Analysis of Genetic Variants MTHFR C677T, ACE I/D, AT1R A1166C and eNOS 4a/b in the Context of Essential Hypertension Susceptibility
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Genotyping
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Subjects
3.2. Genotype Distribution
3.3. Gene–Environment Interactions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Report on Hypertension: The Race Against a Silent Killer; World Health Organization: Geneva, Switzerland, 2023; pp. 1–276. [Google Scholar]
- Franco, C.; Sciatti, E.; Favero, G.; Bonomini, F.; Vizzardi, E.; Rezzani, R. Essential hypertension and oxidative stress: Novel future perspectives. Int. J. Mol. Sci. 2022, 23, 14489. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.P.; Bisogni, V.; Rossitto, G.; Maiolino, G.; Cesari, M.; Zhu, R.; Seccia, T.M. Practice recommendations for diagnosis and treatment of the most common forms of secondary hypertension. High Blood Press. Cardiovasc. Prev. 2020, 27, 547–560. [Google Scholar] [CrossRef]
- Mani, A. Update in genetic and epigenetic causes of hypertension. Cell Mol. Life Sci. 2024, 81, 201. [Google Scholar] [CrossRef]
- O’Sullivan, J.W.; Ashley, E.A.; Elliott, P.M. Polygenic risk scores for the prediction of cardiometabolic disease. Eur. Heart 2023, 44, 89–99. [Google Scholar] [CrossRef]
- Zarembska, E.; Ślusarczyk, K.; Wrzosek, M. The Implication of a Polymorphism in the Methylenetetrahydrofolate Reductase Gene in Homocysteine Metabolism and Related Civilisation Diseases. Int. J. Mol. Sci. 2023, 25, 193. [Google Scholar] [CrossRef]
- Bennett, D.A.; Parish, S.; Millwood, I.Y.; Guo, Y.; Chen, Y.; Turnbull, I.; Yang, L.; Lv, J.; Yu, C.; Davey Smith, G.; et al. MTHFR and risk of stroke and heart disease in a low-folate population: A prospective study of 156000 Chinese adults. Int. J. Epidemiol. 2023, 52, 1862–1869. [Google Scholar] [CrossRef]
- Caputo, I.; Bertoldi, G.; Driussi, G.; Cacciapuoti, M.; Calò, L.A. The RAAS Goodfellas in Cardiovascular System. J. Clin. Med. 2023, 12, 6873. [Google Scholar] [CrossRef]
- Suvorava, T.; Metry, S.; Pick, S.; Kojda, G. Alterations in endothelial nitric oxide synthase activity and their relevance to blood pressure. Biochem. Pharmacol. 2022, 205, 115256. [Google Scholar] [CrossRef]
- Niu, W.; Qi, Y. An updated meta-analysis of endothelial nitric oxide synthase gene: Three well-characterized polymorphisms with hypertension. PLoS ONE 2011, 6, e24266. [Google Scholar] [CrossRef] [PubMed]
- Liew, S.C.; Gupta, E.D. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: Epidemiology, metabolism and the associated diseases. Eur. J. Med. Genet. 2015, 58, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Xu, G.; Zhang, L.; Kong, Z.; Qiu, Z. Meta Analysis of Methylenetetrahydrofolate Reductase (MTHFR) C677T polymorphism and its association with folate and colorectal cancer. BMC Cancer 2025, 25, 169. [Google Scholar] [CrossRef]
- Pinheiro, D.S.; Santos, R.S.; Jardim, P.C.B.V.; Silva, E.G.; Reis, A.A.S.; Pedrino, G.R.; Ulhoa, C.J. The combination of ACE I/D and ACE2 G8790A polymorphisms revels susceptibility to hypertension: A genetic association study in Brazilian patients. PLoS ONE 2019, 14, e0221248. [Google Scholar] [CrossRef]
