Shaping Precision Medicine: The Journey of Sequencing Technologies Across Human Solid Tumors
Abstract
1. Introduction
2. Genetic Mutations in Human Solid Tumors
3. Sequencing Technology in Solid Tumor Diagnostics
3.1. First-Generation Sequencing (Sanger Sequencing)
3.2. Next-Generation Sequencing (NGS)
3.3. Third-Generation Sequencing (TGS) and Fourth-Generation Sequencing (FGS)
4. Clinical Applications of Sequencing Technology
4.1. Applications of Sanger Sequencing in Solid Tumors
4.2. Applications of NGS in Solid Tumors
4.2.1. Hereditary Tumor Assessment via Integrated NGS Profiling
4.2.2. NGS-Driven Paradigm Shift in Early Cancer Detection
4.2.3. Applications of NGS in Precision Oncology
4.3. Applications of TGS and FGS in Solid Tumors
5. Convergent Futures of Tumor Sequencing Platforms
5.1. Emerging Biological and Analytical Frontiers
5.2. Translational and Operational Challenges in Clinical Implementation
5.3. Ethical and Global Considerations in Precision Oncology
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A.; Kinzler, K.W. Cancer Genome Landscapes. Science 2013, 339, 1546–1558. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Combes, A.J.; Samad, B.; Tsui, J.; Chew, N.W.; Yan, P.; Reeder, G.C.; Kushnoor, D.; Shen, A.; Davidson, B.; Barczak, A.J.; et al. Discovering Dominant Tumor Immune Archetypes in a Pan-Cancer Census. Cell 2022, 185, 184–203.e19. [Google Scholar] [CrossRef] [PubMed]
- Ellrott, K.; Wong, C.K.; Yau, C.; Castro, M.A.A.; Lee, J.A.; Karlberg, B.J.; Grewal, J.K.; Lagani, V.; Tercan, B.; Friedl, V.; et al. Classification of Non-TCGA Cancer Samples to TCGA Molecular Subtypes Using Compact Feature Sets. Cancer Cell 2025, 43, 195–212.e11. [Google Scholar] [CrossRef] [PubMed]
- Scagliotti, G.V.; Parikh, P.; Von Pawel, J.; Biesma, B.; Vansteenkiste, J.; Manegold, C.; Serwatowski, P.; Gatzemeier, U.; Digumarti, R.; Zukin, M.; et al. Phase III Study Comparing Cisplatin Plus Gemcitabine with Cisplatin Plus Pemetrexed in Chemotherapy-Naive Patients with Advanced-Stage Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2008, 26, 3543–3551. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, S.S.; Vansteenkiste, J.; Planchard, D.; Cho, B.C.; Gray, J.E.; Ohe, Y.; Zhou, C.; Reungwetwattana, T.; Cheng, Y.; Chewaskulyong, B.; et al. Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. N. Engl. J. Med. 2020, 382, 41–50. [Google Scholar] [CrossRef]
- Ren, Y.; Huang, Z.; Zhou, L.; Xiao, P.; Song, J.; He, P.; Xie, C.; Zhou, R.; Li, M.; Dong, X.; et al. Spatial Transcriptomics Reveals Niche-Specific Enrichment and Vulnerabilities of Radial Glial Stem-like Cells in Malignant Gliomas. Nat. Commun. 2023, 14, 1028. [Google Scholar] [CrossRef]
- Sun, Q.; Xu, P.; Mao, A.; Huang, S.; Li, J.; Chen, L.; Li, J.; Kan, H.; Huang, J.; Ji, W.; et al. Targeted Long-Read Sequencing Enables Higher Diagnostic Yield of ADPKD by Accurate PKD1 Genetic Analysis. NPJ Genom. Med. 2025, 10, 22. [Google Scholar] [CrossRef]
- Wahida, A.; Buschhorn, L.; Fröhling, S.; Jost, P.J.; Schneeweiss, A.; Lichter, P.; Kurzrock, R. The Coming Decade in Precision Oncology: Six Riddles. Nat. Rev. Cancer 2023, 23, 43–54. [Google Scholar] [CrossRef]
- ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 2020, 578, 82–93, Erratum in: Nature 2023, 614, E39. https://doi.org/10.1038/s41586-022-05598-w. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vogelstein, B.; Kinzler, K.W. The Path to Cancer—Three Strikes and You’re Out. N. Engl. J. Med. 2015, 373, 1895–1898. [Google Scholar] [CrossRef] [PubMed]
- Ronckers, C.M.; Kratz, C.P.; Berrington De Gonzalez, A. Cancer-Predisposing Germline Variants and Subsequent Cancer Risk. Lancet Oncol. 2023, 24, 1059–1061. [Google Scholar] [CrossRef] [PubMed]
- Stadler, Z.K.; Maio, A.; Chakravarty, D.; Kemel, Y.; Sheehan, M.; Salo-Mullen, E.; Tkachuk, K.; Fong, C.J.; Nguyen, B.; Erakky, A.; et al. Therapeutic Implications of Germline Testing in Patients with Advanced Cancers. J. Clin. Oncol. 2021, 39, 2698–2709. [Google Scholar] [CrossRef] [PubMed]
- Seppälä, T.T.; Latchford, A.; Negoi, I.; Sampaio Soares, A.; Jimenez-Rodriguez, R.; Sánchez-Guillén, L.; Evans, D.G.; Ryan, N.; Crosbie, E.J.; Dominguez-Valentin, M.; et al. European Guidelines from the EHTG and ESCP for Lynch Syndrome: An Updated Third Edition of the Mallorca Guidelines Based on Gene and Gender. Br. J. Surg. 2021, 108, 484–498. [Google Scholar] [CrossRef]
- Tung, N.M.; Boughey, J.C.; Pierce, L.J.; Robson, M.E.; Bedrosian, I.; Dietz, J.R.; Dragun, A.; Gelpi, J.B.; Hofstatter, E.W.; Isaacs, C.J.; et al. Management of Hereditary Breast Cancer: American Society of Clinical Oncology, American Society for Radiation Oncology, and Society of Surgical Oncology Guideline. J. Clin. Oncol. 2020, 38, 2080–2106. [Google Scholar] [CrossRef]
- Van Leerdam, M.E.; Roos, V.H.; Van Hooft, J.E.; Dekker, E.; Jover, R.; Kaminski, M.F.; Latchford, A.; Neumann, H.; Pellisé, M.; Saurin, J.-C.; et al. Endoscopic Management of Polyposis Syndromes: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy 2019, 51, 877–895. [Google Scholar] [CrossRef]
- Zaffaroni, G.; Mannucci, A.; Koskenvuo, L.; De Lacy, B.; Maffioli, A.; Bisseling, T.; Half, E.; Cavestro, G.M.; Valle, L.; Ryan, N.; et al. Updated European Guidelines for Clinical Management of Familial Adenomatous Polyposis (FAP), MUTYH-Associated Polyposis (MAP), Gastric Adenocarcinoma, Proximal Polyposis of the Stomach (GAPPS) and Other Rare Adenomatous Polyposis Syndromes: A Joint EHTG-ESCP Revision. Br. J. Surg. 2024, 111, znae070, Erratum in: Br. J. Surg. 2024, 111, znae263. https://doi.org/10.1093/bjs/znae263. [Google Scholar] [CrossRef]
- Gradishar, W.J.; Moran, M.S.; Abraham, J.; Abramson, V.; Aft, R.; Agnese, D.; Allison, K.H.; Anderson, B.; Bailey, J.; Burstein, H.J.; et al. Breast Cancer, Version 3.2024, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2024, 22, 331–357. [Google Scholar] [CrossRef]
- Martincorena, I.; Raine, K.M.; Gerstung, M.; Dawson, K.J.; Haase, K.; Van Loo, P.; Davies, H.; Stratton, M.R.; Campbell, P.J. Universal Patterns of Selection in Cancer and Somatic Tissues. Cell 2017, 171, 1029–1041.e21, Erratum in: Cell 2018, 173, 1823. https://doi.org/10.1016/j.cell.2018.06.001. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brownlee, G.G. Frederick Sanger (1918–2013). Curr. Biol. 2013, 23, R1074–R1076. [Google Scholar] [CrossRef]
