Early Diagnostic Markers and Risk Stratification in Sepsis: Prognostic Value of Neutrophil-to-Lymphocyte Ratio, Platelets, and the Carmeli Score
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Investigated Population
2.2. Data Collection
2.3. Microbiological Analysis
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Baseline Laboratory Parameters at ICU Admission (T0)
3.3. Early 72-h Trajectories of Inflammatory and Hematologic Markers
3.3.1. Neutrophil-to-Lymphocyte Ratio (NLR)
3.3.2. Platelet Count (PLT)
3.4. Predictive Performance of Biomarkers at 72 h
3.5. Association of Clinical Severity Scores with Mortality
3.6. Combined Model: APACHE II and NLR at 72 h
3.7. Microorganisms Frequently Isolated
4. Discussion
4.1. Limitations
4.1.1. Retrospective Nature and Design Limitations
4.1.2. Sample Size and Unicentric Focus
4.1.3. Lack of Treatment Oversight
4.1.4. Lack of External Validation
4.2. Clinical Implications and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| Sepsis-3 | Third International Consensus Definitions for Sepsis and Septic Shock | 
| ICU | Intensive Care Unit | 
| SOFA | Sequential Organ Failure Assessment (score) | 
| APACHE II | Acute Physiology and Chronic Health Evaluation II (score) | 
| CRP | C-reactive protein | 
| PCT | Procalcitonin | 
| WBC | White blood cell count | 
| PLT | Platelet count | 
| NLR | Neutrophil-to-Lymphocyte Ratio | 
| PLR | Platelet-to-Lymphocyte Ratio | 
| INR | International Normalized Ratio | 
| eGFR | Estimated Glomerular Filtration Rate | 
| MDR | Multidrug-Resistant (organisms) | 
| MSSA | Methicillin-Susceptible Staphylococcus aureus | 
| MRSA | Methicillin-Resistant Staphylococcus aureus | 
| spp. | Species (plural; used for a genus with multiple species) | 
| TNF-α | Tumor Necrosis Factor alpha | 
| IL-6 | Interleukin-6 | 
| ROC | Receiver Operating Characteristic (curve) | 
| AUC | Area Under the Curve | 
| OR | Odds Ratio | 
| CI | Confidence Interval | 
| SD | Standard Deviation | 
| IQR | Interquartile Range | 
| ANOVA | Analysis of Variance | 
| AKI | Acute Kidney Injury | 
| SPSS | Statistical Package for the Social Sciences | 
| B | Regression coefficient (in logistic regression) | 
| S.E. | Standard Error | 
| T0/T1/T2 | Timepoints: admission (T0), 48 h (T1), 72 h (T2) | 
References
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, Regional, and National Sepsis Incidence and Mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pierrakos, C.; Vincent, J.-L. Sepsis biomarkers: A review. Crit. Care 2010, 14, R15. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alpua, M.; Say, B.; Yardimci, I.; Ergün, U.; Kisa, U.; Ceylan, O.D. Response to Letter to the Editor: “First Admission Neutrophil–Lymphocyte Ratio May Indicate Acute Prognosis of Ischemic Stroke”. Rambam Maimonides Med. J. 2021, 12, e0036. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zahorec, R. Ratio of Neutrophil to Lymphocyte Counts—Rapid and Simple Parameter of Systemic Inflammation and Stress in Critically Ill. Bratisl. Lek. Listy 2001, 102, 5–14, (In English/Slovak). [Google Scholar] [PubMed]