- Castellon, R.; Hamdi, H.K. Demystifying the ACE polymorphism: From genetics to biology. Curr. Pharm. Des. 2007, 13, 1191–1198. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z. Impacts of ACE insertion/deletion variant on cardiometabolic risk factors, premature coronary artery disease, and severity of coronary lesions. Sci. Rep. 2024, 14, 13171. [Google Scholar] [CrossRef]
- Liu, D.X.; Zhang, Y.Q.; Hu, B.; Zhang, J.; Zhao, Q. Association of AT1R polymorphism with hypertension risk: An update meta-analysis based on 28,952 subjects. J. Renin Angiotensin Aldosterone Syst. 2015, 16, 898–909. [Google Scholar] [CrossRef]
- Bayramoglu, A.; Kurt, H.; Gunes, H.V.; Ata, N.; Birdane, A.; Dikmen, M.; Ustuner, M.C.; Colak, E.; Degirmenci, I. Angiotensin II type 1 receptor (AT1) gene A1166C is associated with the risk of hypertension. Genet. Test. Mol. Biomark. 2015, 19, 14–17. [Google Scholar] [CrossRef]
- Kooffreh, M.E.; Anumudu, C.I.; Duke, R.; Okpako, E.C.; Kumar, P.L. Angiotensin II type 1 receptor A1166C gene polymorphism and essential hypertension in Calabar and Uyo cities, Nigeria. Indian. J. Hum. Genet. 2013, 19, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ye, W.; Chen, H.; Liu, M.; Jiang, W.; Fang, Z. Association of endothelial nitric oxide synthase intron 4a/b gene polymorphisms and hypertension: A systematic review and meta-analysis. J. Int. Med. Res. 2021, 49, 300060520979230. [Google Scholar] [CrossRef] [PubMed]
- Tiret, L.; Rigat, B.; Visvikis, S.; Breda, C.; Corvol, P.; Cambien, F.; Soubrier, F. Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am. J. Hum. Genet. 1992, 50, 197–205. [Google Scholar]
- Ahluwalia, T.S.; Ahuja, M.; Rai, T.S.; Kohli, H.S.; Sud, K.; Bhansali, A.; Khullar, M. Endothelial nitric oxide synthase gene haplotypes and diabetic nephropathy among Asian Indians. Mol. Cell Biochem. 2008, 312, 9–17. [Google Scholar] [CrossRef]
- Doria, A.; Ji, L.; Warram, J.H.; Krolewski, A.S. DdeI polymorphism in the AGTR1 gene. Hum. Mol. Genet. 1994, 3, 1444. [Google Scholar]
- Deloughery, T.G.; Evans, A.; Sadeghi, A.; McWilliams, J.; Henner, W.D.; Taylor, L.M., Jr.; Press, R.D. Common mutation in methylenetetrahydrofolate reductase: Correlation with homocysteine metabolism and late-onset vascular disease. Circulation 1996, 94, 3074–3078. [Google Scholar] [CrossRef] [PubMed]
- Lauder, L.; Mahfoud, F.; Azizi, M.; Bhatt, D.L.; Ewen, S.; Kario, K.; Parati, G.; Rossignol, P.; Schlaich, M.P.; Teo, K.K.; et al. Hypertension management in patients with cardiovascular comorbidities. Eur. Heart J. 2023, 44, 2066–2077. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Bak, J.K.; Kim, M.; Shin, H.G.; Park, K.I.; Lee, S.P.; Lee, H.S.; Lee, J.Y.; Kim, K.I.; Kang, S.H. Long-term cardiovascular events in hypertensive patients: Full report of the Korean Hypertension Cohort. Korean J. Intern. Med. 2023, 38, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Han, X.Y.; Qi, Y.; Zhao, D.; Wang, W.; Wang, M.; Sun, J.Y.; Liu, J.; Li, Y.; Liu, J. Association between long-term blood pressure change and the incidence of cardiovascular diseases: A population-based cohort study. Zhonghua Xin Xue Guan Bing Za Zhi 2018, 46, 695–700. [Google Scholar]
- Tassinari, V.; Jia, W.; Chen, W.L.; Candi, E.; Melino, G. The methionine cycle and its cancer implications. Oncogene 2024, 43, 3483–3488. [Google Scholar] [CrossRef]
- Wu, D.F.; Yin, R.X.; Deng, J.L. Homocysteine, hyperhomocysteinemia, and H-type hypertension. Eur. J. Prev. Cardiol. 2024, 31, 1092–1103. [Google Scholar] [CrossRef]
