Unveiling Vascular Dynamics: Introducing the Biomedicines Special Issue on Angiogenesis
Funding
Conflicts of Interest
References
- Ferrara, N. Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog. Horm. Res. 2000, 55, 15–35. [Google Scholar] [PubMed]
- Tonnesen, M.G.; Feng, X.; Clark, R.A. Angiogenesis in wound healing. J. Investig. Dermatol. Symp. Proc. 2000, 5, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Acuña-Pilarte, K.; Koh, M.Y. The HIF axes in cancer: Angiogenesis, metabolism, and immune-modulation. Trends Biochem. Sci. 2025, 50, 677–694. [Google Scholar] [CrossRef] [PubMed]
- Langer, R. Biomaterials and biotechnology: From the discovery of the first angiogenesis inhibitors to the development of controlled drug delivery systems and the foundation of tissue engineering. J. Biomed. Mater. Res. A 2013, 101, 2449–2455. [Google Scholar] [CrossRef]
- Cao, Y.; Langer, R.; Ferrara, N. Targeting Angiogenesis in Oncology, Ophthalmology and Beyond. Nat. Rev. Drug Discov. 2023, 22, 476–495. [Google Scholar] [CrossRef]
- Welti, J.; Loges, S.; Dimmeler, S.; Carmeliet, P. Recent Molecular Discoveries in Angiogenesis and Antiangiogenic Therapies in Cancer. J. Clin. Investig. 2013, 123, 3190–3200. [Google Scholar] [CrossRef]
- Folkman, J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 2002, 29, 15–18. [Google Scholar] [CrossRef]
- Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell 2019, 176, 1248–1264. [Google Scholar] [CrossRef]
- Van de Veire, S.; Stalmans, I.; Heindryckx, F.; Oura, H.; Tijeras-Raballand, A.; Schmidt, T.; Loges, S.; Albrecht, I.; Jonckx, B.; Vinckier, S.; et al. Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease. Cell 2010, 141, 178–190. [Google Scholar] [CrossRef]
- Li, H.S.; Huang, X.G. Advances in the molecular signaling mechanisms of VEGF/VEGFR2 in fundus neovascularization disease. Exp. Ther. Med. 2025, 30, 143. [Google Scholar] [CrossRef]
- Wang, L.; Liu, W.Q.; Broussy, S.; Han, B.; Fang, H. Recent advances of anti-angiogenic inhibitors targeting VEGF/VEGFR axis. Front. Pharmacol. 2024, 14, 1307860. [Google Scholar] [CrossRef] [PubMed]
- Griffioen, A.W.; Dudley, A.C. The Rising Impact of Angiogenesis Research. Angiogenesis 2022, 25, 435–437. [Google Scholar] [CrossRef] [PubMed]
- Margadant, C. Endothelial heterogeneity and plasticity. Angiogenesis 2021, 24, 197–198. [Google Scholar] [CrossRef] [PubMed]
- Koch, P.S.; Lee, K.H.; Goerdt, S.; Augustin, H.G. Angiodiversity and organotypic functions of sinusoidal endothelial cells. Angiogenesis 2021, 24, 289–310. [Google Scholar] [CrossRef]
- Pasut, A.; Becker, L.M.; Cuypers, A.; Carmeliet, P. Endothelial cell plasticity at the single-cell level. Angiogenesis 2021, 24, 311–326. [Google Scholar] [CrossRef]
- Kaur, G.; Roy, B. Decoding Tumor Angiogenesis for Therapeutic Advancements: Mechanistic Insights. Biomedicines 2024, 12, 827. [Google Scholar] [CrossRef]
- Guerra, A.; Belinha, J.; Salgado, C.; Monteiro, F.J.; Natal Jorge, R. Computational Insights into the Interplay of Mechanical Forces in Angiogenesis. Biomedicines 2024, 12, 1045. [Google Scholar] [CrossRef]