- Buonacera, A.; Stancanelli, B.; Colaci, M.; Malatino, L. Neutrophil to Lymphocyte Ratio: An Emerging Marker of the Relationships between the Immune System and Diseases. Int. J. Mol. Sci. 2022, 23, 3636. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.K.; Skov, V.; Kjær, L.; Eickhardt-Dalbøge, C.S.; Knudsen, T.A.; Kristiansen, M.H.; Sørensen, A.L.; Wienecke, T.; Andersen, M.; Ottesen, J.T.; et al. Neutrophil-to-lymphocyte ratio and all-cause mortality with and without myeloproliferative neoplasms—A Danish longitudinal study. Blood Cancer J. 2024, 14, 28. [Google Scholar] [CrossRef] [PubMed]
- Stoian, M.; Azamfirei, L.; Andone, A.; Văsieșiu, A.-M.; Stîngaciu, A.; Huțanu, A.; Bândilă, S.R.; Dobru, D.; Manea, A.; Stoian, A. Incidence and Risk Factors of Secondary Infections in Critically Ill SARS-CoV-2 Patients: A Retrospective Study in an Intensive Care Unit. Biomedicines 2025, 13, 1333. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, C.; Shang, X.; Yuan, Y.; Li, Y. Platelet-related Parameters as Potential Biomarkers for the Prognosis of Sepsis. Exp. Ther. Med. 2023, 25, 133. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Setarehaseman, A.; Mohammadi, A.; Maitta, R.W. Thrombocytopenia in Sepsis. Life 2025, 15, 274. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.-L.; Dubois, M.-J.; Navickis, R.J.; Wilkes, M.M. Hypoalbuminemia in Acute Illness: Is There a Rationale for Intervention? Ann. Surg. 2003, 237, 319–334. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giannakopoulos, K.; Hoffmann, U.; Ansari, U.; Bertsch, T.; Borggrefe, M.; Akin, I.; Behnes, M. The Use of Biomarkers in Sepsis: A Systematic Review. Curr. Pharm. Biotechnol. 2017, 18, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Raveendran, A.V.; Kumar, A.; Gangadharan, S. Biomarkers and Newer Laboratory Investigations in the Diagnosis of Sepsis. J. R. Coll. Physicians Edinb. 2019, 49, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, S.; Yang, J.; Wang, X.; Yang, L.; Zhou, J. The Predictive Value of Hematological Inflammatory Markers for Acute kidney Injury and Mortality in Adults with Hemophagocytic Lymphohistiocytosis: A Retrospective Analysis of 585 Patients. Int. Immunopharmacol. 2023, 122, 110564. [Google Scholar] [CrossRef] [PubMed]
- Fulton, M.R., II; Zubair, M.; Taghavi, S. Laboratory Evaluation of Sepsis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar] [PubMed]
- Stoian, M.; Andone, A.; Boeriu, A.; Bândilă, S.R.; Dobru, D.; Laszlo, S.Ș.; Corău, D.; Arbănași, E.M.; Russu, E.; Stoian, A. COVID-19 and Clostridioides Difficile Coinfection Analysis in the Intensive Care Unit. Antibiotics 2024, 13, 367. [Google Scholar] [CrossRef]
- Carmeli, Y.; Akova, M.; Cornaglia, G.; Daikos, G.L.; Garau, J.; Harbarth, S.; Rossolini, G.M.; Souli, M.; Giamarellou, H. Controlling the Spread of Car-Bapenemase-Producing Gram-Negatives: Therapeutic Approach and Infection Control. Clin. Microbiol. Infect. 2010, 16, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Zaha, D.C.; Kiss, R.; Hegedűs, C.; Gesztelyi, R.; Bombicz, M.; Muresan, M.; Pallag, A.; Zrinyi, M.; Pall, D.; Vesa, C.M.; et al. Recent Advances in Investigation, Prevention, and Management of Healthcare-Associated Infections (HAIs): Resistant Multidrug Strain Colonization and Its Risk Factors in an Intensive Care Unit of a University Hospital. BioMed Res. Int. 2019, 2019, 2510875. [Google Scholar] [CrossRef] [PubMed]
