Telomeres, Telomerase, and Curcumin: A New Frontier in Cancer Therapy: A Narrative Review
Abstract
1. Introduction
2. Telomeres
3. Telomerase and Cancer Progression
4. Molecular Mechanisms of Telomer Elongation Contribute to Tumor Progression
4.1. Telomerase Activation Mechanism
4.2. Curcumin Suppresses Telomerase Activity by Modulating Specific microRNAs
4.3. Mechanism of Alternative Lengthening of Telomeres
5. Telomerase and Curcumin
6. Mechanisms of Curcumin-Mediated Telomerase Regulation
7. Mechanistic Pathways
8. Comparative Perspective
9. Challenges and Future Directions
9.1. Overcoming Pharmacokinetic Limitations
9.2. Promising Strategies: Analogs and Delivery System
9.3. Comparative Analysis of Telomerase Inhibitors
9.4. Future Research
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| ALT | alternative lengthening of telomeres |
| AR | androgen receptor |
| CCA-1.1 | chemoprevention curcumin analog-1.1 |
| CDF | difluorinated curcumin |
| c-Myc | cellular myelocytomatosis oncogene |
| DKC1 | dyskerin |
| EF24 | curcumin analog EF24 |
| ER | estrogen receptor |
| G4 | G-quadruplex DNA |
| GLI1/GLI2 | GLI family zinc-finger 1/2 |
| H3K4me3 | histone 3 lysine 4 trimethylation |
| H3K27me3 | histone 3 lysine 27 trimethylation |
| Hsp90 | heat shock protein 90 |
| hTERC | human telomerase RNA component |
| hTERT | human telomerase reverse transcriptase |
| JAK/STAT | Janus kinase/signal transducer and activator of transcription |
| MAPK | mitogen-activated protein kinase |
| mCur | chemically modified curcumin |
| miRNAs | microRNAs |
| PGV-1 | pentagamavunone-1 |
| PI3K/AKT | phosphoinositide 3-kinase/protein kinase B pathway |
| PLGA | poly(lactic-co-glycolic acid) |
| PLK1 | polo-like kinase 1 |
| POT1 | protection of telomeres 1 |
| RAP1 | repressor activator protein 1 |
| SMYD3 | set and mynd domain-containing protein 3 |
| Sp1 | specificity protein 1 |
| STAT3 | signal transducer and activator of transcription 3 |
| TCAB1 | telomerase Cajal body protein 1 |
| TEP1 | telomerase-associated protein 1 |
| TIN2 | TRF1-interacting nuclear factor 2 |
| TPP1 | TINT1/PTOP/PIP1 (protection of telomeres 1-interacting protein) |
| TRF1/2 | telomere repeat-binding factors 1 and 2 |
References
- Gruber, H.-J.; Semeraro, M.D.; Renner, W.; Herrmann, M. Telomeres and Age-Related Diseases. Biomedicines 2021, 9, 1335. [Google Scholar] [CrossRef]
- Chakravarti, D.; LaBella, K.A.; DePinho, R.A. Telomeres: History, Health, and Hallmarks of Aging. Cell 2021, 184, 306–322. [Google Scholar] [CrossRef]
- Srinivas, N.; Rachakonda, S.; Kumar, R. Telomeres and Telomere Length: A General Overview. Cancers 2020, 12, 558. [Google Scholar] [CrossRef] [PubMed]
- Jafri, M.A.; Ansari, S.A.; Alqahtani, M.H.; Shay, J.W. Roles of Telomeres and Telomerase in Cancer, and Advances in Telomerase-Targeted Therapies. Genome Med. 2016, 8, 69. [Google Scholar] [CrossRef] [PubMed]
- Benameur, T.; Soleti, R.; Panaro, M.A.; Torre, M.E.; Monda, V.; Messina, G.; Porro, C. Curcumin as Prospective Anti-Aging Natural Compound: Focus on Brain. Molecules 2021, 26, 4794. [Google Scholar] [CrossRef]
- Ramachandran, C.; Fonseca, H.B.; Jhabvala, P.; Escalon, E.A.; Melnick, S.J. Curcumin Inhibits Telomerase Activity through Human Telomerase Reverse Transcritpase in MCF-7 Breast Cancer Cell Line. Cancer Lett. 2002, 184, 1–6. [Google Scholar] [CrossRef]
- Hu, H.; Yan, H.L.; Nguyen, T.H.D. Structural Biology of Shelterin and Telomeric Chromatin: The Pieces and an Unfinished Puzzle. Biochem. Soc. Trans. 2024, 52, 1551–1564. [Google Scholar] [CrossRef]
- Lange, T. Shelterin-Mediated Telomere Protection. Annu. Rev. Genet. 2018, 52, 223–247. [Google Scholar] [CrossRef]
- Khaw, A.K.; Hande, M.P.; Kalthur, G.; Hande, M.P. Curcumin Inhibits Telomerase and Induces Telomere Shortening and Apoptosis in Brain Tumour Cells. J. Cell Biochem. 2013, 114, 1257–1270. [Google Scholar] [CrossRef] [PubMed]
- Londoño-vallejo, A. Telomeres and Cancer. In Telomeres: Chromosome Sentinels; Saintome, C., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2024; pp. 263–290. [Google Scholar]
