Effect of Hepatitis C Virus Genotype, Cirrhosis, and Viral Cure on Serum Phosphatidylinositol Species Profiles
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. The Measurement of PI Species
2.3. Statistical Analysis
3. Results
3.1. PI Species of Patients with and Without Liver Cirrhosis
3.2. Correlation of PI Species with Laboratory Measures of Liver Function and Markers of Systemic Inflammation
3.3. Correlation of PI Species with Viral Load and Associations with Viral Genotype
3.4. PI Species Post-DAA Therapy
3.5. PI Species of Patients with and Without Cirrhosis Post-DAA Therapy
3.6. Comparison of HCV Patients Post-DAA Therapy and Controls
3.7. PI Species in Relation to Age, Sex, and Body Mass Index
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ALT | alanine aminotransferase |
| AST | aspartate aminotransferase |
| BMI | body mass index |
| DAA | direct-acting antiviral |
| FIB-4 | fibrosis-4 |
| HCV | hepatitis C virus |
| HDL | high-density lipoprotein |
| INR | international normalized ratio |
| LDL | low-density lipoprotein |
| MELD | model of end-stage liver disease |
| PI | Phosphatidylinositol |
References
- Casiraghi, M.A.; De Paschale, M.; Romano, L.; Biffi, R.; Assi, A.; Binelli, G.; Zanetti, A.R. Long-term outcome (35 years) of hepatitis C after acquisition of infection through mini transfusions of blood given at birth. Hepatology 2004, 39, 90–96. [Google Scholar] [CrossRef]
- Pawlotsky, J.M.; Negro, F.; Aghemo, A.; Berenguer, M.; Dalgard, O.; Dusheiko, G.; Marra, F.; Puoti, M.; Wedemeyer, H.; European Association for the Study of the Liver; et al. EASL recommendations on treatment of hepatitis C: Final update of the series. J. Hepatol. 2020, 73, 1170–1218. [Google Scholar] [CrossRef]
- Rockey, D.C.; Friedman, S.L. Fibrosis Regression After Eradication of Hepatitis C Virus: From Bench to Bedside. Gastroenterology 2021, 160, 1502–1520.e1. [Google Scholar] [CrossRef]
- Peschel, G.; Grimm, J.; Buechler, C.; Gunckel, M.; Pollinger, K.; Aschenbrenner, E.; Kammerer, S.; Jung, E.M.; Haimerl, M.; Werner, J.; et al. Liver stiffness assessed by shear-wave elastography declines in parallel with immunoregulatory proteins in patients with chronic HCV infection during DAA therapy. Clin. Hemorheol. Microcirc. 2021, 79, 541–555. [Google Scholar] [CrossRef]
- Broquetas, T.; Herruzo-Pino, P.; Marino, Z.; Naranjo, D.; Vergara, M.; Morillas, R.M.; Forns, X.; Carrion, J.A. Elastography is unable to exclude cirrhosis after sustained virological response in HCV-infected patients with advanced chronic liver disease. Liver Int. 2021, 41, 2733–2746. [Google Scholar] [CrossRef] [PubMed]
- Grassi, G.; Di Caprio, G.; Fimia, G.M.; Ippolito, G.; Tripodi, M.; Alonzi, T. Hepatitis C virus relies on lipoproteins for its life cycle. World J. Gastroenterol. 2016, 22, 1953–1965. [Google Scholar] [CrossRef] [PubMed]
- Sidorkiewicz, M. Hepatitis C Virus Uses Host Lipids to Its Own Advantage. Metabolites 2021, 11, 273. [Google Scholar] [CrossRef]