- Drăgoescu, A.N.; Pădureanu, V.; Stănculescu, A.D.; Chiuțu, L.C.; Tomescu, P.; Geormăneanu, C.; Pădureanu, R.; Iovănescu, V.F.; Ungureanu, B.S.; Pănuș, A.; et al. Neutrophil to Lymphocyte Ratio (NLR)—A Useful Tool for the Prognosis of Sepsis in the ICU. Biomedicines 2021, 10, 75. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Verboom, D.M.; Frencken, J.F.; Ong, D.S.Y.; Horn, J.; van der Poll, T.; Bonten, M.J.M.; Cremer, O.L.; Klouwenberg, P.M.C.K. Robustness of Sepsis-3 Criteria in Critically Ill Patients. J. Intensiv. Care 2019, 7, 46. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shah, A.D.P.; MacCallum, N.S.P.; Harris, S.P.; Brealey, D.A.P.; Palmer, E.M.; Hetherington, J.P.; Shi, S.M.; Perez-Suarez, D.; Ercole, A.; Watkinson, P.J.M.; et al. Descriptors of Sepsis Using the Sepsis-3 Criteria: A Cohort Study in Critical Care Units Within the U.K. National Institute for Health Research Critical Care Health Informatics Collaborative*. Crit. Care Med. 2021, 49, 1883–1894. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kempker, J.A.; Martin, G.S. A global accounting of sepsis. Lancet 2020, 395, 168–170. [Google Scholar] [CrossRef] [PubMed]
- He, R.-R.; Yue, G.-L.; Dong, M.-L.; Wang, J.-Q.; Cheng, C. Sepsis Biomarkers: Advancements and Clinical Applications—A Narrative Review. Int. J. Mol. Sci. 2024, 25, 9010. [Google Scholar] [CrossRef]
- Basiri, R.; Hekmatikar, H.A.; Najafzadeh, M.J.; Baniasad, A. Evaluation of the Performance of Disease Severity Indices (SOFA, SAPS III, and MPM II) for the Prediction of Mortality Rate in COVID-19 Patients Admitted to the Intensive Care Units: A Retrospective Cross-Sectional Study. BMC Infect. Dis. 2025, 25, 637. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kilinc, M. Antibiotic Resistance and Mortality in ICU Patients: A Retrospective Analysis of First Culture Growth Results. Antibiotics 2025, 14, 290. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stoian, M.; Andone, A.; Bândilă, S.R.; Onișor, D.; Laszlo, S.Ș.; Lupu, G.; Danielescu, A.; Baba, D.-F.; Văsieșiu, A.M.; Manea, A.; et al. Mechanical Ventilator-Associated Pneumonia in the COVID-19 Pandemic Era: A Critical Challenge in the Intensive Care Units. Antibiotics 2025, 14, 28. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tchinda, C.F.; Djim-Adjim-Ngana, K.; Mbogning, T.A.; Simo, B.F.N.; Baira, S.B.; Feudjieu, G.E.; Matchuenkam, S.G.; Nfor, G.N.; Takuissu, G.R.N.; Essola, K.J.; et al. Prevalence and risk factors associated with infections linked to carbapenemase-producing Acinetobacter species circulating in the city of Yaoundé, Cameroon. IJID Reg. 2025, 16, 100698. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saleem, M.; Moursi, S.A.; Altamimi, T.N.A.; Alharbi, M.S.; Alaskar, A.M.; Hammam, S.A.H.; Rakha, E.; Muhammad, O.I.S.; Almalaq, H.A.; Alshammari, M.N.; et al. Prevalence and Molecular Characterization of Carbapenemase-Producing Multidrug-Resistant Bacteria in Diabetic Foot Ulcer Infections. Diagnostics 2025, 15, 141. [Google Scholar] [CrossRef]