- Barnes, R.P.; Fouquerel, E.; Opresko, P.L. The Impact of Oxidative DNA Damage and Stress on Telomere Homeostasis. Mech. Ageing Dev. 2019, 177, 37–45. [Google Scholar] [CrossRef]
- Bernadotte, A.; Mikhelson, V.M.; Spivak, I.M. Markers of Cellular Senescence. Telomere Shortening as a Marker of Cellular Senescence. Aging 2016, 8, 3–11. [Google Scholar] [CrossRef]
- Rosso, I.; Jones-Weinert, C.; Rossiello, F.; Cabrini, M.; Brambillasca, S.; Munoz-Sagredo, L.; Lavagnino, Z.; Martini, E.; Tedone, E.; Garre’, M. Alternative Lengthening of Telomeres (ALT) Cells Viability Is Dependent on C-Rich Telomeric RNAs. Nat. Commun. 2023, 14, 7086. [Google Scholar] [CrossRef]
- Maciejowski, J.; Lange, T. Telomeres in Cancer: Tumour Suppression and Genome Instability. Nat. Rev. Mol. Cell Biol. 2017, 18, 175–186, Erratum in Nat. Rev. Mol. Cell Biol. 2019, 20, 259. https://doi.org/10.1038/nrm.2016.171. [Google Scholar] [CrossRef] [PubMed]
- Patrick, E.M.; Slivka, J.D.; Payne, B.; Comstock, M.J.; Schmidt, J.C. Observation of Processive Telomerase Catalysis Using High-Resolution Optical Tweezers. Nat. Chem. Biol. 2020, 16, 801–809. [Google Scholar] [CrossRef]
- Egan, E.D.; Collins, K. Specificity and Stoichiometry of Subunit Interactions in the Human Telomerase Holoenzyme Assembled in Vivo. Mol. Cell Biol. 2010, 30, 2775–2786. [Google Scholar] [CrossRef]
- Machado-Pinilla, R.; Carrillo, J.; Manguan-Garcia, C.; Sastre, L.; Mentzer, A.; Gu, B.W.; Mason, P.J.; Perona, R. Defects in mTR Stability and Telomerase Activity Produced by the Dkc1 A353V Mutation in Dyskeratosis Congenita Are Rescued by a Peptide from the Dyskerin TruB Domain. Clin. Transl. Oncol. 2012, 14, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez-Cabellos, J.S.; Seco-Cervera, M.; Picher-Latorre, C.; Pérez-Machado, G.; García-Giménez, J.L.; Pallardó, F.V. Acute Depletion of Telomerase Components DKC1 and NOP10 Induces Oxidative Stress and Disrupts Ribosomal Biogenesis via NPM1 and Activation of the P53 Pathway. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118845. [Google Scholar] [CrossRef]
- Jha, N.S.; Mishra, S.; Mamidi, A.S.; Mishra, A.; Jha, S.K.; Surolia, A. Targeting Human Telomeric G-Quadruplex DNA with Curcumin and Its Synthesized Analogues under Molecular Crowding Conditions. RSC Adv. 2016, 6, 7474–7487. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, G.; Wu, R.; Mack, D.L.; Sun, X.S.; Maxwell, J.; Guan, X.; Atala, A.; Zhang, Y. Differentiation Capacity of Human Urine-Derived Stem Cells to Retain Telomerase Activity. Front. Cell Dev. Biol. 2022, 10, 890574. [Google Scholar] [CrossRef]
- Kuru, G.; Küçüksolak, M.; Pulat, G.; Karaman, O.; Bedir, E. The Effects of Novel Telomerase Activators on Human Adipose-Derived Mesenchymal Stem Cell (hAD-MSC) Proliferation and Osteogenic Differentiation. Planta Med. 2022, 88, 1500. [Google Scholar] [CrossRef]
- Ma, B.; Martínez, P.; Sánchez-Vázquez, R.; Blasco, M.A. Telomere Dynamics in Human Pluripotent Stem Cells. Cell Cycle 2023, 22, 2505–2521. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.W.; Piatyszek, M.A.; Prowse, K.R.; Harley, C.B.; West, M.D.; Ho, P.L.; Coviello, G.M.; Wright, W.E.; Weinrich, S.L.; Shay, J.W. Specific Association of Human Telomerase Activity with Immortal Cells and Cancer. Science 1994, 266, 2011–2015. [Google Scholar] [CrossRef]
- Shay, J.W.; Bacchetti, S. A Survey of Telomerase Activity in Human Cancer. Eur. J. Cancer 1997, 33, 787–791. [Google Scholar] [CrossRef]
- Komoto, S.; Noma, K.; Kato, T.; Kobayashi, T.; Nishiwaki, N.; Narusaka, T.; Sato, H.; Katsura, Y.; Kashima, H.; Kikuchi, S. Conventional Cancer Therapies Can Accelerate Malignant Potential of Cancer Cells by Activating Cancer-Associated Fibroblasts in Esophageal Cancer Models. Cancers 2023, 15, 2971. [Google Scholar] [CrossRef]
- Job, S.; Draskovic, I.; Burnichon, N.; Buffet, A.; Cros, J.; Lépine, C.; Venisse, A.; Robidel, E.; Verkarre, V.; Meatchi, T. Telomerase Activation and ATRX Mutations Are Independent Risk Factors for Metastatic Pheochromocytoma and Paraganglioma. Clin. Cancer Res. 2019, 25, 760–770. [Google Scholar] [CrossRef]
- Kulić, A.; Plavetić, N.D.; Gamulin, S.; Jakić-Razumović, J.; Vrbanec, D.; Sirotković-Skerlev, M. Telomerase Activity in Breast Cancer Patients: Association with Poor Prognosis and More Aggressive Phenotype. Med. Oncol. 2016, 33, 23. [Google Scholar] [CrossRef]