- Endo, D.; Satoh, K.; Shimada, N.; Hokari, A.; Aizawa, Y. Impact of interferon-free antivirus therapy on lipid profiles in patients with chronic hepatitis C genotype 1b. World J. Gastroenterol. 2017, 23, 2355–2364. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, S.; Yatsuhashi, H.; Abiru, S.; Yamasaki, K.; Komori, A.; Nagaoka, S.; Saeki, A.; Uchida, S.; Bekki, S.; Kugiyama, Y.; et al. Rapid Increase in Serum Low-Density Lipoprotein Cholesterol Concentration during Hepatitis C Interferon-Free Treatment. PLoS ONE 2016, 11, e0163644. [Google Scholar] [CrossRef]
- Peschel, G.; Grimm, J.; Gulow, K.; Muller, M.; Buechler, C.; Weigand, K. Chemerin Is a Valuable Biomarker in Patients with HCV Infection and Correlates with Liver Injury. Diagnostics 2020, 10, 974. [Google Scholar] [CrossRef]
- Villani, R.; Di Cosimo, F.; Romano, A.D.; Sangineto, M.; Serviddio, G. Serum lipid profile in HCV patients treated with direct-acting antivirals: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 13944. [Google Scholar] [CrossRef] [PubMed]
- Peschel, G.; Krautbauer, S.; Weigand, K.; Grimm, J.; Höring, M.; Liebisch, G.; Müller, M.; Buechler, C. Rising Lysophosphatidylcholine Levels Post-Hepatitis C Clearance. Int. J. Mol. Sci. 2024, 25, 1198. [Google Scholar] [CrossRef]
- Wiesner, P.; Leidl, K.; Boettcher, A.; Schmitz, G.; Liebisch, G. Lipid profiling of FPLC-separated lipoprotein fractions by electrospray ionization tandem mass spectrometry. J. Lipid Res. 2009, 50, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Blunsom, N.J.; Cockcroft, S. Phosphatidylinositol synthesis at the endoplasmic reticulum. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158471. [Google Scholar] [CrossRef]
- D’Souza, K.; Epand, R.M. Enrichment of phosphatidylinositols with specific acyl chains. Biochim. Biophys. Acta 2014, 1838, 1501–1508. [Google Scholar] [CrossRef] [PubMed]
- Burgess, J.W.; Boucher, J.; Neville, T.A.; Rouillard, P.; Stamler, C.; Zachariah, S.; Sparks, D.L. Phosphatidylinositol promotes cholesterol transport and excretion. J. Lipid Res. 2003, 44, 1355–1363. [Google Scholar] [CrossRef]
- Stamler, C.J.; Breznan, D.; Neville, T.A.; Viau, F.J.; Camlioglu, E.; Sparks, D.L. Phosphatidylinositol promotes cholesterol transport in vivo. J. Lipid Res. 2000, 41, 1214–1221. [Google Scholar] [CrossRef]
- Badawi, A.; Di Giuseppe, G.; Arora, P. Cardiovascular disease risk in patients with hepatitis C infection: Results from two general population health surveys in Canada and the United States (2007–2017). PLoS ONE 2018, 13, e0208839. [Google Scholar] [CrossRef]
- Luukkonen, P.K.; Zhou, Y.; Hyotylainen, T.; Leivonen, M.; Arola, J.; Orho-Melander, M.; Oresic, M.; Yki-Jarvinen, H. The MBOAT7 variant rs641738 alters hepatic phosphatidylinositols and increases severity of non-alcoholic fatty liver disease in humans. J. Hepatol. 2016, 65, 1263–1265. [Google Scholar] [CrossRef]
- Youssef, S.; El Razek Abbas, E.; Aly, Y.; Seif, S. The Correlation between Single Nucleotide Polymorphism of MBOAT7 and PNPLA3 Genes to the Degree of Hepatic Fibrosis in HCV Patients: An Experience from Egypt. J. Biosci. Appl. Res. 2020, 6, 281–294. [Google Scholar] [CrossRef]