- Martin-Loeches, I.; Torres, A.; Nagavci, B.; Aliberti, S.; Antonelli, M.; Bassetti, M.; Bos, L.D.; Chalmers, J.D.; Derde, L.; de Waele, J.; et al. ERS/ESICM/ESCMID/ALAT Guidelines for the Management of Severe Community-Acquired Pneumonia. Intensiv. Care Med. 2023, 49, 615–632, Erratum in Intensive Care Med. 2023, 49, 1040. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Allel, K.; Peters, A.; Furuya-Kanamori, L.; Spencer-Sandino, M.; Pitchforth, E.; Yakob, L.; Munita, J.M.; Undurraga, E.A. Impact of Inappropriate Empirical Antibiotic Therapy on in-Hospital Mortality: A Retrospective Multicentre Cohort Study of Patients with Bloodstream Infections in Chile, 2018–2022. BMJ Public Health 2024, 2, e001289. [Google Scholar] [CrossRef]
- Tabah, A.; Buetti, N.; Staiquly, Q.; Ruckly, S.; Akova, M.; Aslan, A.T.; Leone, M.; Morris, A.C.; Bassetti, M.; Arvaniti, K.; et al. Epidemiology and Outcomes of Hospital-Acquired Bloodstream Infections in Intensive Care Unit Patients: The EUROBACT-2 International Cohort Study. Intensiv. Care Med. 2023, 49, 178–190. [Google Scholar] [CrossRef] [PubMed]
- Czempik, P.F.; Wiórek, A. Extended Hematological Parameters and Short-Term Mortality in Sepsis Patients: A Retrospective Study. J. Clin. Med. 2025, 14, 3243. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, H.; Zhou, Y.; Zhang, X.; Yao, R.; Li, N. The Relationship Between Hemoglobin, Albumin, Lymphocyte, and Platelet (HALP) Score and 28-Day Mortality in Patients with Sepsis: A Retrospective Analysis of the MIMIC-IV Database. BMC Infect. Dis. 2025, 25, 333. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rimmer, E.; Garland, A.; Kumar, A.; Doucette, S.; Houston, B.L.; Menard, C.E.; Leeies, M.; Turgeon, A.F.; Mahmud, S.; Houston, D.S.; et al. White Blood Cell Count Trajectory and Mortality in Septic Shock: A Historical Cohort Study. Can. J. Anaesth. 2022, 69, 1230–1239. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Farkas, J.D. The Complete Blood Count to Diagnose Septic Shock. J. Thorac. Dis. 2020, 12 (Suppl. S1), S16–S21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sullivan, E.; Schulte, R.; Rothberg, M.B. Elevation in White Blood Cell Count After Corticosteroid Use in Noninfected Hospitalized Patients. J. Hosp. Med. 2025, 20, 824–828. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nayak, S.S.; Behera, B.K.; Thatoi, P.K.; Mohanty, N.R. Neutrophil-to-Lymphocyte Ratio in Predicting Mortality in Sepsis and Its Correlation with Sofa Score and C-Reactive Protein Values. J. Fam. Med. Prim. Care 2025, 14, 839–849. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mohanty, N.R.; Nayak, S.S. Neutrophil to Lymphocyte Ratio in Predicting Mortality in Sepsis and Its Correlation with Sofa Score and C Reactive Protein Values. Indian. J. Crit. Care Med. 2024, 28 (Suppl. S1), S94–S95. [Google Scholar] [CrossRef] [PubMed Central]