- Church, D.M. A next-generation human genome sequence. Science 2022, 376, 34–35. [Google Scholar] [CrossRef]
- Riely, G.J.; Wood, D.E.; Ettinger, D.S.; Aisner, D.L.; Akerley, W.; Bauman, J.R.; Bharat, A.; Bruno, D.S.; Chang, J.Y.; Chirieac, L.R.; et al. Non–Small Cell Lung Cancer, Version 4.2024, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Cancer Netw. 2024, 22, 249–274. [Google Scholar] [CrossRef] [PubMed]
- Ewing, B.; Hillier, L.; Wendl, M.C.; Green, P. Base-Calling of Automated Sequencer Traces Using Phred. I. Accuracy Assessment. Genome Res. 1998, 8, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA Sequencing with Chain-Terminating Inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef]
- Tsai, S.Q.; Zheng, Z.; Nguyen, N.T.; Liebers, M.; Topkar, V.V.; Thapar, V.; Wyvekens, N.; Khayter, C.; Iafrate, A.J.; Le, L.P.; et al. GUIDE-Seq Enables Genome-Wide Profiling of off-Target Cleavage by CRISPR-Cas Nucleases. Nat. Biotechnol. 2015, 33, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Turner, K.M.; Nguyen, N.; Raviram, R.; Erb, M.; Santini, J.; Luebeck, J.; Rajkumar, U.; Diao, Y.; Li, B.; et al. Circular ecDNA Promotes Accessible Chromatin and High Oncogene Expression. Nature 2019, 575, 699–703. [Google Scholar] [CrossRef]
- McCombie, W.R.; McPherson, J.D.; Mardis, E.R. Next-Generation Sequencing Technologies. Cold Spring Harb. Perspect. Med. 2019, 9, a036798. [Google Scholar] [CrossRef]
- Morganti, S.; Tarantino, P.; Ferraro, E.; D’Amico, P.; Duso, B.A.; Curigliano, G. Next Generation Sequencing (NGS): A Revolutionary Technology in Pharmacogenomics and Personalized Medicine in Cancer. In Translational Research and Onco-Omics Applications in the Era of Cancer Personal Genomics; Ruiz-Garcia, E., Astudillo-de La Vega, H., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2019; Volume 1168, pp. 9–30. ISBN 978-3-030-24099-8. [Google Scholar]
- Larson, N.B.; Oberg, A.L.; Adjei, A.A.; Wang, L. A Clinician’s Guide to Bioinformatics for Next-Generation Sequencing. J. Thorac. Oncol. 2023, 18, 143–157. [Google Scholar] [CrossRef]
- Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of Age: Ten Years of next-Generation Sequencing Technologies. Nat. Rev. Genet. 2016, 17, 333–351. [Google Scholar] [CrossRef]
- Rodriguez, R.; Krishnan, Y. The chemistry of next-generation sequencing. Nat. Biotechnol. 2023, 41, 1709–1715. [Google Scholar] [CrossRef]
- Liu, J.; Lichtenberg, T.; Hoadley, K.A.; Poisson, L.M.; Lazar, A.J.; Cherniack, A.D.; Kovatich, A.J.; Benz, C.C.; Levine, D.A.; Lee, A.V.; et al. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell 2018, 173, 400–416.e11. [Google Scholar] [CrossRef]
- Johnson, J.A.; Moore, B.J.; Syrnioti, G.; Eden, C.M.; Wright, D.; Newman, L.A. Landmark Series: The Cancer Genome Atlas and the Study of Breast Cancer Disparities. Ann. Surg. Oncol. 2023, 30, 6427–6440. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Tang, R.; Xu, J.; Wang, W.; Zhang, B.; Liu, J.; Yu, X.; Shi, S. Applications of Single-Cell Sequencing in Cancer Research: Progress and Perspectives. J. Hematol. Oncol. 2021, 14, 91. [Google Scholar] [CrossRef] [PubMed]