- Buch, S.; Stickel, F.; Trepo, E.; Way, M.; Herrmann, A.; Nischalke, H.D.; Brosch, M.; Rosendahl, J.; Berg, T.; Ridinger, M.; et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat. Genet. 2015, 47, 1443–1448. [Google Scholar] [CrossRef]
- Meroni, M.; Longo, M.; Fracanzani, A.L.; Dongiovanni, P. MBOAT7 down-regulation by genetic and environmental factors predisposes to MAFLD. EBioMedicine 2020, 57, 102866. [Google Scholar] [CrossRef]
- Mancina, R.M.; Dongiovanni, P.; Petta, S.; Pingitore, P.; Meroni, M.; Rametta, R.; Boren, J.; Montalcini, T.; Pujia, A.; Wiklund, O.; et al. The MBOAT7-TMC4 Variant rs641738 Increases Risk of Nonalcoholic Fatty Liver Disease in Individuals of European Descent. Gastroenterology 2016, 150, 1219–1230.e6. [Google Scholar] [CrossRef]
- Thabet, K.; Asimakopoulos, A.; Shojaei, M.; Romero-Gomez, M.; Mangia, A.; Irving, W.L.; Berg, T.; Dore, G.J.; Gronbaek, H.; Sheridan, D.; et al. MBOAT7 rs641738 increases risk of liver inflammation and transition to fibrosis in chronic hepatitis C. Nat. Commun. 2016, 7, 12757. [Google Scholar] [CrossRef]
- Ezzikouri, S.; Elfihry, R.; Chihab, H.; Elmessaoudi-Idrissi, M.; Zaidane, I.; Jadid, F.Z.; Karami, A.; Tahiri, M.; Elhabazi, A.; Kabine, M.; et al. Effect of MBOAT7 variant on hepatitis B and C infections in Moroccan patients. Sci. Rep. 2018, 8, 12247. [Google Scholar] [CrossRef]
- Ma, D.W.; Arendt, B.M.; Hillyer, L.M.; Fung, S.K.; McGilvray, I.; Guindi, M.; Allard, J.P. Plasma phospholipids and fatty acid composition differ between liver biopsy-proven nonalcoholic fatty liver disease and healthy subjects. Nutr. Diabetes 2016, 6, e220. [Google Scholar] [CrossRef]
- Tiwari-Heckler, S.; Gan-Schreier, H.; Stremmel, W.; Chamulitrat, W.; Pathil, A. Circulating Phospholipid Patterns in NAFLD Patients Associated with a Combination of Metabolic Risk Factors. Nutrients 2018, 10, 649. [Google Scholar] [CrossRef]
- Buechler, C.; Aslanidis, C. Role of lipids in pathophysiology, diagnosis and therapy of hepatocellular carcinoma. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158658. [Google Scholar] [CrossRef] [PubMed]
- Ten Hove, M.; Pater, L.; Storm, G.; Weiskirchen, S.; Weiskirchen, R.; Lammers, T.; Bansal, R. The hepatic lipidome: From basic science to clinical translation. Adv. Drug Deliv. Rev. 2020, 159, 180–197. [Google Scholar] [CrossRef] [PubMed]
- McPhail, M.J.W.; Shawcross, D.L.; Lewis, M.R.; Coltart, I.; Want, E.J.; Antoniades, C.G.; Veselkov, K.; Triantafyllou, E.; Patel, V.; Pop, O.; et al. Multivariate metabotyping of plasma predicts survival in patients with decompensated cirrhosis. J. Hepatol. 2016, 64, 1058–1067. [Google Scholar] [CrossRef] [PubMed]
- Kunz, F.; Kosin, D. Plasma phospholipids in cirrhosis of liver and fatty liver. Clin. Chim. Acta 1970, 27, 185–196. [Google Scholar] [CrossRef]
- Kiser, J.J.; Burton, J.R.; Anderson, P.L.; Everson, G.T. Review and management of drug interactions with boceprevir and telaprevir. Hepatology 2012, 55, 1620–1628. [Google Scholar] [CrossRef] [PubMed]
- Yen, Y.H.; Kuo, F.Y.; Chen, C.H.; Hu, T.H.; Lu, S.N.; Wang, J.H.; Hung, C.H. Ultrasound is highly specific in diagnosing compensated cirrhosis in chronic hepatitis C patients in real world clinical practice. Medicine 2019, 98, e16270. [Google Scholar] [CrossRef]
