, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.S.; Mahesh, G.; Preethi, N.M. Exploiting Machine Learning Algorithms to Diagnose Foot Ulcers in Diabetic Patients. Eai Endorsed Trans. Pervasive Health Technol. 2021, 7, e2. [Google Scholar] [CrossRef]
- Wang, S.C.; Anderson, J.A.; Evans, R.; Woo, K.; Beland, B.; Sasseville, D.; Moreau, L. Point-of-care wound visioning technology: Reproducibility and accuracy of a wound measurement app. PLoS ONE 2017, 12, e0183139. [Google Scholar] [CrossRef]
- Sudarvizhi, M.D.; Nivetha, M.; Priyadharshini, P.; Swetha, J. Identification and analysis of foot ulceration using load cell technique. IRJET 2019, 6, 7792–7797. [Google Scholar]
- Davradou, A.; Protopapadakis, E.; Kaselimi, M.; Doulamis, A.; Doulamis, N. Diabetic foot ulcers monitoring by employing super resolution and noise reduction deep learning techniques. In Proceedings of the 15th International Conference on PErvasive Technologies Related to Assistive Environments, Corfu, Greece, 29 June–1 July 2022; pp. 83–88. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 372. [Google Scholar] [CrossRef]
- Patel, S.; Patel, R.; Desai, D. Diabetic foot ulcer wound tissue detection and classification. In Proceedings of the 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, 17–18 March 2017; IEEE: New Tork, NY, USA, 2017; pp. 1–5. [Google Scholar]
- McInnes, M.D.; Moher, D.; Thombs, B.D.; McGrath, T.A.; Bossuyt, P.M.; Clifford, T.; Cohen, J.F.; Deeks, J.J.; Gatsonis, C.; Hooft, L.; et al. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: The PRISMA-DTA statement. JAMA 2018, 319, 388–396. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.; QUADAS-2 Group. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schünemann, H.J. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008, 336, 924–926. [Google Scholar] [CrossRef]
- Guyatt, G.; Oxman, A.D.; Akl, E.A.; Kunz, R.; Vist, G.; Brozek, J.; Norris, S.; Falck-Ytter, Y.; Glasziou, P.; DeBeer, H.; et al. GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables. J. Clin. Epidemiol. 2011, 64, 383–394. [Google Scholar] [CrossRef]
- Balshem, H.; Helfand, M.; Schünemann, H.J.; Oxman, A.D.; Kunz, R.; Brozek, J.; Vist, G.E.; Falck-Ytter, Y.; Meerpohl, J.; Norris, S.; et al. GRADE guidelines: 3. Rating the quality of evidence. J. Clin. Epidemiol. 2011, 64, 401–406. [Google Scholar] [CrossRef]
- Haque, F.; Reaz, M.B.I.; Chowdhury, M.E.H.; Ezeddin, M.; Kiranyaz, S.; Alhatou, M.; Ali, S.H.M.; Bakar, A.A.A.; Srivastava, G. Machine Learning-Based Diabetic Neuropathy and Previous Foot Ulceration Patients Detection Using Electromyography and Ground Reaction Forces during Gait. Sensors 2022, 22, 3507. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, N.; Zakaria, A.; Omar, M.I.; Shakaff, A.Y.M.; Masnan, M.J.; Kamarudin, L.M.; Abdul Rahim, N.; Zakaria, N.Z.I.; Abdullah, A.A.; Othman, A.; et al. In-vitro diagnosis of single and poly microbial species targeted for diabetic foot infection using e-nose technology. BMC Bioinform. 2015, 16, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Roy, P.; Mishra, A.K. DFU_SPNet: A stacked parallel convolution layers based CNN to improve Diabetic Foot Ulcer classification. ICT Express 2022, 8, 271–275. [Google Scholar] [CrossRef]
- Han, A.; Zhang, Y.; Li, A.; Li, C.; Zhao, F.; Dong, Q.; Liu, Q.; Liu, Y.; Shen, X.; Yan, S.; et al. Efficient refinements on YOLOv3 for real-time detection and assessment of diabetic foot Wagner grades. arXiv 2020, arXiv:2006.02322. [Google Scholar]
- Brüngel, R.; Friedrich, C.M. DETR and YOLOv5: Exploring performance and self-training for diabetic foot ulcer detection. In Proceedings of the 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS), Aveiro, Portugal, 7–9 June 2021; IEEE: New Tork, NY, USA, 2021; pp. 148–153. [Google Scholar]
- Nag, U.; Upadhayay, M.; Gupta, T. Detecting Diabetic Foot Complications using Infrared Thermography and Machine Learning. In Proceedings of the International Conference on Graphics and Signal Processing, Nagoya, Japan, 25–27 June 2021; pp. 41–46. [Google Scholar]
- Cui, C.; Thurnhofer-Hemsi, K.; Soroushmehr, R.; Mishra, A.; Gryak, J.; Domínguez, E.; Najarian, K.; López-Rubio, E. Diabetic wound segmentation using convolutional neural networks. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 1002–1005. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Jawahar, M.; Anbarasi, L.J.; Jasmine, S.G.; Narendra, M. Diabetic foot ulcer segmentation using color space models. In Proceedings of the 2020 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 10–12 June 2020; IEEE: New York, NY, USA, 2020; pp. 742–747. [Google Scholar]
- Heras-Tang, A.; Valdes-Santiago, D.; León-Mecías, Á.M.; Díaz-Romañach, M.L.B.; Mesejo-Chiong, J.A.; Cabal-Mirabal, C. Diabetic foot ulcer segmentation using logistic regression, DBSCAN clustering and mathematical morphology operators. Electron. Lett. Comput. Vis. Image Anal. 2022, 21, 22–39. [Google Scholar] [CrossRef]
- Alshayeji, M.H.; Sindhu, S.C.; Abed, S.E. Early detection of diabetic foot ulcers from thermal images using the bag of features technique. Biomed. Signal Process. Control 2023, 79, 104143. [Google Scholar] [CrossRef]
- Muñoz, P.; Rodríguez, R.; Montalvo, N. Automatic segmentation of diabetic foot ulcer from mask region-based convolutional neural networks. J. Biomed. Res. Clin. Investig. 2020, 1. [Google Scholar] [CrossRef]
- Huang, H.N.; Zhang, T.; Yang, C.T.; Sheen, Y.J.; Chen, H.M.; Chen, C.J.; Tseng, M.W. Image segmentation using transfer learning and Fast R-CNN for diabetic foot wound treatments. Front. Public Health 2022, 10, 969846. [Google Scholar] [CrossRef]
- Rania, N.; Douzi, H.; Yves, L.; Sylvie, T. Semantic segmentation of diabetic foot ulcer images: Dealing with small dataset in DL approaches. In Proceedings of the International Conference on Image and Signal Processing, Dubai, United Arab Emirates, 20–21 June 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 162–169. [Google Scholar]
- Ohura, N.; Mitsuno, R.; Sakisaka, M.; Terabe, Y.; Morishige, Y.; Uchiyama, A.; Okoshi, T.; Shinji, I.; Takushima, A. Convolutional neural networks for wound detection: The role of artificial intelligence in wound care. J. Wound Care 2019, 28, S13–S24. [Google Scholar] [CrossRef]
- Hernández, A.; Arteaga-Marrero, N.; Villa, E.; Fabelo, H.; Callicó, G.M.; Ruiz-Alzola, J. Automatic Segmentation Based on Deep Learning Techniques for Diabetic Foot Monitoring Through Multimodal Images. In Proceedings of the International Conference on Image Analysis and Processing, Trento, Italy, 9–13 September 2019; pp. 414–424. [Google Scholar]
- Mahbod, A.; Schaefer, G.; Ecker, R.; Ellinger, I. Automatic foot ulcer segmentation using an ensemble of convolutional neural networks. In Proceedings of the 2022 26th International Conference on Pattern Recognition (ICPR), Montreal, QC, Canada, 21–25 August 2022; pp. 4358–4364. [Google Scholar]