- Xu, Y.; Chen, Y.; Mai, X.; Zhang, M. Prognostic Value of Neutrophil-to-Lymphocyte Ratio for the Clinical Outcomes of Chronic Kidney Diseases: An Update Systematic Review and Meta-Analysis. BMC Nephrol. 2025, 26, 419. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhong, Y.; Zhong, L.; Zhou, Y.; Liao, Y.; Deng, J. Dynamic Neutrophil-to-Lymphocyte-Platelet Ratio Trajectories Predict 30-Day and 1-Year Mortality in Sepsis: A Retrospective Cohort Study Based on MIMIC-IV 2.2. BMC Infect. Dis. 2025, 25, 594. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, L.; Liu, T.; Zhu, Z.; Wang, B.; Lu, Z.; Pan, Y.; Sun, L. Associations Between Static and Dynamic Changes of Platelet Counts and in-Hospital Mortality in Critical Patients with Acute Heart Failure. Sci. Rep. 2024, 14, 9147. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, J.; Li, R.; Jin, X.; Ren, J.; Zhang, J.; Gao, Y.; Hou, Y.; Zhang, X.; Wang, G. Platelet Count Trajectory Patterns and Prognosis in Critically Ill Patients with Thrombocytopenia: Based on Latent Growth Mixture Model Analysis. Thromb. Res. 2025, 249, 109314. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Lu, D.; Wang, F. Subphenotypes of Platelet Count Trajectories in Sepsis from Multi-Center ICU Data. Sci. Rep. 2024, 14, 20187. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, H.; Cao, T.; Ji, T.; Luo, Y.; Huang, J.; Ma, K. Predictive Value of the Neutrophil-to-Lymphocyte Ratio in the Prognosis and Risk of Death for Adult Sepsis Patients: A Meta-Analysis. Front. Immunol. 2024, 15, 1336456. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qiu, X.; Wang, Q.; Zhang, Y.; Zhao, Q.; Jiang, Z.; Zhou, L. Prognostic Value of Neutrophils-to-Lymphocytes Ratio and Platelets-to-Lymphocytes Ratio in Sepsis Patients with Lymphopenia. Biomark. Insights 2024, 19, 11772719231223156. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Seo, J.; Kim, W.S.; Kim, J.S.; Kim, S.J.; Lee, J.H.; Hong, J.S.; Lee, G.-W.; Oh, S.Y.; Lee, J.-H.; Yoon, D.H.; et al. Platelet to Lymphocyte Ratio (PLR) Retains Independent Prognostic Significance in Advanced Stage Marginal Zone Lymphoma Patients Treated with Rituximab, Cyclophosphamide, Vincristine, and Prednisone Combination Chemotherapy (R-CVP): Consortium for Improving Survival of Lymphoma Trial. Blood Res. 2017, 52, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Peerapornratana, S.; Manrique-Caballero, C.L.; Gómez, H.; Kellum, J.A. Acute Kidney Injury from Sepsis: Current Concepts, Epidemiology, Pathophysiology, Prevention and Treatment. Kidney Int. 2019, 96, 1083–1099. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zarbock, A.; Nadim, M.K.; Pickkers, P.; Gomez, H.; Bell, S.; Joannidis, M.; Kashani, K.; Koyner, J.L.; Pannu, N.; Meersch, M.; et al. Sepsis-Associated Acute Kidney Injury: Consensus Report of the 28th Acute Disease Quality Initiative Workgroup. Nat. Rev. Nephrol. 2023, 19, 401–417. [Google Scholar] [CrossRef]
- Kalın, G.; Alp, E.; Chouaikhi, A.; Roger, C. Antimicrobial Multidrug Resistance: Clinical Implications for Infection Management in Critically Ill Patients. Microorganisms 2023, 11, 2575. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gerard, R.; Dewitte, A.; Gross, F.; Pradeu, T.; Lemoine, M.; Goret, J.; Mamani-Matsuda, M. Is “Pre-Sepsis” the New Sepsis? A Narrative Review. PLoS Pathog. 2025, 21, e1013372. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bode, C.; Weis, S.; Sauer, A.; Wendel-Garcia, P.; David, S. Targeting the Host Response in Sepsis: Current Approaches and Future Evidence. Crit. Care 2023, 27, 478. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chung, J.; Ahn, J.; Ryu, J.