- Wu, Y.L.; Hu, C.Y.; Lu, S.S.; Gong, F.F.; Feng, F.; Qian, Z.Z.; Ding, X.X.; Yang, H.Y.; Sun, Y.H. Association between methylenetetrahydrofolate reductase (MTHFR) C677T/A1298C polymorphisms and essential hypertension: A systematic review and meta-analysis. Metabolism 2014, 63, 1503–1511. [Google Scholar] [CrossRef]
- Yang, B.; Fan, S.; Zhi, X.; Li, Y.; Liu, Y.; Wang, D.; He, M.; Hou, Y.; Zheng, Q.; Sun, G. Associations of MTHFR gene polymorphisms with hypertension and hypertension in pregnancy: A meta-analysis from 114 studies with 15,411 cases and 21,970 controls. PLoS ONE 2014, 9, e87497. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, D.; Liang, J.; Ji, M.; Zhang, W.; Pan, Y.; Zheng, F.; Xie, W. Association between folate deficiency and hypertension: Evidence from an observational and Mendelian randomization study. Eur. J. Prev. Cardiol. 2025, 32, 1310–1318. [Google Scholar] [CrossRef]
- Tehrani, A.Y.; White, Z.; Tung, L.W.; Zhao, R.R.Y.; Milad, N.; Seidman, M.A.; Sauge, E.; Theret, M.; Rossi, F.M.V.; Esfandiarei, M.; et al. Pleiotropic activation of endothelial function by angiotensin II receptor blockers is crucial to their protective anti-vascular remodeling effects. Sci. Rep. 2022, 12, 9771. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.; Khan, H.; Haque, S.; Ahmad, S.; Srivastava, N.; Khan, A. Angiotensin-converting enzyme and hypertension: A systemic analysis of various ACE inhibitors, their side effects, and bioactive peptides as a putative therapy for hypertension. J. Renin Angiotensin Aldosterone Syst. 2023, 7890188. [Google Scholar] [CrossRef]
- Bonney, P.; Obirikorang, C.; Quaye, L.; Dapare, P.P.; Adams, Y.; Bourawono, G.; Akaluti, M.; Duodu, J. Association between angiotensin-converting enzyme (ACE) insertion/deletion polymorphism and hypertension in a Ghanaian population. PLoS ONE 2024, 19, e0311692. [Google Scholar] [CrossRef]
- Liu, M.; Yi, J.; Tang, W. Association between angiotensin converting enzyme gene polymorphism and essential hypertension: A systematic review and meta-analysis. J. Renin Angiotensin Aldosterone Syst. 2021, 22, 1. [Google Scholar] [CrossRef]
- Razaq, A.; Khan, A.; Shah, S.T.; Ullah, S. Association of insertion/deletion polymorphism of ACE gene with essential hypertension in patients of Khyber Pakhtunkhwa. Pak. J. Med. Sci. 2024, 40, 461–466. [Google Scholar] [CrossRef]
- Birhan, T.A.; Molla, M.D.; Abdulkadir, M.; Tesfa, K.H. Association of angiotensin-converting enzyme gene insertion/deletion polymorphisms with risk of hypertension among the Ethiopian population. PLoS ONE 2022, 17, e0276021. [Google Scholar] [CrossRef]
- Tran, D.C.; Le, L.H.G.; Thai, T.T.; Hoang, S.V.; Do, M.D.; Truong, B.Q. Association between ACE I/D genetic polymorphism and the severity of coronary artery disease in Vietnamese patients with acute myocardial infarction. Front. Cardiovasc. Med. 2023, 10, 1091612. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, L.; Hu, S.; Wei, Y. Association of angiotensin-converting enzyme I/D polymorphism with heart failure: A meta-analysis. Mol. Cell Biochem. 2012, 361, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Al-Eitan, L.; Al-Khaldi, S.; Ibdah, R.K. ACE gene polymorphism and susceptibility to hypertension in a Jordanian adult population. PLoS ONE 2024, 19, e0304271. [Google Scholar] [CrossRef] [PubMed]