- Galdran, A.; Carneiro, G.; Ballester, M.A.G. Double encoder-decoder networks for gastrointestinal polyp segmentation. In Proceedings of the International Conference on Pattern Recognition, Virtual Event, 10–15 January 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 293–307. [Google Scholar]
- Bouallal, D.; Bougrine, A.; Douzi, H.; Harba, R.; Canals, R.; Vilcahuaman, L.; Arbanil, H. Segmentation of plantar foot thermal images: Application to diabetic foot diagnosis. In Proceedings of the International Conference on Systems, Signals and Image Processing (IWSSIP), Niterói, Brazil, 3–5 June 2020; IEEE: New York, NY, USA, 2020; pp. 116–121. [Google Scholar]
- Bouallal, D.; Douzi, H.; Harba, R. Diabetic foot thermal image segmentation using Double Encoder-ResUnet (DE-ResUnet). J. Med Eng. Technol. 2022, 46, 378–392. [Google Scholar]
- Goyal, M.; Yap, M.H.; Reeves, N.D.; Rajbhandari, S.; Spragg, J. Fully convolutional networks for diabetic foot ulcer segmentation. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; pp. 618–623. [Google Scholar]
- Bougrine, A.; Harba, R.; Canals, R.; Ledee, R.; Jabloun, M.; Villeneuve, A. Segmentation of Plantar Foot Thermal Images Using Prior Information. Sensors 2022, 22, 3835. [Google Scholar] [CrossRef]
- Amin, J.; Sharif, M.; Anjum, M.A.; Khan, H.U.; Malik, M.S.A.; Kadry, S. An integrated design for classification and localization of diabetic foot ulcer based on CNN and YOLOv2-DFU models. IEEE Access 2020, 8, 228586–228597. [Google Scholar] [CrossRef]
- Bougrine, A.; Harba, R.; Canals, R.; Ledee, R.; Jabloun, M. On the segmentation of plantar foot thermal images with Deep Learning. In Proceedings of the European Signal Processing Conference (EUSIPCO), A Coruña, Spain, 2–6 September 2019; IEEE: New York, NY, USA, 2019; pp. 1–5. [Google Scholar]
- Liao, T.Y.; Yang, C.H.; Lo, Y.W.; Lai, K.Y.; Shen, P.H.; Lin, Y.L. HarDNet-DFUS: An Enhanced Harmonically-Connected Network for Diabetic Foot Ulcer Image Segmentation and Colonoscopy Polyp Segmentation. arXiv 2022, arXiv:2209.07313. [Google Scholar]
- Niri, R.; Douzi, H.; Lucas, Y.; Treuillet, S. A superpixel-wise fully convolutional neural network approach for diabetic foot ulcer tissue classification. In Proceedings of the International Conference on Pattern Recognition, Kolkata, India, 15–18 December 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 308–320. [Google Scholar]
- Goyal, M.; Reeves, N.D.; Rajbhandari, S.; Yap, M.H. Robust methods for real-time diabetic foot ulcer detection and localization on mobile devices. IEEE J. Biomed. Health Informatics 2018, 23, 1730–1741. [Google Scholar]
- Cassidy, B.; Reeves, N.D.; Pappachan, J.M.; Ahmad, N.; Haycocks, S.; Gillespie, D.; Yap, M.H. A cloud-based deep learning framework for remote detection of diabetic foot ulcers. IEEE Pervasive Comput. 2022, 21, 78–86. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, J. The Classification of Diabetic Foot Based on Faster. In Proceedings of the International Conference on Computer Vision, Image and Deep Learning (CVIDL), Chongqing, China, 10–12 July 2020; IEEE: New York, NY, USA, 2020; pp. 585–591. [Google Scholar]
- Cassidy, B.; Reeves, N.D.; Pappachan, J.M.; Gillespie, D.; O’Shea, C.; Rajbhandari, S.; Maiya, A.G.; Frank, E.; Boulton, A.J.; Armstrong, D.G.; et al. The DFUC 2020 dataset: Analysis towards diabetic foot ulcer detection. touchREVIEWS Endocrinol. 2021, 17, 5. [Google Scholar]
- da Costa Oliveira, A.L.; de Carvalho, A.B.; Dantas, D.O. Faster R-CNN Approach for Diabetic Foot Ulcer Detection. In Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP), Virtual Event, 8–10 February 2021; pp. 677–684. [Google Scholar]
- Goyal, M.; Reeves, N.D.; Rajbhandari, S.; Ahmad, N.; Wang, C.; Yap, M.H. Recognition of ischaemia and infection in diabetic foot ulcers: Dataset and techniques. Comput. Biol. Med. 2020, 117, 103616. [Google Scholar] [CrossRef]
- Yap, M.H.; Cassidy, B.; Pappachan, J.M.; O’Shea, C.; Gillespie, D.; Reeves, N.D. Analysis towards classification of infection and ischaemia of diabetic foot ulcers. In Proceedings of the International Conference on Biomedical and Health Informatics (BHI), Athens, Greece, 21–24 September 2021; pp. 1–4. [Google Scholar]
- Al-Garaawi, N.; Ebsim, R.; Alharan, A.F.; Yap, M.H. Diabetic foot ulcer classification using mapped binary patterns and convolutional neural networks. Comput. Biol. Med. 2022, 140, 105055. [Google Scholar] [CrossRef] [PubMed]
- Al-Garaawi, N.; Harbi, Z.; Morris, T. Fusion of Hand-crafted and Deep Features for Automatic Diabetic Foot Ulcer Classification. TEM J. 2022, 11, 1055–1064. [Google Scholar] [CrossRef]
- Xu, Y.; Han, K.; Zhou, Y.; Wu, J.; Xie, X.; Xiang, W. Classification of Diabetic Foot Ulcers Using Class Knowledge Banks. Front. Bioeng. Biotechnol. 2021, 9, 811028. [Google Scholar] [CrossRef] [PubMed]
- Gamage, C.; Wijesinghe, I.; Perera, I. Automatic scoring of diabetic foot ulcers through deep CNN based feature extraction with low rank matrix factorization. In Proceedings of the International Conference on Bioinformatics and Bioengineering (BIBE), Athens, Greece, 28–30 October 2019; pp. 352–356. [Google Scholar]
- López-Cabrera, J.D.; Ruiz-Gonzalez, Y.; Díaz-Amador, R.; Taboada-Crispi, A. Automatic Classification of Diabetic Foot Ulcers Using Computer Vision Techniques. In Proceedings of the International Workshop on Artificial Intelligence and Pattern Recognition, Havana, Cuba, 5–7 October 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 290–299. [Google Scholar]
- Hüsers, J.; Hafer, G.; Heggemann, J.; Wiemeyer, S.; Przysucha, M.; Dissemond, J.; Moelleken, M.; Erfurt-Berge, C.; Hübner, U.H. Automatic Classification of Diabetic Foot Ulcer Images: A Transfer-Learning Approach to Detect Wound Maceration. In Informatics and Technology in Clinical Care and Public Health; IOS Press: Amsterdam, The Netherlands, 2022; pp. 301–304. [Google Scholar]
- Santos, E.; Santos, F.; Dallyson, J.; Aires, K.; Tavares, J.M.R.; Veras, R. Diabetic Foot Ulcers Classification using a fine-tuned CNNs Ensemble. In Proceedings of the International Symposium on Computer-Based Medical Systems (CBMS), Shenzhen, China, 21–22 July 2022; IEEE: New York, NY, USA, 2022; pp. 282–287. [Google Scholar]
- Bloch, L.; Brüngel, R.; Friedrich, C.M. Boosting EfficientNets Ensemble Performance via Pseudo-Labels and Synthetic Images by pix2pixHD for Infection and Ischaemia Classification in Diabetic Foot Ulcers. In Proceedings of the Diabetic Foot Ulcers Grand Challenge, Virtual Event, 27 September 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 30–49. [Google Scholar]
- Padierna, L.C.; Amador-Medina, L.F.; Murillo-Ortiz, B.O.; Villaseñor-Mora, C. Classification method of peripheral arterial disease in patients with type 2 diabetes mellitus by infrared thermography and machine learning. Infrared Phys. Technol. 2020, 111, 103531. [Google Scholar] [CrossRef]
- Jain, A. Detection and Classification of Diabetic Foot Thermograms Using Deep Learning. Ph.D. Thesis, Delhi Technological University, Delhi, India, 2022. [Google Scholar]