- Sharma, S.; Chowdhury, S. Emerging Mechanisms of Telomerase Reactivation in Cancer. Trends Cancer 2022, 8, 632–641. [Google Scholar] [CrossRef]
- Tornesello, M.L.; Cerasuolo, A.; Starita, N.; Tornesello, A.L.; Bonelli, P.; Tuccillo, F.M.; Buonaguro, L.; Isaguliants, M.G.; Buonaguro, F.M. The Molecular Interplay between Human Oncoviruses and Telomerase in Cancer Development. Cancers 2022, 14, 5257. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, Y.; Jian, Y.; Gu, L.; Zhang, D.; Zhou, H.; Wang, Y.; Xu, Z.X. The Regulations of Telomerase Reverse Transcriptase (TERT) in Cancer. Cell Death Dis. 2024, 15, 90. [Google Scholar] [CrossRef]
- Dogan, F.; Forsyth, N.R. Telomerase regulation: A role for epigenetics. Cancers 2021, 13, 1213. [Google Scholar] [CrossRef] [PubMed]
- Dessain, S.K.; Yu, H.; Reddel, R.R.; Beijersbergen, R.L.; Weinberg, R.A. Methylation of the Human Telomerase Gene CpG Island. Cancer Res. 2000, 60, 537–541. [Google Scholar]
- Guilleret, I.; Yan, P.; Grange, F.; Braunschweig, R.; Bosman, F.T.; Benhattar, J. Hypermethylation of the Human Telomerase Catalytic Subunit (hTERT) Gene Correlates with Telomerase Activity. Int. J. Cancer 2002, 101, 335–341. [Google Scholar] [CrossRef]
- Liu, C.; Fang, X.; Ge, Z.; Jalink, M.; Kyo, S.; Björkholm, M.; Gruber, A.; Sjöberg, J.; Xu, D. The Telomerase Reverse Transcriptase (hTERT) Gene Is a Direct Target of the Histone Methyltransferase SMYD3. Cancer Res. 2007, 67, 2626–2631. [Google Scholar] [CrossRef] [PubMed]
- Bortoletto, S.; Nunes-Souza, E.; Marchi, R.; Ruthes, M.O.; Okano, L.M.; Tofolo, M.V.; Centa, A.; Fonseca, A.S.; Rosolen, D.; Cavalli, L.R. MicroRNAs Role in Telomere Length Maintenance and Telomerase Activity in Tumor Cells. J. Mol. Med. 2024, 102, 1089–1100. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; An, F.; He, X.; Cao, X. Curcumin Inhibits the Proliferation and Invasion of Human Osteosarcoma Cell Line MG-63 by Regulating miR-138. Int. J. Clin. Exp. Pathol. 2015, 8, 14946. [Google Scholar] [PubMed]
- Wang, M.; Jiang, S.; Zhou, L.; Yu, F.; Ding, H.; Li, P. Potential Mechanisms of Action of Curcumin for Cancer Prevention: Focus on Cellular Signaling Pathways and miRNAs. Int. J. Biol. Sci. 2019, 15, 1200–1214. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Sun, G.; Luo, H.; Wang, X.F.; Lan, F.M.; Yue, X.; Fu, L.S.; Pu, P.Y.; Kang, C.S.; Liu, N. MiR-21 Modulates hTERT through a STAT3-Dependent Manner on Glioblastoma Cell Growth. CNS Neurosci. Ther. 2012, 18, 722–728. [Google Scholar] [CrossRef]
- Yeo, S.; Kim, M.J.; Shim, Y.K.; Yoon, I. Solid Lipid Nanoparticles of Curcumin Designed for Enhanced Bioavailability and Anticancer Activity. ACS Omega 2022, 7, 35875–35884. [Google Scholar] [CrossRef]
- Wang, Q.-A.-Z.; Liang, X.; Yang, Y. Downregulation of hTERT Contributes to Ovarian Cancer Apoptosis and Inhibits Proliferation of Ovarian Cancer Cells. Transl. Cancer Res. 2020, 9, 1448–1454. [Google Scholar] [CrossRef]
- Su, C.; Luo, Y.; Yang, Y.; Yi, Y. ShRNA-Mediated Silencing of hTERT Promote Apoptosis and Senescence in Human Ovarian Cancer Cells. Transl. Cancer Res. 2019, 8, 567–573. [Google Scholar] [CrossRef]
- Long, W.; Zeng, Y.-X.; Zheng, B.-X.; Li, Y.-B.; Wang, Y.-K.; Chan, K.-H.; She, M.-T.; Lu, Y.-J.; Cao, C.; Wong, W.-L. Targeting hTERT Promoter G-Quadruplex DNA Structures with Small-Molecule Ligand to Downregulate hTERT Expression for Triple-Negative Breast Cancer Therapy. J. Med. Chem. 2024, 67, 13363–13382. [Google Scholar] [CrossRef]
- Yamada, O.; Kawauchi, K. The Role of the JAK-STAT Pathway and Related Signal Cascades in Telomerase Activation during the Development of Hematologic Malignancies. JAK-STAT 2013, 2, 25256. [Google Scholar] [CrossRef]
- Brooks, A.J.; Putoczki, T. JAK-STAT Signalling Pathway in Cancer. Cancers 2020, 12, 1971. [Google Scholar] [CrossRef]
- Dutta, P.; Li, W.X. Role of the JAK-STAT Signalling Pathway in Cancer. In eLS; John Wiley & Sons, Limited: Chichester, UK, 2013. [Google Scholar]