- McPherson, S.; Hardy, T.; Dufour, J.F.; Petta, S.; Romero-Gomez, M.; Allison, M.; Oliveira, C.P.; Francque, S.; Van Gaal, L.; Schattenberg, J.M.; et al. Age as a Confounding Factor for the Accurate Non-Invasive Diagnosis of Advanced NAFLD Fibrosis. Am. J. Gastroenterol. 2017, 112, 740–751. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Liebisch, G.; Lieser, B.; Rathenberg, J.; Drobnik, W.; Schmitz, G. High-throughput quantification of phosphatidylcholine and sphingomyelin by electrospray ionization tandem mass spectrometry coupled with isotope correction algorithm. Biochim. Biophys. Acta 2004, 1686, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Leidl, K.; Liebisch, G.; Richter, D.; Schmitz, G. Mass spectrometric analysis of lipid species of human circulating blood cells. Biochim. Biophys. Acta 2008, 1781, 655–664. [Google Scholar] [CrossRef]
- Kopczynski, D.; Ejsing, C.S.; McDonald, J.G.; Bamba, T.; Baker, E.S.; Bertrand-Michel, J.; Brugger, B.; Coman, C.; Ellis, S.R.; Garrett, T.J.; et al. The lipidomics reporting checklist a framework for transparency of lipidomic experiments and repurposing resource data. J. Lipid Res. 2024, 65, 100621. [Google Scholar] [CrossRef] [PubMed]
- Liebisch, G.; Fahy, E.; Aoki, J.; Dennis, E.A.; Durand, T.; Ejsing, C.S.; Fedorova, M.; Feussner, I.; Griffiths, W.J.; Kofeler, H.; et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res. 2020, 61, 1539–1555. [Google Scholar] [CrossRef]
- Hengst, J.; Falk, C.S.; Schlaphoff, V.; Deterding, K.; Manns, M.P.; Cornberg, M.; Wedemeyer, H. Direct-Acting Antiviral-Induced Hepatitis C Virus Clearance Does Not Completely Restore the Altered Cytokine and Chemokine Milieu in Patients With Chronic Hepatitis C. J. Infect. Dis. 2016, 214, 1965–1974. [Google Scholar] [CrossRef]
- Mascia, C.; Vita, S.; Zuccala, P.; Marocco, R.; Tieghi, T.; Savinelli, S.; Rossi, R.; Iannetta, M.; Pozzetto, I.; Furlan, C.; et al. Changes in inflammatory biomarkers in HCV-infected patients undergoing direct acting antiviral-containing regimens with or without interferon. PLoS ONE 2017, 12, e0179400. [Google Scholar] [CrossRef]
- Mauss, S.; Berger, F.; Wehmeyer, M.H.; Ingiliz, P.; Hueppe, D.; Lutz, T.; Simon, K.G.; Schewe, K.; Rockstroh, J.K.; Baumgarten, A.; et al. Effect of antiviral therapy for HCV on lipid levels. Antivir. Ther. 2017, 21, 81–88. [Google Scholar] [CrossRef]
- Sagnelli, E.; Sagnelli, C.; Russo, A.; Pisaturo, M.; Camaioni, C.; Astorri, R.; Coppola, N. Impact of DAA-Based Regimens on HCV-Related Extra-Hepatic Damage: A Narrative Review. Adv. Exp. Med. Biol. 2021, 1323, 115–147. [Google Scholar] [CrossRef] [PubMed]
- Weigand, K.; Peschel, G.; Grimm, J.; Horing, M.; Krautbauer, S.; Liebisch, G.; Muller, M.; Buechler, C. Serum Phosphatidylcholine Species 32:0 as a Biomarker for Liver Cirrhosis Pre- and Post-Hepatitis C Virus Clearance. Int. J. Mol. Sci. 2024, 25, 8161. [Google Scholar] [CrossRef]
- Vallet-Pichard, A.; Mallet, V.; Nalpas, B.; Verkarre, V.; Nalpas, A.; Dhalluin-Venier, V.; Fontaine, H.; Pol, S. FIB-4: An inexpensive and accurate marker of fibrosis in HCV infection. Comparison with liver biopsy and fibrotest. Hepatology 2007, 46, 32–36. [Google Scholar] [CrossRef]