- Khandakar, A.; Chowdhury, M.E.; Reaz, M.B.I.; Ali, S.H.M.; Hasan, M.A.; Kiranyaz, S.; Rahman, T.; Alfkey, R.; Bakar, A.A.A.; Malik, R.A. A machine learning model for early detection of diabetic foot using thermogram images. Comput. Biol. Med. 2021, 137, 104838. [Google Scholar] [CrossRef]
- Cruz-Vega, I.; Hernandez-Contreras, D.; Peregrina-Barreto, H.; Rangel-Magdaleno, J.d.J.; Ramirez-Cortes, J.M. Deep learning classification for diabetic foot thermograms. Sensors 2020, 20, 1762. [Google Scholar] [CrossRef]
- Khandakar, A.; Chowdhury, M.E.; Reaz, M.B.I.; Ali, S.H.M.; Kiranyaz, S.; Rahman, T.; Chowdhury, M.H.; Ayari, M.A.; Alfkey, R.; Bakar, A.A.A.; et al. A Novel Machine Learning Approach for Severity Classification of Diabetic Foot Complications Using Thermogram Images. Sensors 2022, 22, 4249. [Google Scholar] [CrossRef]
- Filipe, V.; Teixeira, P.; Teixeira, A. Automatic Classification of Foot Thermograms Using Machine Learning Techniques. Algorithms 2022, 15, 236. [Google Scholar] [CrossRef]
- Munadi, K.; Saddami, K.; Oktiana, M.; Roslidar, R.; Muchtar, K.; Melinda, M.; Muharar, R.; Syukri, M.; Abidin, T.F.; Arnia, F. A Deep Learning Method for Early Detection of Diabetic Foot Using Decision Fusion and Thermal Images. Appl. Sci. 2022, 12, 7524. [Google Scholar] [CrossRef]
- Anaya-Isaza, A.; Zequera-Diaz, M. Fourier transform-based data augmentation in deep learning for diabetic foot thermograph classification. Biocybern. Biomed. Eng. 2022, 42, 437–452. [Google Scholar] [CrossRef]
- Zhou, G.X.; Tao, Y.K.; Hou, J.Z.; Zhu, H.J.; Xiao, L.; Zhao, N.; Wang, X.W.; Du, B.L.; Zhang, D. Construction and validation of a deep learning-based diagnostic model for segmentation and classification of diabetic foot. Front. Endocrinol. 2025, 16, 1543192. [Google Scholar] [CrossRef]
- Balasenthilkumaran, N.V.; Ram S, B.; Gorti, S.; Rajagopal, S.; Soangra, R. Design and comparison of machine learning-based computer-aided diagnostic techniques to aid diagnosis of diabetes and detection of ulcer-prone regions in the feet using thermograms. Res. Biomed. Eng. 2022, 38, 781–795, Erratum in Res. Biomed. Eng. 2022, 38, 1027. [Google Scholar] [CrossRef]
- Wijesinghe, I.; Gamage, C.; Perera, I.; Chitraranjan, C. A smart telemedicine system with deep learning to manage diabetic retinopathy and foot ulcers. In Proceedings of the Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 3–5 July 2019; pp. 686–691. [Google Scholar]
- Maldonado, H.; Bayareh, R.; Torres, I.; Vera, A.; Gutiérrez, J.; Leija, L. Automatic detection of risk zones in diabetic foot soles by processing thermographic images taken in an uncontrolled environment. Infrared Phys. Technol. 2020, 105, 103187. [Google Scholar] [CrossRef]
- Mukherjee, R.; Manohar, D.D.; Das, D.K.; Achar, A.; Mitra, A.; Chakraborty, C. Automated tissue classification framework for reproducible chronic wound assessment. BioMed Res. Int. 2014, 2014, 851582. [Google Scholar] [CrossRef] [PubMed]
- Godeiro, V.; Neto, J.S.; Carvalho, B.; Santana, B.; Ferraz, J.; Gama, R. Chronic wound tissue classification using convolutional networks and color space reduction. In Proceedings of the International Workshop on Machine Learning for Signal Processing (MLSP), Aalborg, Denmark, 17–20 September 2018; pp. 1–6. [Google Scholar]
- Babu, K.; Sabut, S.; Nithya, D. Efficient detection and classification of diabetic foot ulcer tissue using PSO technique. Int. J. Eng. Technol. 2018, 7, 1006–1010. [Google Scholar] [CrossRef]
- Wannous, H.; Lucas, Y.; Treuillet, S. Enhanced assessment of the wound-healing process by accurate multiview tissue classification. IEEE Trans. Med Imaging 2010, 30, 315–326. [Google Scholar] [CrossRef]
- Anisuzzaman, D.; Wang, C.; Rostami, B.; Gopalakrishnan, S.; Niezgoda, J.; Yu, Z. Image-based artificial intelligence in wound assessment: A systematic review. Adv. Wound Care 2022, 11, 687–709. [Google Scholar] [CrossRef]
- Cassidy, B.; Kendrick, C.; Reeves, N.D.; Pappachan, J.M.; O’Shea, C.; Armstrong, D.G.; Yap, M.H. Diabetic foot ulcer grand challenge 2021: Evaluation and summary. In Proceedings of the Diabetic Foot Ulcers Grand Challenge, Strasbourg, France, 27 September 2021; pp. 90–105. [Google Scholar]
- Behera, A. Use of artificial intelligence for management and identification of complications in diabetes. Clin. Diabetol. 2021, 10, 221–225. [Google Scholar] [CrossRef]
- Hazenberg, C.E.; aan de Stegge, W.B.; Van Baal, S.G.; Moll, F.L.; Bus, S.A. Telehealth and telemedicine applications for the diabetic foot: A systematic review. Diabetes/Metabolism Res. Rev. 2020, 36, e3247. [Google Scholar] [CrossRef]
- Pappachan, J.M.; Cassidy, B.; Fernandez, C.J.; Chandrabalan, V.; Yap, M.H. The role of artificial intelligence technology in the care of diabetic foot ulcers: The past, the present, and the future. World J. Diabetes 2022, 13, 1131–1139. [Google Scholar] [CrossRef]
- Wang, L.; Pedersen, P.C.; Agu, E.; Strong, D.M.; Tulu, B. Area determination of diabetic foot ulcer images using a cascaded two-stage SVM-based classification. IEEE Trans. Biomed. Eng. 2016, 64, 2098–2109. [Google Scholar] [CrossRef]
- Goyal, M.; Reeves, N.D.; Davison, A.K.; Rajbhandari, S.; Spragg, J.; Yap, M.H. Dfunet: Convolutional neural networks for diabetic foot ulcer classification. IEEE Trans. Emerg. Top. Comput. Intell. 2018, 4, 728–739. [Google Scholar] [CrossRef]
- Dremin, V.; Marcinkevics, Z.; Zherebtsov, E.; Popov, A.; Grabovskis, A.; Kronberga, H.; Geldnere, K.; Doronin, A.; Meglinski, I.; Bykov, A. Skin complications of diabetes mellitus revealed by polarized hyperspectral imaging and machine learning. IEEE Trans. Med Imaging 2021, 40, 1207–1216. [Google Scholar] [CrossRef]
- Thotad, P.N.; Bharamagoudar, G.R.; Anami, B.S. Diabetic foot ulcer detection using deep learning approaches. Sensors Int. 2023, 4, 100210. [Google Scholar] [CrossRef]
- Sarmun, R.; Chowdhury, M.E.; Murugappan, M.; Aqel, A.; Ezzuddin, M.; Rahman, S.M.; Khandakar, A.; Akter, S.; Alfkey, R.; Hasan, A. Diabetic foot ulcer detection: Combining deep learning models for improved localization. Cogn. Comput. 2024, 16, 1413–1431. [Google Scholar] [CrossRef]
- Sendilraj, V.; Pilcher, W.; Choi, D.; Bhasin, A.; Bhadada, A.; Bhadadaa, S.K.; Bhasin, M. DFUCare: Deep learning platform for diabetic foot ulcer detection, analysis, and monitoring. Front. Endocrinol. 2024, 15, 1386613. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Mostafiz, R.; Uddin, M.S.; Paul, B.K. XAI-FusionNet: Diabetic foot ulcer detection based on multi-scale feature fusion with explainable artificial intelligence. Heliyon 2024, 10, e31228. [Google Scholar] [CrossRef]
- El-Kady, A.M.; Abbassy, M.M.; Ali, H.H.; Ali, M.F. Advancing diabetic foot ulcer detection based on resnet and gan integration. J. Theor. Appl. Inf. Technol. 2024, 102, 2258–2268. Available online: https://www.jatit.org/volumes/Vol102No6/2Vol102No6.pdf (accessed on 24 November 2025).