- Keefer, L.A.; White, J.R.; Wood, D.E.; Gerding, K.M.R.; Valkenburg, K.C.; Riley, D.; Gault, C.; Papp, E.; Vollmer, C.M.; Greer, A.; et al. Automated Next-Generation Profiling of Genomic Alterations in Human Cancers. Nat. Commun. 2022, 13, 2830. [Google Scholar] [CrossRef] [PubMed]
- Wall, J.D.; Tang, L.F.; Zerbe, B.; Kvale, M.N.; Kwok, P.-Y.; Schaefer, C.; Risch, N. Estimating Genotype Error Rates from High-Coverage next-Generation Sequence Data. Genome Res. 2014, 24, 1734–1739. [Google Scholar] [CrossRef]
- Hua, X.; Zhou, H.; Wu, H.-C.; Furnari, J.; Kotidis, C.P.; Rabadan, R.; Genkinger, J.M.; Bruce, J.N.; Canoll, P.; Santella, R.M.; et al. Tumor Detection by Analysis of Both Symmetric- and Hemi-Methylation of Plasma Cell-Free DNA. Nat. Commun. 2024, 15, 6113. [Google Scholar] [CrossRef]
- Stoler, N.; Nekrutenko, A. Sequencing Error Profiles of Illumina Sequencing Instruments. NAR Genom. Bioinform. 2021, 3, lqab019. [Google Scholar] [CrossRef]
- Van Dijk, E.L.; Jaszczyszyn, Y.; Naquin, D.; Thermes, C. The Third Revolution in Sequencing Technology. Trends Genet. 2018, 34, 666–681. [Google Scholar] [CrossRef]
- Logsdon, G.A.; Vollger, M.R.; Eichler, E.E. Long-Read Human Genome Sequencing and Its Applications. Nat. Rev. Genet. 2020, 21, 597–614. [Google Scholar] [CrossRef]
- Travers, K.J.; Chin, C.-S.; Rank, D.R.; Eid, J.S.; Turner, S.W. A Flexible and Efficient Template Format for Circular Consensus Sequencing and SNP Detection. Nucleic Acids Res. 2010, 38, e159. [Google Scholar] [CrossRef]
- Olivucci, G.; Iovino, E.; Innella, G.; Turchetti, D.; Pippucci, T.; Magini, P. Long Read Sequencing on Its Way to the Routine Diagnostics of Genetic Diseases. Front. Genet. 2024, 15, 1374860. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Rabea, F.; Ramaswamy, S.; Chekroun, I.; El Naofal, M.; Jain, R.; Alfalasi, R.; Halabi, N.; Yaslam, S.; Sheikh Hassani, M.; et al. Long Read Sequencing Enhances Pathogenic and Novel Variation Discovery in Patients with Rare Diseases. Nat. Commun. 2025, 16, 2500. [Google Scholar] [CrossRef] [PubMed]
- Wisman, G.B.A.; Wojdacz, T.K.; Altucci, L.; Rots, M.G.; DeMeo, D.L.; Snieder, H. Clinical Promise and Applications of Epigenetic Biomarkers. Clin. Epigenet. 2024, 16, 192. [Google Scholar] [CrossRef] [PubMed]
- Quail, M.; Smith, M.E.; Coupland, P.; Otto, T.D.; Harris, S.R.; Connor, T.R.; Bertoni, A.; Swerdlow, H.P.; Gu, Y. A Tale of Three next Generation Sequencing Platforms: Comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq Sequencers. BMC Genom. 2012, 13, 341. [Google Scholar] [CrossRef]
- Wenger, A.M.; Peluso, P.; Rowell, W.J.; Chang, P.C.; Hall, R.J.; Concepcion, G.T.; Ebler, J.; Fungtammasan, A.; Kolesnikov, A.; Olson, N.D.; et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 2019, 37, 1155–1162. [Google Scholar] [CrossRef]
- Jain, M.; Koren, S.; Miga, K.H.; Quick, J.; Rand, A.C.; Sasani, T.A.; Tyson, J.R.; Beggs, A.D.; Dilthey, A.T.; Fiddes, I.T.; et al. Nanopore Sequencing and Assembly of a Human Genome with Ultra-Long Reads. Nat. Biotechnol. 2018, 36, 338–345. [Google Scholar] [CrossRef]