- Chai, J.Y.; Sugumar, V.; Alshawsh, M.A.; Wong, W.F.; Arya, A.; Chong, P.P.; Looi, C.Y. The Role of Smoothened-Dependent and -Independent Hedgehog Signaling Pathway in Tumorigenesis. Biomedicines 2021, 9, 1188. [Google Scholar] [CrossRef] [PubMed]
- Mazumdar, T.; Sandhu, R.; Qadan, M.; DeVecchio, J.; Magloire, V.; Agyeman, A.; Li, B.; Houghton, J.A. Hedgehog signaling regulates telomerase reverse transcriptase in human cancer cells. PLoS ONE 2013, 8, 75253. [Google Scholar] [CrossRef]
- Tusa, I.; Gagliardi, S.; Tubita, A.; Pandolfi, S.; Menconi, A.; Lulli, M.; Dello Sbarba, P.; Stecca, B.; Rovida, E. The Hedgehog-GLI pathway regulates MEK5-ERK5 expression and activation in melanoma cells. Int. J. Mol. Sci. 2021, 22, 11259. [Google Scholar] [CrossRef] [PubMed]
- Doheny, D.; Manore, S.G.; Wong, G.L.; Lo, H.-W. Hedgehog Signaling and Truncated GLI1 in Cancer. Cells 2020, 9, 2114. [Google Scholar] [CrossRef]
- Sigafoos, A.N.; Paradise, B.D.; Fernandez-Zapico, M.E. Hedgehog/GLI Signaling Pathway: Transduction, Regulation, and Implications for Disease. Cancers 2021, 13, 3410. [Google Scholar] [CrossRef]
- Bartsch, S.; Mirzakhani, K.; Neubert, L.; Stenzel, A.; Ehsani, M.; Esmaeili, M.; Pungsrinont, T.; Kacal, M.; Rasa, S.M.M.; Kallenbach, J. Antithetic hTERT Regulation by Androgens in Prostate Cancer Cells: hTERT Inhibition Is Mediated by the ING1 and ING2 Tumor Suppressors. Cancers 2021, 13, 4025. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.; Nayak, S.; Kakar, R.; Chaudhari, U.K.; Joshi, D.; Vundinti, B.R.; Fernandes, G.; Barai, R.S.; Kholkute, S.D.; Sachdeva, G. A Triad of Telomerase, Androgen Receptor and Early Growth Response 1 in Prostate Cancer Cells. Cancer Biol. Ther. 2016, 17, 439–448. [Google Scholar] [CrossRef]
- Liu, S.; Qi, Y.; Ge, Y.; Duplessis, T.; Rowan, B.G.; Ip, C.; Cheng, H.; Rennie, P.S.; Horikawa, I.; Lustig, A.J. Telomerase as an Important Target of Androgen Signaling Blockade for Prostate Cancer Treatment. Mol. Cancer Ther. 2010, 9, 2016–2025. [Google Scholar] [CrossRef]
- Zhou, C.; Steplowski, T.A.; Dickens, H.K.; Malloy, K.M.; Gehrig, P.A.; Boggess, J.F.; Bae-Jump, V.L. Estrogen Induction of Telomerase Activity through Regulation of the Mitogen-Activated Protein Kinase (MAPK) Dependent Pathway in Human Endometrial Cancer Cells. PLoS ONE 2013, 8, 55730. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Kyo, S.; Takakura, M.; Tanaka, M.; Yatabe, N.; Maida, Y.; Fujiwara, M.; Hayakawa, J.; Ohmichi, M.; Koike, K. Progesterone Regulates Human Telomerase Reverse Transcriptase Gene Expression via Activation of Mitogen-Activated Protein Kinase Signaling Pathway. Cancer Res. 2000, 60, 5376–5381. [Google Scholar]
- Kyo, S.; Takakura, M.; Kanaya, T.; Zhuo, W.; Fujimoto, K.; Nishio, Y.; Orimo, A.; Inoue, M. Estrogen activates telomerase. Cancer Res. 1999, 59, 5917–5921. [Google Scholar]
- Kimura, A.; Ohmichi, M.; Kawagoe, J.; Kyo, S.; Mabuchi, S.; Takahashi, T.; Ohshima, C.; Arimoto-Ishida, E.; Nishio, Y.; Inoue, M. Induction of hTERT Expression and Phosphorylation by Estrogen via Akt Cascade in Human Ovarian Cancer Cell Lines. Oncogene 2004, 23, 4505–4515. [Google Scholar] [CrossRef]
- Lamy, E.; Herz, C.; Lutz-Bonengel, S.; Hertrampf, A.; Márton, M.-R.; Mersch-Sundermann, V. The MAPK Pathway Signals Telomerase Modulation in Response to Isothiocyanate-Induced DNA Damage of Human Liver Cancer Cells. PLoS ONE 2013, 8, 53240. [Google Scholar] [CrossRef]
- Ram, R.; Uziel, O.; Eldan, O.; Fenig, E.; Beery, E.; Lichtenberg, S.; Nordenberg, Y.; Lahav, M. Ionizing Radiation Up-Regulates Telomerase Activity in Cancer Cell Lines by Post-Translational Mechanism via Ras/Phosphatidylinositol 3-Kinase/Akt Pathway. Clin. Cancer Res. 2009, 15, 914–923. [Google Scholar] [CrossRef] [PubMed]
- Sohn, E.J.; Goralsky, J.A.; Shay, J.W.; Min, J. The Molecular Mechanisms and Therapeutic Prospects of Alternative Lengthening of Telomeres (ALT). Cancers 2023, 15, 1945. [Google Scholar] [CrossRef] [PubMed]
- Broderick, R.; Cherdyntseva, V.; Nieminuszczy, J.; Dragona, E.; Kyriakaki, M.; Evmorfopoulou, T.; Gagos, S.; Niedzwiedz, W. Pathway Choice in the Alternative Telomere Lengthening in Neoplasia Is Dictated by Replication Fork Processing Mediated by EXD2’s Nuclease Activity. Nat. Commun. 2023, 14, 2428. [Google Scholar] [CrossRef]