- Dzekova-Vidimliski, P.; Dzikova, S.; Selim, G.; Gelev, S.; Trajceska, L.; Pushevski, V.; Sikole, A. Ultrasound predictors of compensated liver cirrhosis in hemodialysis patients with hepatitis C. Saudi J. Kidney Dis. Transpl. 2013, 24, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, J.M.; Venkatesh, S.K.; Ehman, R.L.; Jhaveri, K.; Kamath, P.; Ohliger, M.A.; Samir, A.E.; Silva, A.C.; Taouli, B.; Torbenson, M.S.; et al. Evaluation of hepatic fibrosis: A review from the society of abdominal radiology disease focus panel. Abdom. Radiol. 2017, 42, 2037–2053. [Google Scholar] [CrossRef]
- Lambrecht, J.; Verhulst, S.; Mannaerts, I.; Reynaert, H.; van Grunsven, L.A. Prospects in non-invasive assessment of liver fibrosis: Liquid biopsy as the future gold standard? Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 1024–1036. [Google Scholar] [CrossRef]
- Bachofner, J.A.; Valli, P.V.; Kroger, A.; Bergamin, I.; Kunzler, P.; Baserga, A.; Braun, D.; Seifert, B.; Moncsek, A.; Fehr, J.; et al. Direct antiviral agent treatment of chronic hepatitis C results in rapid regression of transient elastography and fibrosis markers fibrosis-4 score and aspartate aminotransferase-platelet ratio index. Liver Int. 2017, 37, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Bassani, L.; Fernandes, S.A.; Raimundo, F.V.; Harter, D.L.; Gonzalez, M.C.; Marroni, C.A. Lipid profile of cirrhotic patients and its association with prognostic scores: A cross-sectional study. Arq. Gastroenterol. 2015, 52, 210–215. [Google Scholar] [CrossRef]
- Barneda, D.; Cosulich, S.; Stephens, L.; Hawkins, P. How is the acyl chain composition of phosphoinositides created and does it matter? Biochem. Soc. Trans. 2019, 47, 1291–1305. [Google Scholar] [CrossRef]
- Bone, L.N.; Dayam, R.M.; Lee, M.; Kono, N.; Fairn, G.D.; Arai, H.; Botelho, R.J.; Antonescu, C.N. The acyltransferase LYCAT controls specific phosphoinositides and related membrane traffic. Mol. Biol. Cell. 2017, 28, 161–172. [Google Scholar] [CrossRef]
- Milosevic, I.; Todorovic, N.; Filipovic, A.; Simic, J.; Markovic, M.; Stevanovic, O.; Malinic, J.; Katanic, N.; Mitrovic, N.; Nikolic, N. HCV and HCC Tango-Deciphering the Intricate Dance of Disease: A Review Article. Int. J. Mol. Sci. 2023, 24, 16048. [Google Scholar] [CrossRef] [PubMed]
- Mita, E.; Hayashi, N.; Kanazawa, Y.; Hagiwara, H.; Ueda, K.; Kasahara, A.; Fusamoto, H.; Kamada, T. Hepatitis C virus genotype and RNA titer in the progression of type C chronic liver disease. J. Hepatol. 1994, 21, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Ran, X.; Xu, Y.; Wang, Y.; Zeng, C.; Gong, C.; Wang, N.; Cai, D. Genotype 3 is linked to worse liver disease progression in hepatitis C patients even after SVR following DAA therapy. Front. Cell. Infect. Microbiol. 2025, 15, 1510939. [Google Scholar] [CrossRef]
- Cerda, A.; Bortolin, R.H.; Yoshinaga, M.Y.; Freitas, R.C.C.; Dagli-Hernandez, C.; Borges, J.B.; Oliveira, V.F.; Goncalves, R.M.; Faludi, A.A.; Bastos, G.M.; et al. Lipidomic analysis identified potential predictive biomarkers of statin response in subjects with Familial hypercholesterolemia. Chem. Phys. Lipids 2023, 257, 105348. [Google Scholar] [CrossRef] [PubMed]