- Deacon, S.; Cahyani, I.; Holmes, N.; Fox, G.; Munro, R.; Wibowo, S.; Murray, T.; Mason, H.; Housley, M.; Martin, D.; et al. ROBIN: A unified nanopore-based assay integrating intraoperative methylome classification and next-day comprehensive profiling for ultra-rapid tumor diagnosis. Neuro-Oncol. 2025, 27, 2035–2046. [Google Scholar] [CrossRef]
- Vollger, M.R.; Korlach, J.; Eldred, K.C.; Swanson, E.; Underwood, J.G.; Cheng, Y.H.H.; Ranchalis, J.; Mao, Y.; Blue, E.E.; Schwarze, U.; et al. Synchronized long-read genome, methylome, epigenome, and transcriptome for resolving a Mendelian condition. bioRxiv 2023, 57, 469–479. [Google Scholar] [CrossRef]
- Carneiro, M.O.; Russ, C.; Ross, M.G.; Gabriel, S.B.; Nusbaum, C.; DePristo, M.A. Pacific Biosciences Sequencing Technology for Genotyping and Variation Discovery in Human Data. BMC Genom. 2012, 13, 375. [Google Scholar] [CrossRef]
- Sahlin, K.; Medvedev, P. Error Correction Enables Use of Oxford Nanopore Technology for Reference-Free Transcriptome Analysis. Nat. Commun. 2021, 12, 2, Erratum in: Nat. Commun. 2021, 12, 992. https://doi.org/10.1038/s41467-021-21424-9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sereika, M.; Kirkegaard, R.H.; Karst, S.M.; Michaelsen, T.Y.; Sørensen, E.A.; Wollenberg, R.D.; Albertsen, M. Oxford Nanopore R10.4 Long-Read Sequencing Enables the Generation of near-Finished Bacterial Genomes from Pure Cultures and Metagenomes without Short-Read or Reference Polishing. Nat. Methods 2022, 19, 823–826. [Google Scholar] [CrossRef]
- Dohm, J.C.; Peters, P.; Stralis-Pavese, N.; Himmelbauer, H. Benchmarking of Long-Read Correction Methods. NAR Genom. Bioinform. 2020, 2, lqaa037. [Google Scholar] [CrossRef]
- Lyons, E.A.; Scheible, M.K.; Sturk-Andreaggi, K.; Irwin, J.A.; Just, R.S. A High-Throughput Sanger Strategy for Human Mitochondrial Genome Sequencing. BMC Genom. 2013, 14, 881. [Google Scholar] [CrossRef]
- Mu, W.; Lu, H.-M.; Chen, J.; Li, S.; Elliott, A.M. Sanger Confirmation Is Required to Achieve Optimal Sensitivity and Specificity in Next-Generation Sequencing Panel Testing. J. Mol. Diagn. 2016, 18, 923–932. [Google Scholar] [CrossRef]
- Serrano, C.; Martín-Broto, J.; Asencio-Pascual, J.M.; López-Guerrero, J.A.; Rubió-Casadevall, J.; Bagué, S.; García-del-Muro, X.; Fernández-Hernández, J.Á.; Herrero, L.; López-Pousa, A.; et al. 2023 GEIS Guidelines for Gastrointestinal Stromal Tumors. Ther. Adv. Med. Oncol. 2023, 15, 17588359231192388. [Google Scholar] [CrossRef] [PubMed]
- Palmeri, M.; Mehnert, J.; Silk, A.W.; Jabbour, S.K.; Ganesan, S.; Popli, P.; Riedlinger, G.; Stephenson, R.; De Meritens, A.B.; Leiser, A.; et al. Real-World Application of Tumor Mutational Burden-High (TMB-High) and Microsatellite Instability (MSI) Confirms Their Utility as Immunotherapy Biomarkers. ESMO Open 2022, 7, 100336. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Kang, L.; Zhang, J.; Wu, Z.; Wang, H.; Huang, M.; Lan, P.; Wu, X.; Wang, C.; Cao, W.; et al. Neoadjuvant PD-1 Blockade with Toripalimab, with or without Celecoxib, in Mismatch Repair-Deficient or Microsatellite Instability-High, Locally Advanced, Colorectal Cancer (PICC): A Single-Centre, Parallel-Group, Non-Comparative, Randomised, Phase 2 Trial. Lancet Gastroenterol. Hepatol. 2022, 7, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Luchini, C.; Bibeau, F.; Ligtenberg, M.J.L.; Singh, N.; Nottegar, A.; Bosse, T.; Miller, R.; Riaz, N.; Douillard, J.-Y.; Andre, F.; et al. ESMO Recommendations on Microsatellite Instability Testing for Immunotherapy in Cancer, and Its Relationship with PD-1/PD-L1 Expression and Tumour Mutational Burden: A Systematic Review-Based Approach. Ann. Oncol. 2019, 30, 1232–1243. [Google Scholar] [CrossRef]