- Stundon, J.L.; Ijaz, H.; Gaonkar, K.S.; Kaufman, R.S.; Jin, R.; Karras, A.; Vaksman, Z.; Kim, J.; Corbett, R.J.; Lueder, M.R. Alternative Lengthening of Telomeres (ALT) in Pediatric High-Grade Gliomas Can Occur without ATRX Mutation and Is Enriched in Patients with Pathogenic Germline Mismatch Repair (MMR) Variants. Neuro-Oncology 2023, 25, 1331–1342. [Google Scholar] [CrossRef]
- Sun, H.; Chen, G.; Guo, B.; Lv, S.; Yuan, G. Potential Clinical Treatment Prospects behind the Molecular Mechanism of Alternative Lengthening of Telomeres (ALT). J. Cancer 2023, 14, 417–433. [Google Scholar] [CrossRef]
- Ayub, H.; Islam, M.; Saeed, M.; Ahmad, H.; Al-Asmari, F.; Ramadan, M.F.; Alissa, M.; Arif, M.A.; Rana, M.U.J.; Subtain, M. On the Health Effects of Curcumin and Its Derivatives. Food Sci. Nutr. 2024, 12, 8623–8650. [Google Scholar] [CrossRef] [PubMed]
- Hewlings, S.J.; Kalman, D.S. Curcumin: A Review of Its Effects on Human Health. Foods 2017, 6, 92. [Google Scholar] [CrossRef]
- Kunnumakkara, A.B.; Hegde, M.; Parama, D.; Girisa, S.; Kumar, A.; Daimary, U.D.; Garodia, P.; Yenisetti, S.C.; Oommen, O.V.; Aggarwal, B.B. Role of Turmeric and Curcumin in Prevention and Treatment of Chronic Diseases: Lessons Learned from Clinical Trials. ACS Pharmacol. Transl. Sci. 2023, 6, 447–518. [Google Scholar] [CrossRef]
- Kanai, M. Therapeutic Applications of Curcumin for Patients with Pancreatic Cancer. World J. Gastroenterol. 2014, 20, 9384–9391. [Google Scholar] [CrossRef]
- Farghadani, R.; Naidu, R. Curcumin as an Enhancer of Therapeutic Efficiency of Chemotherapy Drugs in Breast Cancer. Int. J. Mol. Sci. 2022, 23, 2144. [Google Scholar] [CrossRef]
- Ojo, O.A.; Adeyemo, T.R.; Rotimi, D.; Batiha, G.E.-S.; Mostafa-Hedeab, G.; Iyobhebhe, M.E.; Elebiyo, T.C.; Atunwa, B.; Ojo, A.B.; Lima, C.M.G. Anticancer Properties of Curcumin against Colorectal Cancer: A Review. Front. Oncol. 2022, 12, 881641. [Google Scholar] [CrossRef]
- Lewis, K.A.; Tollefsbol, T.O. Regulation of the Telomerase Reverse Transcriptase Subunit through Epigenetic Mechanisms. Front. Genet. 2016, 7, 83. [Google Scholar] [CrossRef] [PubMed]
- Jiang, A.; Wang, X.; Shan, X.; Li, Y.; Wang, P.; Jiang, P.; Feng, Q. Curcumin Reactivates Silenced Tumor Suppressor Gene RARβ by Reducing DNA Methylation. Phytother. Res. 2015, 29, 1237–1245. [Google Scholar] [CrossRef]
- Chakraborty, S.; Ghosh, U.; Bhattacharyya, N.P.; Bhattacharya, R.K.; Roy, M. Inhibition of Telomerase Activity and Induction of Apoptosis by Curcumin in K-562 Cells. Mutat. Res. 2006, 596, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Ghosh, U.; Bhattacharyya, N.P.; Bhattacharya, R.K.; Dey, S.; Roy, M. Curcumin-Induced Apoptosis in Human Leukemia Cell HL-60 Is Associated with Inhibition of Telomerase Activity. Mol. Cell Biochem. 2007, 297, 31–39. [Google Scholar] [CrossRef]
- Lee, J.H.; Chung, I.K. Curcumin Inhibits Nuclear Localization of Telomerase by Dissociating the Hsp90 Co-Chaperone P23 from hTERT. Cancer Lett. 2010, 290, 76–86. [Google Scholar] [CrossRef]
- Bagheri, R.; Sanaat, Z.; Zarghami, N. Synergistic Effect of Free and Nano-Encapsulated Chrysin-Curcumin on Inhibition of hTERT Gene Expression in SW480 Colorectal Cancer Cell Line. Drug Res. 2018, 68, 335–343, Erratum in Drug Res. 2018, 68, e2. https://doi.org/10.1055/s-0043-121338. [Google Scholar] [CrossRef]
- Sadeghzadeh, H.; Pilehvar-Soltanahmadi, Y.; Akbarzadeh, A.; Dariushnejad, H.; Sanjarian, F.; Zarghami, N. The Effects of Nanoencapsulated Curcumin-Fe3O4 on Proliferation and hTERT Gene Expression in Lung Cancer Cells. Anti Cancer Agents Med. Chem. 2017, 17, 1363–1373. [Google Scholar] [CrossRef]
- Mustafa, Y.F. Nutraceutical-Based Telomerase Inhibitors: Renewed Hope for Cancer Therapy. Phytomed. Plus 2024, 4, 100537. [Google Scholar] [CrossRef]
- Boroughani, M.; Moaveni, A.K.; Hatami, P.; Mansoob Abasi, N.; Seyedoshohadaei, S.A.; Pooladi, A.; Moradi, Y.; Rahimi Darehbagh, R. Nanocurcumin in Cancer Treatment: A Comprehensive Systematic Review. Discov. Oncol. 2024, 15, 515. [Google Scholar] [CrossRef] [PubMed]