- Zarezadeh, M.; Mahmoudinezhad, M.; Faghfouri, A.H.; Radkhah, N.; Jamali, M.; Jamilian, P.; Ghoreyshi, Z.; Ostadrahimi, A. Serum phospholipids during aging: A comprehensive systematic review of cross-sectional and case-control studies. Health Promot. Perspect 2025, 15, 23–36. [Google Scholar] [CrossRef]
- West, A.L.; Michaelson, L.V.; Miles, E.A.; Haslam, R.P.; Lillycrop, K.A.; Georgescu, R.; Han, L.; Napier, J.A.; Calder, P.C.; Burdge, G.C. Lipidomic Analysis of Plasma from Healthy Men and Women Shows Phospholipid Class and Molecular Species Differences between Sexes. Lipids 2021, 56, 229–242. [Google Scholar] [CrossRef]



| PI [nmol/mL] | HCV Patients Without Cirrhosis | HCV Patients with Cirrhosis | p-Value | ||||
|---|---|---|---|---|---|---|---|
| Median | Minimum | Maximum | Median | Minimum | Maximum | ||
| 34:1 | 5.39 | 1.53 | 14.89 | 6.93 | 2.39 | 12.18 | <0.05 |
| 34:2 | 3.66 | 1.54 | 9.11 | 4.50 | 1.58 | 6.92 | Not significant |
| 36:1 | 5.07 | 1.90 | 12.04 | 7.20 | 2.17 | 19.19 | <0.05 |
| 36:2 | 13.00 | 7.50 | 31.22 | 13.94 | 5.28 | 28.53 | Not significant |
| 36:3 | 2.66 | 1.38 | 5.74 | 3.51 | 1.39 | 6.27 | <0.01 |
| 36:4 | 3.96 | 1.30 | 9.44 | 3.85 | 1.51 | 7.07 | Not significant |
| 38:2 | 0.51 | 0.00 | 1.37 | 0.61 | 0.21 | 1.34 | Not significant |
| 38:3 | 6.35 | 3.20 | 15.65 | 5.79 | 2.28 | 13.95 | Not significant |
| 38:4 | 36.39 | 19.39 | 62.87 | 28.96 | 11.82 | 52.36 | <0.001 |
| 38:5 | 2.48 | 1.30 | 6.68 | 2.69 | 0.92 | 4.79 | Not significant |
| 38:6 | 0.93 | 0.22 | 2.62 | 0.86 | 0.39 | 2.03 | Not significant |
| 40:4 | 0.68 | 0.32 | 1.16 | 0.55 | 0.25 | 1.23 | Not significant |
| 40:5 | 1.83 | 0.59 | 3.27 | 1.39 | 0.65 | 2.92 | <0.05 |
| 40:6 | 2.66 | 0.45 | 7.60 | 1.88 | 0.93 | 4.71 | <0.01 |
| Total PI | 87.12 | 52.25 | 139.91 | 79.82 | 33.28 | 138.47 | Not significant |
| Laboratory Parameter | Baseline (138 Patients) | 12 Weeks of Therapy (136 Patients) | p-Value |
|---|---|---|---|
| Age years | 51 (24–82) | 51 (24–82) | ns |
| Female/Male | 58/80 | 58/78 | ns |
| BMI kg/m2 | 25.5 (17.6–40.4) | 25.6 (17.6–40.4) | ns |
| MELD Score | 7 (6–21) | 7 (6–20) | ns |
| Ferritin ng/mL | 136 (6–2309) | 90 (3–620) | <0.05 |
| ALT U/L | 71 (19–305) | 26 (6–388) | <0.001 |
| AST U/L | 44 (14–1230) | 19 (6–836) | <0.001 |
| Bilirubin mg/dL | 0.6 (0–1.7) | 0.5 (0.2–1.8) | ns |
| INR | 1.0 (0.8–1.4) | 1.0 (0.9–1.4) | ns |
| Creatinine mg/dL | 0.8 (0.5–14.0) | 0.8 (0.5–14.7) | ns |
| Platelets n/nL | 216 (49–402) | 224 (45–407) | ns |
| Leukocytes n/L | 6.8 (2.2–72.4) | 7.2 (2.6–62.9) | ns |
| CRP mg/L | 2.9 (2.8–55.0) | 2.9 (2.9–20.3) | ns |
| Procalcitonin ng/mL | 0.06 (0–10.07) | 0.03 (0.01–0.60) | <0.05 |
| Albumin g/L | 39 (29–46) | 40 (32–93) | ns |
| HDL mg/dL | 53 (19–111) | 50 (23–89) | ns |
| LDL mg/dL | 100 (23–219) | 128 (49–251) | <0.001 |
| PI [nmol/mL] | MELD Score | ALT U/L | AST U/L | LDL mg/dL | HDL mg/dL | Leukocytes n/L |
|---|---|---|---|---|---|---|