- Azeem, M.; Zaman, M.; Akhunzada, A.; Kehkashan, T.; Ashraf, I.; Rehman, A. Optimizing Diabetic Foot Ulcer Detection: Leveraging SSD and YOLO Architectures. In Proceedings of the 2024 IEEE 21st International Conference on Smart Communities: Improving Quality of Life using AI, Robotics and IoT (HONET), Doha, Qatar, 3–5 December 2024; pp. 195–200. [Google Scholar] [CrossRef]
- Verma, G. Leveraging smart image processing techniques for early detection of foot ulcers using a deep learning network. Pol. J. Radiol. 2024, 89, e368. [Google Scholar] [CrossRef]
- Busaranuvong, P.; Agu, E.; Kumar, D.; Gautam, S.; Fard, R.S.; Tulu, B.; Strong, D. Guided Conditional Diffusion Classifier (ConDiff) for Enhanced Prediction of Infection in Diabetic Foot Ulcers. IEEE Open J. Eng. Med. Biol. 2024, 6, 20–27. [Google Scholar] [CrossRef]
- Eldin, A.S.; Ahmoud, A.S.; Hamza, H.M.; Ardah, H. Enhancing Early Detection of Diabetic Foot Ulcers Using Deep Neural Networks. Diagnostics 2025, 15, 1996. [Google Scholar] [CrossRef]
- Rathore, P.S.; Kumar, A.; Nandal, A.; Dhaka, A.; Sharma, A.K. A feature explainability-based deep learning technique for diabetic foot ulcer identification. Sci. Rep. 2025, 15, 6758. [Google Scholar] [CrossRef]
- Debnath, S.; Khurana, A.; Senbagavalli, M.; Naik, S.; Chandra Patni, J.; Mishra, P.K.; Kishore, J. Sustainable AI for diabetic foot ulcer detection: A deep learning approach for early diagnosis. Discov. Appl. Sci. 2025, 7, 1012. [Google Scholar] [CrossRef]
- Mahmud, M.I.; Reza, M.S.; Akash, M.O.A.; Elias, F.; Ahmed, N. DFU_DIALNet: Towards reliable and trustworthy diabetic foot ulcer detection with synergistic confluence of Grad-CAM and LIME. PLoS ONE 2025, 20, e0330669. [Google Scholar] [CrossRef] [PubMed]
- Girmaw, D.W.; Taye, G.B. MobileNetV2 model for detecting and grading diabetic foot ulcer. Discov. Appl. Sci. 2025, 7, 268. [Google Scholar] [CrossRef]
- Pradhana, W.M.A.A.; Pradipta, G.A.; Huizen, R.R. Combination of CNN and SMOTE-IPF for Early Detection of Diabetes Patients in Thermogram Images. J. Nas. Pendidik. Tek. Inform. JANAPATI 2025, 14, 336–347. [Google Scholar] [CrossRef]
- Gamage, H.; Wijesinghe, W.; Perera, I. Instance-based segmentation for boundary detection of neuropathic ulcers through Mask-RCNN. In Proceedings of the International Conference on Artificial Neural Networks, Munich, Germany, 17–19 September 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 511–522. [Google Scholar]
- Chitra, T.; Sundar, C.; GOPALAKRISHNAN, S. Investigation and classification of chronic wound tissue images using random forest algorithm (RF). Int. J. Nonlinear Anal. Appl. 2022, 13, 643–651. [Google Scholar]
- Chang, C.W.; Christian, M.; Chang, D.H.; Lai, F.; Liu, T.J.; Chen, Y.S.; Chen, W.J. Deep learning approach based on superpixel segmentation assisted labeling for automatic pressure ulcer diagnosis. PLoS ONE 2022, 17, e0264139. [Google Scholar] [CrossRef]
- Wang, C.; Anisuzzaman, D.; Williamson, V.; Dhar, M.K.; Rostami, B.; Niezgoda, J.; Gopalakrishnan, S.; Yu, Z. Fully automatic wound segmentation with deep convolutional neural networks. Sci. Rep. 2020, 10, 21897. [Google Scholar] [CrossRef]
- Lan, T.; Li, Z.; Chen, J. FusionSegNet: Fusing global foot features and local wound features to diagnose diabetic foot. Comput. Biol. Med. 2023, 152, 106456. [Google Scholar] [CrossRef]
- Jishnu, P.; BK, S.K.; Jayaraman, S. Automatic foot ulcer segmentation using conditional generative adversarial network (AFSegGAN): A wound management system. PLoS Digit. Health 2023, 2, e0000344. [Google Scholar]
- Jiao, C.; Zhao, X.; Li, L.; Wang, C.; Chen, Y. UFOS-Net leverages small-scale feature fusion for diabetic foot ulcer segmentation. Sci. Rep. 2025, 15, 29317. [Google Scholar] [CrossRef] [PubMed]
- Niri, R.; Zahia, S.; Stefanelli, A.; Sharma, K.; Probst, S.; Pichon, S.; Chanel, G. Wound segmentation with U-Net using a dual attention mechanism and transfer learning. J. Imaging Informatics Med. 2025, 38, 3351–3365. [Google Scholar] [CrossRef] [PubMed]
- Botros, F.S.; Taher, M.F.; ElSayed, N.M.; Fahmy, A.S. Prediction of diabetic foot ulceration using spatial and temporal dynamic plantar pressure. In Proceedings of the Cairo international biomedical engineering conference (CIBEC), Cairo, Egypt, 15–17 December 2016; pp. 43–47. [Google Scholar]
- Kasbekar, P.U.; Goel, P.; Jadhav, S.P. A decision tree analysis of diabetic foot amputation risk in Indian patients. Front. Endocrinol. 2017, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Adam, M.; Ng, E.Y.; Oh, S.L.; Heng, M.L.; Hagiwara, Y.; Tan, J.H.; Tong, J.W.; Acharya, U.R. Automated characterization of diabetic foot using nonlinear features extracted from thermograms. Infrared Phys. Technol. 2018, 89, 325–337. [Google Scholar] [CrossRef]
- Vardasca, R.; Vaz, L.; Magalhaes, C.; Seixas, A.; Mendes, J. Towards the diabetic foot ulcers classification with infrared thermal images. In Proceedings of the Quantitative Infrared Thermography Conference, Berlin, Germany, 25–29 June 2018. [Google Scholar]
- Vardasca, R.; ASIS, F. Diabetic foot monitoring using dynamic thermography and AI classifiers. In Proceedings of the 3rd Quantitative Infrared Thermography Asia Conference (QIRT Asia 2019), Tokyo, Japan, 1–5 July 2019; pp. 1–5. [Google Scholar]
- Alzubaidi, L.; Fadhel, M.A.; Oleiwi, S.R.; Al-Shamma, O.; Zhang, J. DFU_QUTNet: Diabetic foot ulcer classification using novel deep convolutional neural network. Multimed. Tools Appl. 2020, 79, 15655–15677. [Google Scholar] [CrossRef]
- Galdran, A.; Carneiro, G.; Ballester, M.A.G. Convolutional nets versus vision transformers for diabetic foot ulcer classification. In Proceedings of the Diabetic Foot Ulcers Grand Challenge, Virtual Event, 27 September 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 21–29. [Google Scholar]
- Selle, J.; Prakash, K.V.; Sai, G.A.; Vinod, B.; Chellappan, K. Classification of foot thermograms using texture features and support vector machine. In Proceedings of the International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 4–6 August 2021; IEEE: New York, NY, USA, 2021; pp. 1445–1449. [Google Scholar]
- Das, S.K.; Roy, P.; Mishra, A.K. Recognition of ischaemia and infection in diabetic foot ulcer: A deep convolutional neural network based approach. Int. J. Imaging Syst. Technol. 2022, 32, 192–208. [Google Scholar] [CrossRef]
- Yogapriya, J.; Chandran, V.; Sumithra, M.; Elakkiya, B.; Shamila Ebenezer, A.; Suresh Gnana Dhas, C. Automated Detection of Infection in Diabetic Foot Ulcer Images Using Convolutional Neural Network. J. Healthc. Eng. 2022, 2022, 2349849. [Google Scholar] [CrossRef]