- Thiruvengadam, R.; Kondapavuluri, B.K.; Thangavelu, L. Nanoparticle-Based Strategies with Bioactive Compounds for Targeted Cancer Therapy. Ind. Crops Prod. 2025, 227, 120804. [Google Scholar] [CrossRef]
- Hsin, I.-L.; Sheu, G.-T.; Chen, H.-H.; Chiu, L.-Y.; Wang, H.-D.; Chan, H.-W.; Hsu, C.-P.; Ko, J.-L. N-Acetyl Cysteine Mitigates Curcumin-Mediated Telomerase Inhibition through Rescuing of Sp1 Reduction in A549 Cells. Mutat. Res. 2010, 688, 72–77. [Google Scholar] [CrossRef]
- Chatterjee, B.; Ghosh, K.; Suresh, L.; Kanade, S.R. Curcumin Ameliorates PRMT5-MEP50 Arginine Methyltransferase Expression by Decreasing the Sp1 and NF-YA Transcription Factors in the A549 and MCF-7 Cells. Mol. Cell Biochem. 2019, 455, 73–90. [Google Scholar] [CrossRef]
- Lim, T.-G.; Lee, S.-Y.; Huang, Z.; Lim, D.Y.; Chen, H.; Jung, S.K.; Bode, A.M.; Lee, K.W.; Dong, Z. Curcumin Suppresses Proliferation of Colon Cancer Cells by Targeting CDK2. Cancer Prev. Res. 2014, 7, 466–474. [Google Scholar] [CrossRef]
- Moordiani, M.; Novitasari, D.; Susidarti, R.A.; Ikawati, M.; Kato, J.; Meiyanto, E. Curcumin Analogs PGV-1 and CCA-1.1 Induce Cell Cycle Arrest in Human Hepatocellular Carcinoma Cells with Overexpressed MYCN. Indones. Biomed. J. 2023, 15, 141–149. [Google Scholar] [CrossRef]
- Pastorelli, D.; Fabricio, A.S.C.; Giovanis, P.; D’Ippolito, S.; Fiduccia, P.; Soldà, C.; Buda, A.; Sperti, C.; Bardini, R.; Dalt, G.; et al. Phytosome Complex of Curcumin as Complementary Therapy of Advanced Pancreatic Cancer Improves Safety and Efficacy of Gemcitabine: Results of a Prospective Phase II Trial. Pharmacol. Res. 2018, 132, 72–79. [Google Scholar] [CrossRef]
- Xu, D.; Feng, X.; Wan, Y.; Yang, L.; Gao, Q.; Yang, Z.; Du, C. Curcumin Nano-Prodrug Induces Multi-Phase Cell Cycle Arrest in Colorectal Cancer through Suppression of CDKs and Specific down-Regulation of PLK1. Smart Mater. Med. 2023, 4, 648–660, Erratum in Smart Mater. Med. 2024, 5, 181. https://doi.org/10.1016/j.smaim.2023.06.001. [Google Scholar] [CrossRef]
- Barra, V.; Chiavetta, R.F.; Titoli, S.; Provenzano, I.M.; Carollo, P.S.; Leonardo, A. Specific Irreversible Cell-Cycle Arrest and Depletion of Cancer Cells Obtained by Combining Curcumin and the Flavonoids Quercetin and Fisetin. Genes 2022, 13, 1125. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Ma, Y.; Liu, K.; Gao, J.; Li, S.; Sun, X.; Li, G. Resveratrol Induces DNA Damage-Mediated Cancer Cell Senescence through the DLC1–DYRK1A–EGFR Axis. Food Funct. 2023, 14, 1484–1497. [Google Scholar] [CrossRef] [PubMed]
- Zahedipour, F.; Bolourinezhad, M.; Teng, Y.; Sahebkar, A. The Multifaceted Therapeutic Mechanisms of Curcumin in Osteosarcoma: State-of-the-Art. J. Oncol. 2021, 2021, 3006853. [Google Scholar] [CrossRef]
- Tarazón, E.; Unamuno Bustos, B.; Murria Estal, R.; Pérez Simó, G.; Sahuquillo Torralba, A.; Simarro, J. MiR-138-5p Suppresses Cell Growth and Migration in Melanoma by Targeting Telomerase Reverse Transcriptase. Genes 2021, 12, 1931. [Google Scholar] [CrossRef] [PubMed]
- Petiti, J.; Rosso, V.; Lo Iacono, M.; Panuzzo, C.; Calabrese, C.; Signorino, E.; Pironi, L.; Cartellà, A.; Bracco, E.; Pergolizzi, B.; et al. Curcumin Induces Apoptosis in JAK2-Mutated Cells by the Inhibition of JAK2/STAT and mTORC1 Pathways. J. Cell Mol. Med. 2019, 23, 4349–4357. [Google Scholar] [CrossRef]
- Ham, I.H.; Wang, L.; Lee, D.; Woo, J.; Kim, T.H.; Jeong, H.Y.; Oh, H.J.; Choi, K.S.; Kim, T.M.; Hur, H. Curcumin Inhibits the Cancer-associated Fibroblast-derived Chemoresistance of Gastric Cancer through the Suppression of the JAK/STAT3 Signaling Pathway. Int. J. Oncol. 2022, 61, 85. [Google Scholar] [CrossRef]
- Shariati, M.; Hajigholami, S.; Veisi Malekshahi, Z.; Entezari, M.; Bodaghabadi, N.; Sadeghizadeh, M. Nanocurcumin-Mediated Down-Regulation of Telomerase Via Stimulating TGFβ1 Signaling Pathway in Hepatocellular Carcinoma Cells. Iran. Biomed. J. 2017, 2018, 171. [Google Scholar] [CrossRef]
- Wang, W.; Li, M.; Wang, L.; Chen, L.; Goh, B.C. Curcumin in Cancer Therapy: Exploring Molecularmechanisms and Overcoming Clinical Challenges. Cancer Lett. 2023, 570, 216332. [Google Scholar] [CrossRef]