- Boland, C.R.; Thibodeau, S.N.; Hamilton, S.R.; Sidransky, D.; Eshleman, J.R.; Burt, R.W.; Meltzer, S.J.; Rodriguez-Bigas, M.A.; Fodde, R.; Ranzani, G.N.; et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: Development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998, 58, 5248–5257. [Google Scholar]
- Brisotto, G.; Di Gennaro, A.; Damiano, V.; Armellin, M.; Perin, T.; Maestro, R.; Santarosa, M. An Improved Sequencing-Based Strategy to Estimate Locus-Specific DNA Methylation. BMC Cancer 2015, 15, 639. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, Y.; Fei, J.; Chang, X.; Fan, W.; Qian, X.; Zhang, T.; Lu, D. Rapid Quantification of DNA Methylation by Measuring Relative Peak Heights in Direct Bisulfite-PCR Sequencing Traces. Lab. Investig. 2010, 90, 282–290. [Google Scholar] [CrossRef]
- Reimann, J.D.R.; Salim, S.; Velazquez, E.F.; Wang, L.; Williams, K.M.; Flejter, W.L.; Brooke, L.; Sunder, S.; Busam, K.J. Comparison of Melanoma Gene Expression Score with Histopathology, Fluorescence in Situ Hybridization, and SNP Array for the Classification of Melanocytic Neoplasms. Mod. Pathol. 2018, 31, 1733–1743. [Google Scholar] [CrossRef] [PubMed]
- Zarabi, S.K.; Azzato, E.M.; Tu, Z.J.; Ni, Y.; Billings, S.D.; Arbesman, J.; Funchain, P.; Gastman, B.; Farkas, D.H.; Ko, J.S. Targeted next Generation Sequencing (NGS) to Classify Melanocytic Neoplasms. J. Cutan. Pathol. 2020, 47, 691–704. [Google Scholar] [CrossRef] [PubMed]
- Schnipper, L.E.; Davidson, N.E.; Wollins, D.S.; Tyne, C.; Blayney, D.W.; Blum, D.; Dicker, A.P.; Ganz, P.A.; Hoverman, J.R.; Langdon, R.; et al. American Society of Clinical Oncology Statement: A Conceptual Framework to Assess the Value of Cancer Treatment Options. J. Clin. Oncol. 2015, 33, 2563–2577. [Google Scholar] [CrossRef] [PubMed]
- Mosele, M.F.; Westphalen, C.B.; Stenzinger, A.; Barlesi, F.; Bayle, A.; Bièche, I.; Bonastre, J.; Castro, E.; Dienstmann, R.; Krämer, A.; et al. Recommendations for the Use of Next-Generation Sequencing (NGS) for Patients with Advanced Cancer in 2024: A Report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2024, 35, 588–606, Erratum in: Ann. Oncol. 2025, 36, 472. https://doi.org/10.1016/j.annonc.2024.11.010. [Google Scholar] [CrossRef] [PubMed]
- LaDuca, H.; Stuenkel, A.J.; Dolinsky, J.S.; Keiles, S.; Tandy, S.; Pesaran, T.; Chen, E.; Gau, C.-L.; Palmaer, E.; Shoaepour, K.; et al. Utilization of Multigene Panels in Hereditary Cancer Predisposition Testing: Analysis of More than 2000 Patients. Genet. Med. 2014, 16, 830–837. [Google Scholar] [CrossRef]
- Judkins, T.; Leclair, B.; Bowles, K.; Gutin, N.; Trost, J.; McCulloch, J.; Bhatnagar, S.; Murray, A.; Craft, J.; Wardell, B.; et al. Development and Analytical Validation of a 25-Gene next Generation Sequencing Panel That Includes the BRCA1 and BRCA2 Genes to Assess Hereditary Cancer Risk. BMC Cancer 2015, 15, 215. [Google Scholar] [CrossRef]