- Jain, A.; Sreedevi, I. An Enhanced Methodology for Diabetic Foot Thermogram Classification using Deep Learning. In Proceedings of the International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON), Faridabad, India, 26–27 May 2022; IEEE: New York, NY, USA, 2022; Volume 1, pp. 1–6. [Google Scholar]
- Khandakar, A.; Chowdhury, M.E.; Reaz, M.B.I.; Ali, S.H.M.; Abbas, T.O.; Alam, T.; Ayari, M.A.; Mahbub, Z.B.; Habib, R.; Rahman, T.; et al. Thermal Change Index-Based Diabetic Foot Thermogram Image Classification Using Machine Learning Techniques. Sensors 2022, 22, 1793. [Google Scholar] [CrossRef]
- Khosa, I.; Raza, A.; Anjum, M.; Ahmad, W.; Shahab, S. Automatic Diabetic Foot Ulcer Recognition Using Multi-Level Thermographic Image Data. Diagnostics 2023, 13, 2637. [Google Scholar] [CrossRef]
- Nagaraju, S.; Kumar, K.V.; Rani, B.P.; Lydia, E.L.; Ishak, M.K.; Filali, I.; Karim, F.K.; Mostafa, S.M. Automated Diabetic Foot Ulcer Detection and Classification Using Deep Learning. IEEE Access 2023, 11, 127578–127588. [Google Scholar] [CrossRef]
- Biswas, S.; Mostafiz, R.; Paul, B.K.; Uddin, K.M.M.; Rahman, M.M.; Shariful, F. DFU_MultiNet: A deep neural network approach for detecting diabetic foot ulcers through multi-scale feature fusion using the DFU dataset. Intell.-Based Med. 2023, 8, 100128. [Google Scholar] [CrossRef]
- Toofanee, M.S.A.; Dowlut, S.; Hamroun, M.; Tamine, K.; Petit, V.; Duong, A.K.; Sauveron, D. Dfu-siam a novel diabetic foot ulcer classification with deep learning. IEEE Access 2023, 11, 98315–98332. [Google Scholar] [CrossRef]
- Das, S.K.; Namasudra, S.; Sangaiah, A.K. HCNNet: Hybrid convolution neural network for automatic identification of ischaemia in diabetic foot ulcer wounds. Multimed. Syst. 2024, 30, 36. [Google Scholar] [CrossRef]
- Fadhel, M.A.; Alzubaidi, L.; Gu, Y.; Santamaría, J.; Duan, Y. Real-time diabetic foot ulcer classification based on deep learning & parallel hardware computational tools. Multimed. Tools Appl. 2024, 83, 70369–70394. [Google Scholar]
- Patel, Y.; Shah, T.; Dhar, M.K.; Zhang, T.; Niezgoda, J.; Gopalakrishnan, S.; Yu, Z. Integrated image and location analysis for wound classification: A deep learning approach. Sci. Rep. 2024, 14, 7043. [Google Scholar] [CrossRef]
- Almufadi, N.F.; Alhasson, H.F.; Alharbi, S.S. E-DFu-Net: An efficient deep convolutional neural network models for diabetic foot ulcer classification. Biomol. Biomed. 2025, 25, 445. [Google Scholar] [CrossRef]
- Ajay, A.; Bisht, A.S.; Karthik, R. Dense-ShuffleGCANet: An Attention-Driven Deep Learning Approach for Diabetic Foot Ulcer Classification Using Refined Spatio-Dimensional Features. IEEE Access 2025, 13, 5507–5521. [Google Scholar] [CrossRef]
- Karthik, R.; Ajay, A.; Jhalani, A.; Ballari, K.; K, S. An explainable deep learning model for diabetic foot ulcer classification using swin transformer and efficient multi-scale attention-driven network. Sci. Rep. 2025, 15, 4057. [Google Scholar] [CrossRef]
- Ullah, S.; Javed, A.; Aljasem, M.; Saudagar, A.K.J. Eff-ReLU-Net: A deep learning framework for multiclass wound classification. BMC Medical Imaging 2025, 25, 257. [Google Scholar] [CrossRef]
- Reis, S.S.; Pinto-Coelho, L.; Sousa, M.C.; Neto, M.; Silva, M.; Sequeira, M. Evaluating Skin Tone Fairness in Convolutional Neural Networks for the Classification of Diabetic Foot Ulcers. Appl. Sci. 2025, 15, 8321. [Google Scholar] [CrossRef]
- Maurya, L.; Mirza, S. MCTFWC: A multiscale CNN-transformer fusion-based model for wound image classification. Signal, Image Video Process. 2025, 19, 574. [Google Scholar] [CrossRef]
- Fitriah, N.; Sriani, S. Classification of Foot Wound Severity in Type 2 Diabetes Mellitus Patients Using MobileNetV2-Based Convolutional Neural Network. J. Appl. Informatics Comput. 2025, 9, 2163–2170. [Google Scholar] [CrossRef]
- Bansal, N.; Vidyarthi, A. Multivariate Feature-based Analysis of the Diabetic Foot Ulcers Using Machine Learning Classifiers. In Proceedings of the 2024 Sixteenth International Conference on Contemporary Computing, Noida, India, 8–10 August 2024; pp. 527–534. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Vardasca, R.; Marques, A.; Carvalho, R.; Gabriel, J. Thermal imaging of the foot in different forms of diabetic disease. In Infrared Imaging; IOP Publishing: Bristol, UK, 2015; Available online: https://iopscience.iop.org/book/edit/978-0-7503-1143-4/chapter/bk978-0-7503-1143-4ch27 (accessed on 24 November 2025).
- Gaw, N.; Schwedt, T.J.; Chong, C.D.; Wu, T.; Li, J. A clinical decision support system using multi-modality imaging data for disease diagnosis. IISE Trans. Healthc. Syst. Eng. 2018, 8, 36–46. [Google Scholar] [CrossRef]
- Dar, R.A.; Rasool, M.; Assad, A. Breast cancer detection using deep learning: Datasets, methods, and challenges ahead. Comput. Biol. Med. 2022, 149, 106073. [Google Scholar] [CrossRef]
- Ali, S.; El-Sappagh, S.; Ali, F.; Imran, M.; Abuhmed, T. Multitask Deep Learning for Cost-Effective Prediction of Patient’s Length of Stay and Readmission State Using Multimodal Physical Activity Sensory Data. IEEE J. Biomed. Health Informatics 2022, 26, 5793–5804. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Al-Amidie, M.; Al-Asadi, A.; Humaidi, A.J.; Al-Shamma, O.; Fadhel, M.A.; Zhang, J.; Santamaría, J.; Duan, Y. Novel transfer learning approach for medical imaging with limited labeled data. Cancers 2021, 13, 1590. [Google Scholar] [CrossRef]






| Database | Search Strategy | Search Data | # of Identified Records |
|---|---|---|---|
| IEEE Xplore | ‘Diabetic Foot Ulcer OR DFU Thermal’ or ‘Thermographic’ ‘Segmentation or Classification’ AND ‘Machine learning’ OR ’Deep Learning’ OR ‘Artificial Intelligence’ ‘Foot Wound Tissue’ OR ‘Diabetic Foot Infections’ ‘Foot Ulceration’ OR ‘Chronic Wound Analysis’ ‘Foot diagnosis OR diabetic foot care’ ‘intelligence’ OR ‘Full Text OR Paper’ ‘Title’ OR ‘Survey’ OR ‘Overview’ | 15 October 2025 | 195 |
| Science Direct | 708 | ||
| PubMed (MIDLINE) | 1200 | ||
| arXiv.org | 60 | ||
| MDPI | 174 | ||
| IEEE | 160 | ||
| PloS | 60 | ||
| Nature | 172 | ||
| Scopus | 931 | ||
| Springer | 682 | ||
| Elsevier | 334 | ||
| Taylor & Francis | 69 | ||
| Frontiers | 46 | ||
| Wiley Online Library | 78 |
| Metrics | Formula | Definition |
|---|---|---|
| Accuracy | The accuracy of a measurement can be demonstrated by how closely it resembles the actual value or a standard. | |
| Precision | Precision is an indicator of how closely two or more measurements are aligned with each other. | |