- Parchwani, D.N.; Patel, D.D.; Rawtani, J.; Yadav, D. Analysis of association of angiotensin II type 1 receptor gene A1166C gene polymorphism with essential hypertension. Indian J. Clin. Biochem. 2018, 33, 53–60. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Lee, J.E.; Kityo, A.; Lee, S.A. Lifestyle factors, sociodemographic characteristics and incident hypertension: A prospective analysis of the Korean National Health Insurance Service sample cohort. J. Pers. Med. 2024, 14, 959. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Liang, Z.; Liu, Z.; Pan, L.; Hu, X.; Tian, Y.; Jin, H.; Liu, Y.; Cheng, Y.; Zhang, M. Identification of novel proteins mediating causal association between smoking and essential hypertension: A Mendelian randomization study. J. Am. Heart Assoc. 2024, 13, e036202. [Google Scholar] [CrossRef] [PubMed]
- Vardavas, C.I.; Linardakis, M.K.; Hatzis, C.M.; Malliaraki, N.; Saris, W.H.; Kafatos, A.G. Smoking status in relation to serum folate and dietary vitamin intake. Tob. Induc. Dis. 2008, 4, 8. [Google Scholar] [CrossRef] [PubMed]
- Karim, S.; Zahedi, M.; Mohammadi, Z.; Poursharifi, N.; Khorami, M.; Tatar, M. The effect of cigarette smoking on serum homocysteine, folic acid, and vitamin B12 concentrations in patients with cardiovascular diseases. Med. Lab. J. 2025, 19, 22–24. [Google Scholar]
- Nath, D.; Shivasekar, M. Role of cigarette smoking on serum angiotensin-converting enzyme and its association with inflammation and lipid peroxidation. Cureus 2022, 14, e27857. [Google Scholar] [CrossRef]
- Oakes, J.M.; Fuchs, R.M.; Gardner, J.D.; Lazartigues, E.; Yue, X. Nicotine and the renin-angiotensin system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, R895–R906. [Google Scholar] [CrossRef]
| SNP | Primer Sequence | Amplicon Size |
|---|---|---|
| MTHFR C677T | 5′ TGAAGGAGAAGGTGTCTGCGGGA 3′ | 198 bp (undigested) |
| AT1R | 5′ AGGACGGTGCGGTGAGAGTG 3′ | 175 bp + 23 bp (after restriction) |
| 5′ GCACCATGTTTTGAGGTT 3′ | 546 bp (undigested) | |
| 5′CGACTACTGCTTAGCATA 3′ | 435 bp + 111 bp (after restriction) | |
| eNOS 4 a/b | 5′ AGG CCC TAT GGT AGT GCC TTT 3′ | 393 bp (a allele) |
| 5′ TCT CTT AGT GCT GTG GTC AC 3′ | 420 bp (b allele) | |
| ACE I/D | 5′ CTGGAGACCACTCCCATCCTTTCT 3′ | 190 bp (without insertion) |
| 5′ GATGTGGCCATCACATTCG TCAGAT 3′ | 490 bp (with insertion) |
| All Subjects | EH Patients (n = 845) | Controls (n = 845) | p | OR (95% CI) |
|---|---|---|---|---|
| Men/Women | 462/383 | 433/412 | 0.16 | |
| Age (mean ± SD) (year) | 54.97 ± 6.98 (35–65) | 54.22 ± 6.94 (35–65) | 0.0046 | |
| Height (mean ± SD) (m) | 1.70 ± 0.03(1.58–1.87) | 1.7 ± 0.04 (1.56–1.83) | <0.0001 | |
| Weight (mean ± SD) (kg) | 78.07 ± 8.89 (52–108) | 69.28 ± 6.17 (54.0–88.0) | <0.0001 | |
| BMI (mean ± SD) (kg/m2) | 27.07 ± 3.01 (18.87–34.89) | 23.86 ± 1.84 (19.15–29.41) | <0.0001 | |
| Alcohol consumption status | ||||
| Non-consumers | 576 | 609 | 0.34 | |
| Current | 29 | 79 | <0.0001 | 0.34 (0.22–0.54) |
| Former | 48 | 39 | 0.33 | |
| Occasional | 192 | 118 | <0.0001 | 1.82 (1.41–2.33) |
| Smoking status | ||||
| Non-smokers | 414 | 609 | <0.0001 | 2.69 (2.2–3.29) |
| Current | 141 | 79 | <0.0001 | 0.51 (0.38–0.69) |
| Former | 156 | 39 | <0.0001 | 0.21 (0.15–0.31) |
| Occasional | 134 | 118 | 0.31 | |
| Physical activity status | ||||
| Occasionally active or sedentary | 455 | 279 | <0.0001 | 2.45 (2.01–2.98) |
| Moderately active | 359 | 362 | 0.91 | |
| Regularly active | 31 | 204 | <0.0001 | 0.12 (0.08–1.18) |