-A. Beyond SOFA and APACHE II, Novel Risk Stratification Models Using Readily Available Biomarkers in Critical Care. Diagnostics 2025, 15, 1122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, X.; Cai, S.; Li, X.; Wu, G. Sepsis-Induced Immunosuppression: Mechanisms, Biomarkers and Immunotherapy. Front. Immunol. 2025, 16, 1577105. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, Y.S.; Han, S.; Lee, Y.E.; Cho, J.; Choi, Y.K.; Yoon, S.-Y.; Oh, D.K.; Lee, S.Y.; Park, M.H.; Lim, C.-M.; et al. Development and Validation of an Interpretable Model for Predicting Sepsis Mortality Across Care Settings. Sci. Rep. 2024, 14, 13637. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zhang, Y.; Li, Y.; Zheng, X. Significances of miRNAs for Predicting Sepsis Mortality: A Meta-Analysis. Front. Microbiol. 2025, 16, 1472124. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]




| Characteristic | Total (n = 120) | Survivor (n = 50) | Non-Survivor (n = 70) | p-Value | 
|---|---|---|---|---|
| Age (years, median [IQR]) | 70.5 (62–81) | 67 (52.5–79.75) | 72 (64–81) | 0.144 | 
| Male sex, n (%) | 63 (52.5) | 26 (52) | 37 (52.8) | 0.926 | 
| SOFA score (mean ± SD) | 13.13 ± 3.91 | 11 ± 3.71 | 14.61 ± 3.34 | <0.001 | 
| APACHE II score (median [IQR]) | 27 (22–35) | 22 (18–28) | 30.5 (25.75–38) | <0.001 | 
| Carmeli score (median [IQR]) | 2 (2–3) | 2 (2–3) | 2 (2–3) | 0.001 † | 
| ICU length of stay (days) | 6 (4−12.75) | 6.5 (4–13.25) | 6 (4–11.25) | 0.483 | 
| Cardiovascular comorbidity, n (%) | 102 (85) | 42 (84) | 60 (85.71) | 0.795 | 
| Pulmonary comorbidity, n (%) | 76 (63.33) | 34 (68) | 42 (60) | 0.370 | 
| Renal comorbidity, n (%) | 46 (38.33) | 17 (34) | 29 (41.43) | 0.409 | 
| Neurological comorbidity, n (%) | 48 (40) | 19 (38) | 29 (41.43) | 0.705 | 
| Digestive comorbidity, n (%) | 46 (38.33) | 17 (34) | 29 (41.43) | 0.409 | 
| Hematologic comorbidity, n (%) | 46 (38.33) | 20 (40) | 26 (37.14) | 0.751 | 
| Diabetes mellitus, n (%) | 35 (29.17) | 14 (28) | 21 (30) | 0.812 | 
| Urologic comorbidity, n (%) | 35 (29.2) | 13 (26) | 22 (31.4) | 0.519 | 
| Oncologic comorbidity, n (%) | 16 (13.33) | 5 (10) | 11 (15.71) | 0.424 | 
| Psychiatric comorbidity, n (%) | 8 (6.67) | 4 (8) | 4 (5.71) | 0.718 | 
| COVID-19 history, n (%) | 5 (4.17) | 1 (2) | 4 (5.71) | 0.400 | 
| Parameter Median (IQR) | Total (n = 120) | Survivor (n = 50) | Non-Survivor (n = 70) | p-Value | 
|---|---|---|---|---|
| WBC (×109/L) | 12.72 (8.4–19.3) | 12.75 (7.67–20.17) | 12.72 (8.66–18.5) | 0.977 | 
| Neutrophils (×109/L) | 10.87 (7.02–16.31) | 10.38 (5.53–16.78) | 10.95 (7.17–15.84) | 0.598 | 
| Lymphocyte (×109/L) | 0.85 (0.42–1.25) | 0.93 (0.55–1.39) | 0.76 (0.4–1.21) | 0.147 | 
| NLR | 12.74 (7.23–25.22) | 10.71 (7.04–20.96) | 17.19 (7.55–31.41) | 0.076 | 
| PLT (×109/L) | 200 (144.5–306) | 214.5 (163.25–302.75) | 198 (138–307.5) | 0.6 | 
| Hemoglobin (g/dL) | 10.95 (8.3–12.75) | 11.2 (8.25–13.33) | 10.85 (8.25–12.33) | 0.375 | 
| Albumin (g/L) | 24 (21.18–30.93) | 26 (22.3–31.5) | 23.3 (19.8–30.2) | 0.127 | 
| Creatinine (mg/dL) | 1.25 (0.79–2.19) | 0.98 (0.72–2.11) | 1.34 (0.91–2.62) | 0.241 | 
| Parameter (Median [IQR]) | T0 (Admission) | T1 (48h) | T2 (72 h) | p-Trend (Friedman/Post Hoc)) | 