| Recall (Sensitivity) | It quantifies how many correct positive predictions were made out of all possible positive cases. | |
| F1 score (Dice Similarity Coefficient (DSC)) | It is biased towards the lowest precision and recall values in each category. The F1 score increases if both precision and recall improve. | |
| Specificity | An indicator of the likelihood of a negative test being correctly identified (true negative rate). | |
| Jaccard index (Intersection over Union) | This index measures the degree of similarity between two sets of members to determine which members are similar and which are different. | |
| Five-fold cross-validation | It averages the Mean Squared Errors (MSEs) across k folds to detect overfitting and assess generalization performance. | |
| Intersection over Union (IoU) | IoU measures the overlap between the predicted segmentation (A) and the ground truth segmentation (B), divided by their union. This metric evaluates segmentation accuracy, with higher IoU values indicating better performance. | |
| Root Mean Square Error (RMSE) | It is the square root of the Mean Squared Error (MSE) of an estimator of a population parameter. | |
| Area Under Curve (AUC) | – | An AUC measure is used to determine the entire two-dimensional area underneath the entire ROC curve. |
| Receiver Operating Characteristic curve (ROC) | – | It shows the performance of a classifier at all classification thresholds. |
| Error rate | An approximate or measured value is expressed as a percentage of an exact or known value. | |
| Mean Average Precision (mAP) | The metric is commonly used for evaluating the detection and classification of objects (i.e., localization, classification). | |
| Kappa index | It measures the level of inter-rater reliability between categorical variables. | |
| Matthews Correlation Coefficient (MCC) | It measures the difference between the expected and actual values. | |
| False Positive Rate (FPR) | The proportion of incorrect positive predictions out of all actual negative cases. | |
| Overlap score | An overlap between two finite sets is measured by this similarity measure. | |
| Success rate | It is referred to as the success fraction when the success rate is determined based on the number of attempts. | |
| System Usability Scale (SUS) | – | It is a commonly used method for measuring perceived usability of products and services, consisting of a 10-item questionnaire on a Likert scale, with participants answering each of the 10 items on a five-level scale. |
| Accuracy (n = 1) | AUC (n = 1) | Sensitivity (n = 1) | Specificity (n=1) |
|---|---|---|---|
| 0.97 ± 0.03 | 0.97 ± 0.02 | 0.95 ± 0.02 | 0.85 ± 0.02 |
| (0.90–1.00) | (0.92–1.00) | (0.91–0.98) | (0.82–0.90) |
| Accuracy (n = 8) | AUC (n = 2) | Sensitivity (n = 5) | Specificity (n = 4) | IoU (n = 7) |
|---|---|---|---|---|
| 0.94 ± 0.05 | 0.99 ± 0.01 | 0.91 ± 0.04 | 0.95 ± 0.03 | 0.87 ± 0.07 |
| (0.85–0.99) | (0.96–1.00) | (0.88–0.96) | (0.90–0.98) | (0.80–0.95) |
| Accuracy (n = 26) | AUC (n = 6) | Sensitivity (n = 16) | Specificity (n = 15) |
|---|---|---|---|
| 0.93 ± 0.04 | 0.94 ± 0.03 | 0.92 ± 0.05 | 0.94 ± 0.04 |
| (0.88–0.98) | (0.90–0.98) | (0.87–0.96) | (0.89–0.97) |
| Accuracy (n = 7) | Sensitivity (n = 3) | Specificity (n = 3) | DSC (n = 1) | SUS (n = 1) |
|---|---|---|---|---|
| 0.88 ± 0.05 | 0.89 ± 0.06 | 0.93 ± 0.04 | 0.94 ± 0.02 | 0.88 ± 0.02 |
| (0.80–0.93) | (0.83–0.95) | (0.89–0.96) | (0.92–0.96) | (0.86–0.90) |
| Task | Risk of Bias | Inconsistency | Indirectness | Overall Evidence Quality |
|---|---|---|---|---|
| Detection | Moderate | Moderate | High | Moderate |
| Segmentation | Low | Low | Moderate | High |
| Classification | High | High | High | Low to Moderate |
| Author [Refs.] | Year | Journal Rank (SJR)/Conference Rank (Qualis) | ML/DL Model | Dataset | Validation Parameter | Value |
|---|---|---|---|---|---|---|
| Dremin et al. [101] | 2021 | Q1 | ANN | Private Hyperspectral images dataset | Sensitivity, Specificity, AUC | , , |
| Nag et al. [42] | 2021 | Not Yet Assigned | SVM, k-NN, and DT | PLANTAR THERMO-GRAM | Accuracy | |
| Cassidy et al. [64] | 2022 | Q1 | Faster R-CNN | Real-time images | NAN | NAN |
| Thotad et al. [102] | 2023 | Q1 | EfficientNet | DFUC2020 | Accuracy, F1-score, Recall, Precision | , , , and |
| Sarmun et al. [103] | 2024 | Q1 | Combined Deep Learning Models | DFUC 2020 | Localization Accuracy | |
| Sendilraj et al. [104] | 2024 | Q1 | DFUCare Platform | DFUC 2020 | Usability (F1-score, mAP, Ischemia, Infection) | F1: , mAP: , Ischemia: , Infection: |
| Biswas et al. [105] | 2024 | Q1 | XAI-FusionNet | DFU Dataset (Kaggle) | Accuracy, Transparency | Accuracy: , Precision: , Recall: , AUC: |
| El-Kady et al. [106] | 2024 | Q2 | ResNet + Generative Adversarial Network(GAN) | Clinical Dataset (Egypt) | Precision, F1-score | Precision: , F1-score: |
| Azeem et al. [107] | 2024 | Q2 | SSD and YOLO Architectures | Clinical Dataset | Optimization Performance | Improved Detection (Exact values not mentioned) |
| Verma [108] | 2024 | Q2 | Smart Image Processing Techniques | Thermal Dataset | Early Detection | ResNet50: , EfficientNetB0: |
| Busaranuvong et al. [109] | 2024 | Q1 | ConDiff (Guided Conditional Diffusion Classifier) | Infection Prediction Dataset | Prediction Accuracy | Enhanced Accuracy (Exact values not mentioned) |
| Eldin et al. [110] | 2025 | Q1 | Deep Neural Networks (ORB + DL) | Plantar Thermogram Dataset | Accuracy, F1-score, AUC | Accuracy: , F1: , AUC: |
| Rathore et al. [111] | 2025 | Q1 | Feature Explainability-Based Deep Learning | DFU_XAI Dataset | Interpretability, Accuracy | Accuracy: , AUC: , Precision: |
| Debnath et al. [112] | 2025 | Q1 | Sustainable AI with Deep Learning | DFUC 2020 | Early Diagnosis, Resource Efficiency | DenseNet: , MobileNet: , FusionNet: |
| Mahmud et al. [113] | 2025 | Q1 | DFU_DIALNet (Grad-CAM + LIME) | DFU Dataset (Clinical) | Reliability, Trustworthiness | Grad-CAM Accuracy: , LIME: Improved Explainability |
| Girmaw et al. [114] | 2025 | Q1 | MobileNetV2 | Ethiopian Hospital Dataset | Detection and Grading | Accuracy: , AUC: |
| Pradhana et al. [115] | 2025 | Q2 | CNN + SMOTE-IPF | Thermogram Images | Detection on Imbalanced Data | AHE Accuracy: , Gamma Correction: |
| Author [Refs.] | Year | Journal Rank (SJR)/Conference Rank (Qualis) | ML/DL Model | Dataset | Validation Parameter | Value |
|---|---|---|---|---|---|---|
| Wang et al. [99] | 2016 | Q1 | SVM | Private dataset contain 100 foot ulcer color images | Sensitivity, Specificity | , |