- Florek, K.; Mendyka, D.; Gomułka, K. Vascular Endothelial Growth Factor (VEGF) and Its Role in the Cardiovascular System. Biomedicines 2024, 12, 1055. [Google Scholar] [CrossRef]
- Romano, E.; Rosa, I.; Fioretto, B.S.; Manetti, M. Recent Insights into Cellular and Molecular Mechanisms of Defective Angiogenesis in Systemic Sclerosis. Biomedicines 2024, 12, 1331. [Google Scholar] [CrossRef]
- Gaydarski, L.; Dimitrova, I.N.; Stanchev, S.; Iliev, A.; Kotov, G.; Kirkov, V.; Stamenov, N.; Dikov, T.; Georgiev, G.P.; Landzhov, B. Unraveling the Complex Molecular Interplay and Vascular Adaptive Changes in Hypertension-Induced Kidney Disease. Biomedicines 2024, 12, 1723. [Google Scholar] [CrossRef]
- Maurya, M.; Liu, C.-H.; Bora, K.; Kushwah, N.; Pavlovich, M.C.; Wang, Z.; Chen, J. Animal Models of Retinopathy of Prematurity: Advances and Metabolic Regulators. Biomedicines 2024, 12, 1937. [Google Scholar] [CrossRef]
- Huseynova, F.; Ionescu, C.; Cuisinier, F.; Huseynova, I.; Mammadov, A.; Barragan-Montero, V. Could CH3-M6P Be a Potential Dual-Functioning Candidate for Bone Regeneration? Biomedicines 2024, 12, 2697. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Pierce, J.; Neverson, J.C.; Khan, R.; Lee, C.F.; Uppuluri, S.; Parry, C.; Amelotte, E.; Butler, C.A.; Sellke, F.W.; et al. Macrophage Proangiogenic VEGF-A Is Required for Inflammatory Arteriogenesis During Vascular Injury. Biomedicines 2025, 13, 828. [Google Scholar] [CrossRef] [PubMed]
- Failla, C.M.; Carbone, M.L.; Ramondino, C.; Bruni, E.; Orecchia, A. Vascular Endothelial Growth Factor (VEGF) Family and the Immune System: Activators or Inhibitors? Biomedicines 2024, 13, 6. [Google Scholar] [CrossRef]
- Ralapanawa, U.; Sivakanesan, R. Epidemiology and the Magnitude of Coronary Artery Disease and Acute Coronary Syndrome: A Narrative Review. J. Epidemiol. Glob. Health 2021, 11, 169–177. [Google Scholar] [CrossRef]
- Mallick, R.; Ylä-Herttuala, S. Therapeutic Potential. of VEGF-B in Coronary Heart Disease and Heart Failure: Dream or Vision? Cells 2022, 11, 4134. [Google Scholar] [CrossRef]
- Lugano, R.; Ramachandran, M.; Dimberg, A. Tumor angiogenesis: Causes, consequences, challenges, and opportunities. Cell Mol. Life Sci. 2020, 77, 1745–1770. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orecchia, A.; Failla, C.M. Unveiling Vascular Dynamics: Introducing the Biomedicines Special Issue on Angiogenesis. Biomedicines 2025, 13, 2868. https://doi.org/10.3390/biomedicines13122868
Orecchia A, Failla CM. Unveiling Vascular Dynamics: Introducing the Biomedicines Special Issue on Angiogenesis. Biomedicines. 2025; 13(12):2868. https://doi.org/10.3390/biomedicines13122868
Chicago/Turabian StyleOrecchia, Angela, and Cristina M. Failla. 2025. "Unveiling Vascular Dynamics: Introducing the Biomedicines Special Issue on Angiogenesis" Biomedicines 13, no. 12: 2868. https://doi.org/10.3390/biomedicines13122868
APA StyleOrecchia, A., & Failla, C. M. (2025). Unveiling Vascular Dynamics: Introducing the Biomedicines Special Issue on Angiogenesis. Biomedicines, 13(12), 2868. https://doi.org/10.3390/biomedicines13122868