|---|---|---|---|---|
| PLT Survivors (×109/L) | 216 (179–338.1) | 213 (166.5–291) | 200 (146.5–306) | 0.572 | 
| PLT– non-survivors (×109/L) | 198 (145.25–307.5) | 209 (146.75–321.25) | 195 (85.5–262.25) | 0.001 (T0–T1 = 0.038; T1–T2 < 0.001, T0–T2 < 0.001) | 
| NLR Survivors | 10.71 (7.04–20.96) | 9.3 (5.92–17.4) | 6.92 (4.75–12.08) | <0.001 (T0–T1 = 0.197; T1–T2 < 0.001; T0–T2 < 0.001) | 
| NLR–non-survivors | 17.19 (7.55–31.41) | 15.97 (7.35–28.13) | 18.89 (8.73–31.01) | 0.929 | 
| Parameter (72 h) | AUC | 95% CI | p-Value | Sensitivity (%) | Specificity (%) | Cut-Off | 
|---|---|---|---|---|---|---|
| NLR | 0.765 | 0.668–0.863 | <0.001 | 53.7 | 92.5 | 17.07 | 
| PLT | 0.566 | 0.450–0.682 | 0.273 | 27.8 | 95.1 | 99 | 
| Albumin | 0.634 | 0.487–0.782 | 0.084 | 59.4 | 80 | 23.9 | 
| Creatinine | 0.649 | 0.532–0.766 | 0.014 | 73.1 | 63.4 | 0.755 | 
| eGFR | 0.637 | 0.521–0.753 | 0.024 | 88.5 | 73.2 | 93.8 | 
| Predictor | B | S.E. | Wald | p-Value | OR (Exp(B)) | 95% CI for OR | BCa 95% CI | 
|---|---|---|---|---|---|---|---|
| Carmeli Score | 1.304 | 0.429 | 9.243 | 0.002 | 3.68 | 1.60–8.47 | 1.6–11.15 | 
| SOFA Score | 0.130 | 0.106 | 1.522 | 0.217 | 1.14 | 0.92–1.42 | 0.8–1.41 | 
| APACHE II Score | 0.082 | 0.043 | 3.643 | 0.056 | 1.09 | 0.99–1.19 | 1–1.35 | 
| Constant | −6.828 | 1.495 | 20.846 | <0.001 | 0.001 | – | – | 
| Predictor | B | S.E. | Wald | p-Value | Adjusted OR | 95% CI for OR | BCa 95% CI | 
|---|---|---|---|---|---|---|---|
| APACHE II Score | 0.107 | 0.034 | 10.075 | 0.002 | 1.113 | 1.04–1.20 | 1.02–1.26 | 
| NLR at 72 h | 0.052 | 0.024 | 4.653 | 0.031 | 1.053 | 1.00–1.10 | 0.049–1.2 | 
| Constant | −3.363 | 0.922 | 13.310 | <0.001 | 0.035 | – | – | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoian, M.; Azamfirei, L.; Stîngaciu, A.C.; Negulici, L.-M.; Văsieșiu, A.M.; Manea, A.; Stoian, A. Early Diagnostic Markers and Risk Stratification in Sepsis: Prognostic Value of Neutrophil-to-Lymphocyte Ratio, Platelets, and the Carmeli Score. Biomedicines 2025, 13, 2658. https://doi.org/10.3390/biomedicines13112658
Stoian M, Azamfirei L, Stîngaciu AC, Negulici L-M, Văsieșiu AM, Manea A, Stoian A. Early Diagnostic Markers and Risk Stratification in Sepsis: Prognostic Value of Neutrophil-to-Lymphocyte Ratio, Platelets, and the Carmeli Score. Biomedicines. 2025; 13(11):2658. https://doi.org/10.3390/biomedicines13112658
Chicago/Turabian StyleStoian, Mircea, Leonard Azamfirei, Andrei Claudiu Stîngaciu, Lorena-Maria Negulici, Anca Meda Văsieșiu, Andrei Manea, and Adina Stoian. 2025. "Early Diagnostic Markers and Risk Stratification in Sepsis: Prognostic Value of Neutrophil-to-Lymphocyte Ratio, Platelets, and the Carmeli Score" Biomedicines 13, no. 11: 2658. https://doi.org/10.3390/biomedicines13112658
APA StyleStoian, M., Azamfirei, L., Stîngaciu, A. C., Negulici, L.-M., Văsieșiu, A. M., Manea, A., & Stoian, A. (2025). Early Diagnostic Markers and Risk Stratification in Sepsis: Prognostic Value of Neutrophil-to-Lymphocyte Ratio, Platelets, and the Carmeli Score. Biomedicines, 13(11), 2658. https://doi.org/10.3390/biomedicines13112658
 
         
                                                


 
       