| Cui et al. [43] | 2019 | B1 | CNN, SVM | The dataset contains 445 images 392 images for validation and 53 images for testing | Precision, Sensitivity, Specificity, Accuracy, Mean IoU, Dice and MCC | , , , , , and |
| Gamage et al. [116] | 2019 | Not Yet Assigned | Mask-RCNN (Backbone = ResNet-50, ResNet-101) | Private dataset has 2400 images | Average Precision, IoU | (ResNet-50 = 0.44, 0.51) (ResNet-101 = 0.51, 0.62) |
| Ohura et al. [51] | 2019 | Q2 | U-Net and VGG16 | Sacral Pressure Ulcers (PU) datasets | AUC, Specificity and Sensitivity | , and |
| Rania et al. [50] | 2020 | C | U-Net | ESCALE | Accuracy, IoU and DSC | and |
| Munoz et al. [48] | 2020 | Q2 | Mask R-CNN | Private dataset | Accuracy, Sensitivity, Precision, Specificity and F Measure | , , , and |
| Bouallal et al. [55] | 2020 | B4 | U-Net | Private dataset | IoU and DSC | Multimodal images: IoU = and DSC = 99, Thermal data: IoU= and DSC = |
| Mahbod et al. [53] | 2021 | A1 | U-Net and LinkNet | Private dataset | DSC, Precision, Recall and IoU | 84.42, 92.68, 91.80, 85.51 |
| Galdran et al. [54] | 2021 | A1 | Double Encoder-ResUnet (DE-ResUnet) | Private dataset | Precision, Recall and DSC | and |
| Chitra et al. [117] | 2022 | Q4 | Random Forest algorithm (RF) | Private dataset | Accuracy | |
| Heras et al. [46] | 2022 | Q4 | Logistic Regression(LR), morphological operators | Private dataset | Jaccard Index, accuracy, recall, precision and DSC | 0.81, 0.94, 0.86, 0.91 and 0.88 |
| Bougrine et al. [58] | 2022 | Q1 | FCN, SegNet, U-Net | Private dataset | RMSEand DSC | pixels and |
| Bouallal et al. [56] | 2022 | Q3 | FCN, SegNet, U-Net | Private dataset | IoU | 97% |
| Chang et al. [118] | 2022 | Q1 | U-Net, DeeplabV3, PsPNet, FPN and Mask R-CNN) | Private dataset | Precision, Recall and Accuracy | (DeeplabV3 = 0.9915, 0.9915, 0.9957) in classification, (DeeplabV3 = 0.9888, 0.9887, 0.9925) in segmentation |
| Jain et al. [79] | 2022 | Ph.D. Thesis | ProNet | Private dataset | Accuracy | 98.9% |
| Huang et al. [49] | 2022 | Q1 | Fast R-CN, GoogLeNet, SURF | Private | Accuracy | 90% |
| Alshayeji et al. [47] | 2023 | Q1 | SVM | Private dataset | Sensitivity, Precision and AUC | 97.81%, 97.9% and 0.9995 |
| Rania et al. [50] | 2020 | C | U-Net | ESCALE | Accuracy, IoU and DSC | and |
| Bougrine et al. [60] | 2019 | B1 | FCN, SegNet, U-Net | Private dataset | Dice Similarity Coefficient (DSC), standard deviations (STD) | (FCN = 96.16% ± 0.85%) (SegNet = 97.26% ± 0.69%) (U-Net = 74.35% ± 9.58%) |
| Wang et al. [119] | 2020 | Q1 | MobileNetV2 and CCL | Private dataset consisting of 1109 images | Precision, Recall, and the Dice coefficient | , and |
| Lan et al. [120] | 2023 | Q1 | FusionSegNet | Private dataset | AUC, Accuracy, Sensitivity, Specificity, F1-score | 98.93%, 95.78%, 94.27%, 96.88%, 94.91% |
| Jishnu et al. [121] | 2023 | Not Yet Assigned | AFSegGAN | DFUC2021 | Dice score, IoU | 93.11%, 99.07% |
| Jiao et al. [122] | 2025 | Q1 | UFOS-Net with EMS and MODA | DFU Segmentation | Dice, IoU | 77.45%, 66.64% |
| Niri et al. [123] | 2025 | Q1 | Dual Attention U-Net with SE Blocks | Wound Segmentation | Dice, IoU | 94.1%, 89.3% |
| Author [Refs.] | Year | Journal Rank (SJR)/Conference Rank (Qualis) | ML/DL Model | Dataset | Validation Parameter | Value |
|---|---|---|---|---|---|---|
| Botros et al. [124] | 2016 | Not Yet Assigned | SVM with a global average pooling (GAP) | Private dataset | Accuracy and Precision | and |
| Kasbekar et al. [125] | 2017 | Q1 | Decision tree | Private dataset | Error rate and Accuracy | and |
| Adam et al. [126] | 2018 | Q2 | SVM, Discrete Wavelet Transform (DWT) and Higher Order Spectra (HOS) | Thermograms images 33 healthy and 33 with type 2 diabetes | Accuracy, Sensitivity and Specificity | and |
| Goyal et al. [100] | 2018 | Q1 | CNN (DFUNet) and Conventional ML(CML) | DFU A(I) | Sensitivity, F-measure, Specificity, Precision and AUC | , , , and |
| Vardasca et al. [127] | 2018 | Q3 | SVM and K-NN | Private dataset | Accuracy and Positive prediction | and |
| Goyal et al. [63] | 2018 | Q1 | Faster R-CNN, MobileNet, InceptionV2 | 1775 foot images with DFU | mAP and Speed | and 48 ms |
| Vardasca et al. [128] | 2019 | Q3 | ANN, SVM and k-NN | Private | Accuracy, Specificity and Sensitivity | 81.25%, 80 and 100% |
| Gamage et al. [73] | 2019 | B1 | Pre-trained CNN, ANN, RF, SVM and Singular Value Decomposition (SVD) | A private dataset has 2400 images | Accuracy and F-score | and |
| Alzubaidi et al. [129] | 2020 | Q1 | QUTNet based on D-CNN, KNN and SVM | DFU (alzubaidi) | Precision, Recall and DSC | , , % |
| Goyal et al. [68] | 2020 | Q1 | Faster R-CNN and Superpixel Color Descriptor | DFU B (II) | Accuracy in ischemia and infection classification | and |
| Cruz et al. [81] | 2020 | Q1 | DFTNet | PLANTAR THERMO-GRAM | Sensitivity, Specificity and Accuracy | and |
| Amin et al. [59] | 2020 | Q1 | YOLOv2-DFU | Part (B)(II) | Sensitivity, Recall and Precision and Accuracy | and accuracy on infection and ischemia, and IOU on ischemia and infection |
| Liu et al. [65] | 2020 | Not Yet Assigned | Faster R-CNN | Private | Accuracy | |
| Padierna et al. [78] | 2021 | Q2 | SVM | Private | Accuracy, Sensitivity and Specificity | , and |
| Niri et al. [62] | 2021 | A1 | Spx-based FCNs | Private and ESCALE | Accuracy, Sensitivity, Specificity, Precision, and DSC | , , and |
| Cassidy et al. [66] | 2021 | Q3 | Faster R-CNN, FRCNN ResNet101, FRCNN Inception-v2-ResNet101, YOLOv5 and EfficientDet | DFUC 2020 | Recall, Precision, F1 score and mAP | F1 scores= , , , and |
| Galdran et al. [130] | 2021 | Not Yet Assigned | Big Image Transfer (BiT),EfficientNet, Vision Transformers (ViT), Data-efficient Image Transformers (DeIT) | DFUC2021 | DSC, AUC, Recall and Precision | , , and |
| Selle et al. [131] | 2021 | Not Yet Assigned | SVM | Private | Accuracy | |
| Xu et al. [72] | 2021 | Q1 | A pre-trained vision transformer models class knowledge banks(CKBs) | DFU B(II) | Accuracy, Sensitivity, Precision, Specificity, DSC and AUC score | , , 95, , and |
| Da et al. [67] | 2021 | B | Faster R-CNN | DFUC 2020 | mAP and DSC | and |
| Alzubaidi et al. [129] | 2021 | Q1 | DFU_QUTNet and SVM | DFU (alzubaidi) | Precision, Recall and DSC | and |
| Yap et al. [69] | 2021 | A | EfficientNetB0 with data augmentation and transfer learning | DFUC2021 | Average Precision, Recall and F1-Score | , and |
| Bloch et al. [77] | 2021 | A1 | EfficientNet | DFUC2021 | DSC | |
| Khandakar et al. [80] | 2021 | Q1 | MobilenetV2 | PLANTAR THERMO-GRAM | DSC | 97 |
| Das et al. [132] | 2022 | Q2 | ResKNet | DFU B(II) | AUC | for ischemia and AUC= for infection |