| 34:1 | 0.004 | 0.116 | 0.242 | 0.131 | −0.021 | −0.030 |
| 34:2 | 0.039 | 0.121 | 0.245 | 0.152 | 0.126 | −0.133 |
| 36:1 | −0.065 | 0.031 | 0.115 | 0.077 | 0.070 | −0.064 |
| 36:2 | −0.047 | 0.017 | 0.140 | 0.040 | 0.278 p=0.020 | −0.205 |
| 36:3 | 0.046 | 0.017 | 0.208 | 0.009 | 0.206 | −0.204 |
| 36:4 | −0.010 | 0.118 | 0.223 | 0.206 | 0.023 | −0.164 |
| 38:2 | −0.060 | 0.001 | 0.152 | 0.176 | 0.177 | −0.202 |
| 38:3 | −0.019 | 0.000 | 0.134 | 0.208 | 0.184 | −0.104 |
| 38:4 | −0.152 | −0.077 | 0.025 | 0.293 p=0.011 | 0.224 | −0.213 |
| 38:5 | 0.047 | 0.023 | 0.215 | 0.082 | 0.253 | −0.268 p=0.021 |
| 38:6 | 0.134 | 0.243 | 0.407 p<0.001 | 0.118 | 0.079 | −0.182 |
| 40:4 | 0.002 | 0.097 | 0.236 | 0.260 p=0.041 | −0.016 | −0.090 |
| 40:5 | 0.030 | 0.114 | 0.258 p=0.031 | 0.177 | 0.231 | −0.096 |
| 40:6 | 0.070 | 0.183 | 0.357 p<0.001 | 0.131 | 0.112 | −0.109 |
| Total PI | −0.058 | 0.023 | 0.187 | 0.233 | 0.230 | −0.236 |
| PI [nmol/mL] | % Change in Non-Cirrhosis Patients | % Change in Cirrhosis Patients |
|---|---|---|
| 34:1 | 93.19 | 98.15 |
| 34:2 | 98.41 | 102.67 |
| 36:1 | 100.12 | 85.94 |
| 36:2 | 93.83 | 94.04 |
| 36:3 | 119.53 | 113.52 |
| 36:4 | 121.91 | 116.78 |
| 38:2 | 109.34 | 101.31 |
| 38:3 | 121.95 | 115.90 |
| 38:4 | 116.31 | 104.18 |
| 38:5 | 125.56 | 121.97 |
| 38:6 | 91.79 | 112.94 |
| 40:4 | 94.98 | 104.62 |
| 40:5 | 81.78 | 101.40 |
| 40:6 | 83.79 | 97.18 |
| Total PI | 106.61 | 108.16 |
| PI [nmol/mL] | LDL mg/dL | HDL mg/dL |
|---|---|---|
| 34:1 | 0.194 | 0.061 |
| 34:2 | 0.218 | −0.013 |
| 36:1 | 0.254 | 0.132 |
| 36:2 | 0.227 | 0.114 |
| 36:3 | 0.251 | 0.153 |
| 36:4 | 0.318 p=0.003 | −0.068 |
| 38:2 | 0.197 | 0.133 |
| 38:3 | 0.442 p<0.001 | 0.138 |
| 38:4 | 0.518 p<0.001 | 0.031 |
| 38:5 | 0.239 | 0.054 |
| 38:6 | 0.094 | −0.023 |
| 40:4 | 0.362 p<0.001 | 0.080 |
| 40:5 | 0.357 p<0.001 | 0.068 |
| 40:6 | 0.145 | 0.068 |
| Total PI | 0.452 p<0.001 | 0.100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weigand, K.; Peschel, G.; Höring, M.; Krautbauer, S.; Liebisch, G.; Müller, M.; Buechler, C. Effect of Hepatitis C Virus Genotype, Cirrhosis, and Viral Cure on Serum Phosphatidylinositol Species Profiles. Biomedicines 2025, 13, 2720. https://doi.org/10.3390/biomedicines13112720
Weigand K, Peschel G, Höring M, Krautbauer S, Liebisch G, Müller M, Buechler C. Effect of Hepatitis C Virus Genotype, Cirrhosis, and Viral Cure on Serum Phosphatidylinositol Species Profiles. Biomedicines. 2025; 13(11):2720. https://doi.org/10.3390/biomedicines13112720
Chicago/Turabian StyleWeigand, Kilian, Georg Peschel, Marcus Höring, Sabrina Krautbauer, Gerhard Liebisch, Martina Müller, and Christa Buechler. 2025. "Effect of Hepatitis C Virus Genotype, Cirrhosis, and Viral Cure on Serum Phosphatidylinositol Species Profiles" Biomedicines 13, no. 11: 2720. https://doi.org/10.3390/biomedicines13112720
APA StyleWeigand, K., Peschel, G., Höring, M., Krautbauer, S., Liebisch, G., Müller, M., & Buechler, C. (2025). Effect of Hepatitis C Virus Genotype, Cirrhosis, and Viral Cure on Serum Phosphatidylinositol Species Profiles. Biomedicines, 13(11), 2720. https://doi.org/10.3390/biomedicines13112720