| Comorbidities | ||||
| T1DM | 110/735 | 0 | ||
| T2DM | 135/710 | 0 | ||
| Obesity | 143/702 | 0 | ||
| MI | 114/731 | 0 | ||
| CVA | 147/698 | 0 | ||
| Family history | ||||
| Father with AH | 119/726 | 87/758 | 0.02 | |
| Mother with AH | 86/759 | 47/798 | <0.001 | 1.92 (1.33–2.78) |
| SNP | Minor Allele | Alleles/Genotypes | HWE p Values in Controls | EH Patients (%) n = 845 | Controls (%) n = 845 | OR (95% CI) | p |
|---|---|---|---|---|---|---|---|
| ACE I/D (rs4646994) | I | I | 0.058 | 734 (43.4) | 856 (50.6) | 0.75 (0.65–0.86) | <0.001 |
| D | 956 (56.6) | 834 (49.4) | 1.34 (1.17–1.53) | ||||
| I/I | 173 (20.5) | 231 (27.4) | 0.68 (0.55–0.85) | 0.001 * | |||
| I/D | 388 (45.9) | 394 (46.6) | 0.97 (0.80–1.18) | 0.76 | |||
| D/D | 284 (33.6) | 220 (26.0) | 1.44 (1.17–1.77) | 0.0007 * | |||
| MTHFR C677T (rs1801133) | T | C | 0.29 | 796 (47.1) | 907 (53.7) | 0.77 (0.67–0.88) | 0.0001 |
| T | 894 (52.9) | 783 (46.3) | 1.30 (1.14–1.49) | ||||
| C/C | 201 (23.8) | 251 (29.7) | 0.74 (0.60–0.92) | 0.044 | |||
| C/T | 394 (46.6) | 405 (47.9) | 0.95 (0.78–1.15) | 0.60 | |||
| T/T | 250 (29.6) | 189 (22.4) | 1.46 (1.17–1.82) | 0.0007 * | |||
| AT1R A1166C (rs5186) | C | A | 0.31 | 1253 (74.1) | 1215 (71.9) | 1.12 (0.96–1.31) | 0.14 |
| C | 437 (25.9) | 475 (28.1) | 0.89 (0.77–1.04) | ||||
| A/A | 454 (53.7) | 431 (51.0) | 1.12 (0.92–1.35) | 0.26 | |||
| A/C | 345 (40.8) | 353 (41.8) | 0.96 (0.79–1.17) | 0.69 | |||
| C/C | 46 (5.5) | 61 (7.2) | 0.74 (0.5–1.1) | 0.14 | |||
| eNOS (4a/b) | a | A | 0.08 | 392 (23.2) | 382 (22.6) | 1.03 (0.88–1.21) | 0.68 |
| B | 1298 (76.8) | 1308 (77.4) | 0.97 (0.82–1.14) | ||||
| Aa | 48 (5.7) | 34 (4.0) | 1.44 (0.92–2.26) | 0.11 | |||
| Ba | 296 (35.0) | 314 (37.2) | 0.91 (0.75–1.11) | 0.36 | |||
| Bb | 501 (59.3) | 497 (58.8) | 1.02 (0.84–1.24) | 0.84 |
| SNP | Genotype | EH Patients | Controls | OR (95 CI%) | p |
|---|---|---|---|---|---|
| ACE I/D | DD | 152 | 101 | 1.62 (1.23–2.12) | 0.0005 * |
| II + ID | 693 | 744 | |||
| MTHFR C677T | TT | 138 | 88 | 1.68 (1.25–2.26) | 0.0004 * |
| CC + CT | 707 | 757 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nica, R.; Nica, S.; Rotaru, L.T.; Toma, M.; Berca, L.M.; Cimponeriu, D.; Măciucă, R. Analysis of Genetic Variants MTHFR C677T, ACE I/D, AT1R A1166C and eNOS 4a/b in the Context of Essential Hypertension Susceptibility. Biomedicines 2025, 13, 2807. https://doi.org/10.3390/biomedicines13112807
Nica R, Nica S, Rotaru LT, Toma M, Berca LM, Cimponeriu D, Măciucă R. Analysis of Genetic Variants MTHFR C677T, ACE I/D, AT1R A1166C and eNOS 4a/b in the Context of Essential Hypertension Susceptibility. Biomedicines. 2025; 13(11):2807. https://doi.org/10.3390/biomedicines13112807
Chicago/Turabian StyleNica, Remus, Silvia Nica, Luciana Teodora Rotaru, Mihai Toma, Lavinia Mariana Berca, Dănuț Cimponeriu, and Roxana Măciucă. 2025. "Analysis of Genetic Variants MTHFR C677T, ACE I/D, AT1R A1166C and eNOS 4a/b in the Context of Essential Hypertension Susceptibility" Biomedicines 13, no. 11: 2807. https://doi.org/10.3390/biomedicines13112807
APA StyleNica, R., Nica, S., Rotaru, L. T., Toma, M., Berca, L. M., Cimponeriu, D., & Măciucă, R. (2025). Analysis of Genetic Variants MTHFR C677T, ACE I/D, AT1R A1166C and eNOS 4a/b in the Context of Essential Hypertension Susceptibility. Biomedicines, 13(11), 2807. https://doi.org/10.3390/biomedicines13112807