| Al-Garaawi et al. [70] | 2022 | Q1 | DFU-RGB-TEX-NET | DFU A(I) and DFU B(II) | AUC and DSC | , on Part-A and , on Part-B infection |
| Al-Garaawi et al. [71] | 2022 | Q3 | GoogLNet CNN | DFU A(I) and DFU B(II) | Sensitivity, Specificity, Precision, Accuracy, DSC and AUC | , , , and |
| Husers et al. [75] | 2022 | Not Yet Assigned | MobileNetV1 | Private dataset | Accuracy, Precision, Recall and F1-score | , , and |
| Santos et al. [76] | 2022 | B1 | VGG-16, VGG-19, Resnet-50, InceptionV3, and Densenet-201 | Private | Accuracy and Kappa index | and |
| Yogapriya et al. [133] | 2022 | Q2 | DFINET | DFU B(II) | Accuracy and and MCC | and |
| Jain et al. [79] | 2022 | PhD Thesis | SIFT and SURF combined with BOF, and SVM | PLANTAR THERMO-GRAM | Accuracy, Specificity and Sensitivity | , and |
| Jain et al. [134] | 2022 | Not Yet Assigned | ProNet, AlexNet, ResNet | PLANTAR THERMO-GRAM | Accuracy, Precision, Sensitivity, Specificity and F1-Score | , , , and |
| Khandakar et al. [135] | 2022 | Q1 | MLP Classifier, XGBoost Feature Selection and choosing Top 2 Features | PLANTAR THERMO-GRAM | Accuracy, Precision, Sensitivity, DSC and Specificity | , , , , and |
| Khandakar et al. [82] | 2022 | Q1 | VGG 19 CNN | PLANTAR THERMO-GRAM | Accuracy, Precision, Sensitivity, F1-Score and Specificity | , , , and |
| Munadi et al. [84] | 2022 | Q2 | ShuffleNet and MobileNetV2 | PLANTAR THERMO-GRAM | Accuracy Sensitivity, Specificity, Precision and F-Measure | , , , and |
| Anaya et al. [85] | 2022 | Q1 | ResNet50v2 | PLANTAR THERMO-GRAM | Accuracy, Sensitivity, Specificity and FPR | , , and |
| Balasenthi- lkumaran et al. [87] | 2022 | Q4 | ANN, QSVM, linear discriminant, logistic regression and Gaussian naïve Bayes | Private | Accuracy and F1 score | and |
| Filipe et al. [83] | 2022 | Q2 | Logistic Regression, SVM Quadratic, Linear SVM, 3-NN and weighted k-NN | PLANTAR THERMO-GRAM | Accuracy, Sensitivity, Specificity, Precision, AUC and F-Score | , , , and |
| khosa et al. [136] | 2023 | Q2 | Custom Model | PLANTAR THERMO-GRAM | Sensitivity, Specificity, Accuracy, F1-Score, AUC | 0.97, 0.958, 0.97, 0.891, 0.976 |
| Reyes et al. [24] | 2023 | Q1 | DFU_VIRNet | DFU (alzubaidi) | AUC, F-score | 0.9982 and 0.9928 for ischemia and 0.9121, 0.8363 for infection |
| Nagaraju et al. [137] | 2023 | Q1 | Inception-ResNet-v2 | DFU (alzubaidi) | Accuracy | 99.29 |
| Biswas et al. [138] | 2023 | Q1 | DFU_MultiNet | DFU (alzubaidi) | Accuracy | 99.06 |
| Toofanee et al. [139] | 2023 | Q1 | DFU-SIAM | DFU2021 | macro-F1 score, F1-score | 0.623, 0.549 for ischemia and 0.628 for infection |
| Das et al. [140] | 2024 | Q1 | HCNNet | DFU-Part(B) | AUC | 0.999 |
| Fadhel et al. [141] | 2024 | Q2 | DFU_FNet and DFU_TFNet | Real-time | Accuracy, Precision, F1-Score | 99.81%, 99.38% and 99.25% |
| Patel et al. [142] | 2024 | Q1 | Multi-modal deep learning framework | AZH, Medetec | Accuracy | 74.79–100% |
| Almufadi et al. [143] | 2025 | Q2 | E-DFu-Net | Transfer learning | Accuracy (Ischemia, Infection) | 97%, 92% |
| Ajay et al. [144] | 2025 | Q1 | Dense-ShuffleGCANet | Attention-driven mechanisms | Robustness | Strong across diverse datasets |
| Karthik et al. [145] | 2025 | Q1 | Swin Transformer + Multi-scale Attention | DFUC-2021 | F1-Score | 80% |
| Ullah et al. [146] | 2025 | Q1 | Eff-ReLU-Net | EfficientNet-B0 + ReLU | Accuracy (Medetec, AZH) | 92.33%, 90% |
| Reis et al. [147] | 2025 | Q1 | CNN Fairness Evaluation | VGG16, VGG19, MobileNetV2 | Disparities in Skin Tone Performance | Highlighted need for inclusivity |
| Maurya et al. [148] | 2025 | Q1 | MCTFWC (CNN-Transformer) | Medetec, AZH | Accuracy | High across wound types |
| Fitriah et al. [149] | 2025 | Q2 | MobileNetV2-based DFU Severity Classification | Low-resource settings | Efficiency | Strong results for severity grading |
| Bansal et al. [150] | 2024 | Q3 | ML Classifiers + Multivariate Features | Custom dataset | Accuracy | Promising but limited |
| Karthik et al. [144] | 2024 | Q1 | Dense-ShuffleGCANet | Attention mechanisms | Robustness | Strong performance |
| Author [Refs.] | Year | Journal Rank (SJR)/Conference Rank (Qualis) | ML/DL Model | Dataset | Validation Parameter | Value |
|---|---|---|---|---|---|---|
| Wannous et al. [93] | 2010 | Q1 | SVM and Mean Shift iterative color clustering algorithm | 850 color images | Overlap score, Sensitivity, Specificity, Success rate, Accuracy | 73.8%, 77%, 92%, 84%, 88% |
| Mukherjee et al. [90] | 2014 | Q2 | SVM and Bayesian classifier, color conversion and fuzzy divergence for segmentation | total = 767 images where granulation tissue = 222, slough tissue = 451 and necrotic tissue = 94 | Accuracy | , , and , for classifying granulation, slough, and necrotic tissues, respectively |
| Babu et al. [92] | 2018 | Not Yet Assigned | Naive bayes and Hoeffding tree classifier and Particle Swarm Optimization (PSO) | 3 DFU images used to test the method | Accuracy, Sensitivity and Specificity | , , by Naïve Bayes and , , by Hoeffding Tree |
| Godeiro et al. [91] | 2018 | B2 | For classification SegNet, where segmentation U-Net | 30 color image foot and hand | Accuracy, Specificity, Sensitivity, and DSC | 0.9610, 0.9876, 0.9128 and 0.9425 |
| Wijesinghe et al. [88] | 2019 | Not Yet Assigned | R-CNN and D-CNN Module | 400 DFU images | SUS | 88.5 |
| Maldonado et al. [89] | 2020 | Q2 | Pretrained Mask R-CNN and Gaussian distribution | Private-DB1 had a total of 108 images where DB2 contained a total of 141 images | Accuracy | |
| Zhou et al. [86] | 2025 | Q1 | Mask2Former, Deeplabv3Plus, Swin-Transformer | DFU Dataset (671 images) | Accuracy, mIoU | , |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhasson, H.F.; Alharbi, S.S. Advances in Image-Based Diagnosis of Diabetic Foot Ulcers Using Deep Learning and Machine Learning: A Systematic Review. Biomedicines 2025, 13, 2928. https://doi.org/10.3390/biomedicines13122928
Alhasson HF, Alharbi SS. Advances in Image-Based Diagnosis of Diabetic Foot Ulcers Using Deep Learning and Machine Learning: A Systematic Review. Biomedicines. 2025; 13(12):2928. https://doi.org/10.3390/biomedicines13122928
Chicago/Turabian StyleAlhasson, Haifa F., and Shuaa S. Alharbi. 2025. "Advances in Image-Based Diagnosis of Diabetic Foot Ulcers Using Deep Learning and Machine Learning: A Systematic Review" Biomedicines 13, no. 12: 2928. https://doi.org/10.3390/biomedicines13122928
APA StyleAlhasson, H. F., & Alharbi, S. S. (2025). Advances in Image-Based Diagnosis of Diabetic Foot Ulcers Using Deep Learning and Machine Learning: A Systematic Review. Biomedicines, 13(12), 2928. https://doi.org/10.3390/biomedicines13122928