- Hashemi, M.; Mirzaei, S.; Barati, M.; Hejazi, E.S.; Kakavand, A.; Entezari, M.; Salimimoghadam, S.; Kalbasi, A.; Rashidi, M.; Taheriazam, A.; et al. Curcumin in the Treatment of Urological Cancers: Therapeutic Targets, Challenges and Prospects. Life Sci. 2022, 309, 120984. [Google Scholar] [CrossRef]
- Zhou, L.; Lu, Y.; Liu, J.; Long, S.; Liu, H.; Zhang, J. The Role of miR-21/RECK in the Inhibition of Osteosarcoma by Curcumin. Mol. Cell Probes. 2020, 51, 101534. [Google Scholar] [CrossRef] [PubMed]
- Lennox, A.L.; Huang, F.; Behrs, M.K.; González-Sales, M.; Bhise, N.; Wan, Y.; Sun, L.; Berry, T.; Feller, F.; Morcos, P.N. Imetelstat, a Novel, First-in-Class Telomerase Inhibitor: Mechanism of Action, Clinical, and Translational Science. Clin. Transl. Sci. 2024, 17, e70076. [Google Scholar] [CrossRef]
- Thomas, X. Examining the Safety and Efficacy of Imetelstat in Low-Risk Myelodysplastic Syndrome. Expert Opin. Pharmacother. 2025, 26, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Platzbecker, U.; Santini, V.; Fenaux, P.; Sekeres, M.A.; Savona, M.R.; Madanat, Y.F.; Díez-Campelo, M.; Valcárcel, D.; Illmer, T.; Jonášová, A.; et al. Imetelstat in Patients with Lower-Risk Myelodysplastic Syndromes Who Have Relapsed or Are Refractory to Erythropoiesis-Stimulating Agents (IMerge): A Multinational, Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet 2024, 20, 248. [Google Scholar] [CrossRef] [PubMed]
- Tomeh, M.A.; Hadianamrei, R.; Zhao, X. A Review of Curcumin and Its Derivatives as Anticancer Agents. Int. J. Mol. Sci. 2019, 20, 1033. [Google Scholar] [CrossRef]
- Ganesan, K.; Xu, B. Telomerase Inhibitors from Natural Products and Their Anticancer Potential. Int. J. Mol. Sci. 2017, 19, 13. [Google Scholar] [CrossRef]
- Gera, M.; Sharma, N.; Ghosh, M.; Huynh, D.L.; Lee, S.J.; Min, T.; Kwon, T.; Jeong, D.K. Nanoformulations of Curcumin: An Emerging Paradigm for Improved Remedial Application. Oncotarget 2017, 8, 66680–66698. [Google Scholar] [CrossRef]
- ClinicalTrialsgov Trial of Curcumin to Prevent Progression of Low-Risk Prostate Cancer Under Active Surveillance. Available online: https://www.clinicaltrials.gov/study/NCT03769766 (accessed on 15 October 2025).
- Kaur, K.; Al-Khazaleh, A.K.; Bhuyan, D.J.; Li, F.; Li, C.G. A Review of Recent Curcumin Analogues and Their Antioxidant, Anti-Inflammatory, and Anticancer Activities. Antioxidants 2024, 13, 1092. [Google Scholar] [CrossRef]
- Noureddin, S.A.; El-Shishtawy, R.M.; Al-Footy, K.O. Curcumin Analogues and Their Hybrid Molecules as Multifunctional Drugs. Eur. J. Med. Chem. 2019, 182, 111631. [Google Scholar] [CrossRef]
- Nowacka, A.; Ziółkowska, E.; Smuczyński, W.; Bożiłow, D.; Śniegocki, M. Potential of Curcumin and Its Analogs in Glioblastoma Therapy. Antioxidants 2025, 14, 351. [Google Scholar] [CrossRef]
- Simsek, E.; Sunguroglu, A.; Kilic, A.; Özgültekin, N.; Ozensoy Guler, O. Effects of Thymoquinone and the Curcumin Analog EF-24 on the Activity of the Enzyme Paraoxonase-1 in Human Glioblastoma Cells U87MG. J. Enzyme Inhib. Med. Chem. 2024, 39, 2339901. [Google Scholar] [CrossRef]
- Jabbari, N.; Sabokrouh, A. Enhanced Anticancer Efficacy of Aluminum-Curcumin Complex Compared to Curcumin in Colorectal Cancer Cells. Naunyn Schmiedebergs Arch. Pharmacol. 2025, 398, 9109–9124. [Google Scholar] [CrossRef] [PubMed]
- Hafez Ghoran, S.; Calcaterra, A.; Abbasi, M.; Taktaz, F.; Nieselt, K.; Babaei, E. Curcumin-Based Nanoformulations: A Promising Adjuvant towards Cancer Treatment. Molecules 2022, 27, 5236. [Google Scholar] [CrossRef] [PubMed]
- Iranpoor, N.; Jafari-Gharabaghlou, D.; Abdulzehra, S.; Dashti, M.R.; Gorbanzadeh, F.; Zarghami, N. Development and Characterization of Curcumin Loaded PEGylated Niosomal Nanoparticles: Potential Anti-Cancer Effect on Breast Cancer Cells through RFC Gene Expression. Asian Pac. J. Cancer Prev. 2025, 26, 1017–1026. [Google Scholar] [CrossRef]
- Mostajeran, N. Liposome-based curcumin delivery systems as cancer therapeutics. In Curcumin-Based Nanomedicines as Cancer Therapeutics; Smith, J., Doe, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 209–240. [Google Scholar]
- Kumar, S.; Astalakshmi, N.; Dhivya, K.; Sarathi, M.; Lokesh, D.; Nivethitha, S.; Praveen Kumar, M. Recent Advances in Phytosomes for the Safe Management of Cancer. Phytomed. Plus 2024, 4, 100540. [Google Scholar] [CrossRef]
- Yakub, G.; Manolova, N.E.; Rashkov, I.B.; Markova, N.; Toshkova, R. Pegylated Curcumin Derivative: Water-Soluble Conjugates with Antitumor and Antibacterial Activity. Colloid. Polym. Sci. 2022, 300, 123–134. [Google Scholar] [CrossRef]
- Yan, Y.; Kulsoom; Sun, Y.; Li, Y.; Wang, Z.; Xue, L.; Wang, F. Advancing Cancer Therapy: Nanomaterial-Based Encapsulation Strategies for Enhanced Delivery and Efficacy of Curcumin. Mater. Today Bio 2025, 33, 101963. [Google Scholar] [CrossRef]
- Rathod, N.V.; Mishra, S. Nano-Curcumin for Cancer Therapy: A Strategic Approach to Improve Bioavailability and Modulate Tumor Resistance. Chem. Biodivers. 2025, 22, 2025012. [Google Scholar] [CrossRef]
- Hocking, A.J.; Farrall, A.L.; Newhouse, S.; Sordillo, P.; Greco, K.; Karapetis, C.S.; Dougherty, B.; Klebe, S. Study Protocol of a Phase 1 Clinical Trial Establishing the Safety of Intrapleural Administration of Liposomal Curcumin: Curcumin as a Palliative Treatment for Malignant Pleural Effusion (IPAL-MPE). BMJ Open 2021, 11, 047075. [Google Scholar] [CrossRef]
- Sadeghi, R.V.; Parsania, M.; Sadeghizadeh, M.; Haghighat, S. Investigation of Curcumin-Loaded OA400 Nanoparticle’s Effect on the Expression of E6 and E7 Human Papilloma-Virus Oncogenes and P53 and Rb Factors in HeLa Cell Line. Iran. J. Pharm. Res. 2022, 21, e130762. [Google Scholar] [CrossRef]
- Farajzadeh, R.; Pilehvar-Soltanahmadi, Y.; Dadashpour, M.; Javidfar, S.; Lotfi-Attari, J.; Sadeghzadeh, H.; Shafiei-Irannejad, V.; Zarghami, N. Nano-Encapsulated Metformin-Curcumin in PLGA/PEG Inhibits Synergistically Growth and hTERT Gene Expression in Human Breast Cancer Cells. Artif. Cells Nanomed. Biotechnol. 2018, 46, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Shahbaz, M.; Imran, M.; Hussain, M.; Alsagaby, S.A.; Momal, U.; Naeem, H.; Al Jbawi, E. Curcumin: A Bioactive Compound with Molecular Targets for Human Malignancies. Food Agric. Immunol. 2023, 34, 2280524. [Google Scholar] [CrossRef]
- Parvin, N.; Aslam, M.; Joo, S.W.; Mandal, T.K. Nano-Phytomedicine: Harnessing Plant-Derived Phytochemicals in Nanocarriers for Targeted Human Health Applications. Molecules 2025, 30, 3177. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M. Targeting Aging Pathways with Natural Compounds: A Review of Curcumin, Epigallocatechin Gallate, Thymoquinone, and Resveratrol. Immun. Ageing 2025, 22, 28. [Google Scholar] [CrossRef]



| Inhibitor | Mechanism of Action | Bioavailability | Cancer Types Tested | Clinical Stage |
|---|---|---|---|---|
| Curcumin | hTERT transcription; G-quadruplex stabilization; Hsp90-p23 disruption | Very low (<1 ng/mL) | Prostate Cancer | Phase I/II (NCT03769766) * |
| Liposomal curcumin | Enhanced tumor delivery; sustained hTERT suppression | 20–40× higher than free curcumin | Colorectal, pancreatic | Phase I |
| Imetelstat (GRN163L) | hTERC template antagonist (antisense oligonucleotide) | Moderate (IV only) | Myelofibrosis, AML | Phase III |
| BIBR1532 | Non-nucleoside hTERT catalytic inhibitor | Low (preclinical) | Prostate, lung | Preclinical |
| EF24 (curcumin analog) | STAT3/Sp1 inhibition; ROS-mediated hTERT downregulation | Moderate (nanoparticle-formulated) | Triple-negative breast cancer | Preclinical |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albadrani, H.M.; Zakariyah, A.F. Telomeres, Telomerase, and Curcumin: A New Frontier in Cancer Therapy: A Narrative Review. Biomedicines 2025, 13, 2721. https://doi.org/10.3390/biomedicines13112721
Albadrani HM, Zakariyah AF. Telomeres, Telomerase, and Curcumin: A New Frontier in Cancer Therapy: A Narrative Review. Biomedicines. 2025; 13(11):2721. https://doi.org/10.3390/biomedicines13112721
Chicago/Turabian StyleAlbadrani, Hind Muteb, and Abeer Fouad Zakariyah. 2025. "Telomeres, Telomerase, and Curcumin: A New Frontier in Cancer Therapy: A Narrative Review" Biomedicines 13, no. 11: 2721. https://doi.org/10.3390/biomedicines13112721
APA StyleAlbadrani, H. M., & Zakariyah, A. F. (2025). Telomeres, Telomerase, and Curcumin: A New Frontier in Cancer Therapy: A Narrative Review. Biomedicines, 13(11), 2721. https://doi.org/10.3390/biomedicines13112721