- Yates, L.R.; Desmedt, C. Translational Genomics: Practical Applications of the Genomic Revolution in Breast Cancer. Clin. Cancer Res. 2017, 23, 2630–2639. [Google Scholar] [CrossRef]
- Guha, T.; Malkin, D. Inherited TP53 Mutations and the Li–Fraumeni Syndrome. Cold Spring Harb. Perspect. Med. 2017, 7, a026187. [Google Scholar] [CrossRef]
- Dinarvand, P.; Davaro, E.P.; Doan, J.V.; Ising, M.E.; Evans, N.R.; Phillips, N.J.; Lai, J.; Guzman, M.A. Familial Adenomatous Polyposis Syndrome: An Update and Review of Extraintestinal Manifestations. Arch. Pathol. Lab. Med. 2019, 143, 1382–1398. [Google Scholar] [CrossRef]
- Engel, C.; Fischer, C. Breast Cancer Risks and Risk Prediction Models. Breast Care 2015, 10, 7–12. [Google Scholar] [CrossRef]
- Wilke, R.N.; Bednar, E.M.; Pirzadeh-Miller, S.; Lahiri, S.; Scarinci, I.C.; Leath Iii, C.A.; Frey, M.K.; Lu, K.H.; Rauh-Hain, J.A. Cascade Genetic Testing: An Underutilized Pathway to Equitable Cancer Care? Fam. Cancer 2024, 23, 141–145. [Google Scholar] [CrossRef]
- Fabian, C.J.; Kimler, B.F. Chemoprevention for High-Risk Women: Tamoxifen and Beyond. Breast J. 2001, 7, 311–320. [Google Scholar] [CrossRef]
- Martelli, G.; Barretta, F.; Vernieri, C.; Folli, S.; Pruneri, G.; Segattini, S.; Trapani, A.; Carolla, C.; Spatti, G.; Miceli, R.; et al. Prophylactic Salpingo-Oophorectomy and Survival After BRCA1/2 Breast Cancer Resection. JAMA Surg. 2023, 158, 1275. [Google Scholar] [CrossRef]
- Hodan, R.; Gupta, S.; Weiss, J.M.; Axell, L.; Burke, C.A.; Chen, L.-M.; Chung, D.C.; Clayback, K.M.; Felder, S.; Foda, Z.; et al. Genetic/Familial High-Risk Assessment: Colorectal, Endometrial, and Gastric, Version 3.2024, NCCN Clinical Practice Guidelines In Oncology. J. Natl. Compr. Cancer Netw. 2024, 22, 695–711. [Google Scholar] [CrossRef]
- Zhao, F.; Bai, P.; Xu, J.; Li, Z.; Muhammad, S.; Li, D.; Zhang, Z.; Gao, Y.; Liu, Q. Efficacy of Cell-Free DNA Methylation-Based Blood Test for Colorectal Cancer Screening in High-Risk Population: A Prospective Cohort Study. Mol. Cancer 2023, 22, 157. [Google Scholar] [CrossRef]
- Luo, H.; Wei, W.; Ye, Z.; Zheng, J.; Xu, R. Liquid Biopsy of Methylation Biomarkers in Cell-Free DNA. Trends Mol. Med. 2021, 27, 482–500. [Google Scholar] [CrossRef]
- Mai, L.; Wen, Z.; Zhang, Y.; Gao, Y.; Lin, G.; Lian, Z.; Yang, X.; Zhou, J.; Lin, X.; Luo, C.; et al. Shortcut Barcoding and Early Pooling for Scalable Multiplex Single-Cell Reduced-Representation CpG Methylation Sequencing at Single Nucleotide Resolution. Nucleic Acids Res. 2023, 51, e108. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.C.; Gray, D.M.; Singh, H.; Issaka, R.B.; Raymond, V.M.; Eagle, C.; Hu, S.; Chudova, D.I.; Talasaz, A.; Greenson, J.K.; et al. A Cell-Free DNA Blood-Based Test for Colorectal Cancer Screening. N. Engl. J. Med. 2024, 390, 973–983. [Google Scholar] [CrossRef] [PubMed]
- Benson, A.B.; Venook, A.P.; Bekaii-Saab, T.; Chan, E.; Chen, Y.-J.; Cooper, H.S.; Engstrom, P.F.; Enzinger, P.C.; Fenton, M.J.; Fuchs, C.S.; et al. Colon Cancer, Version 3.2014. J. Natl. Compr. Cancer Netw. 2014, 12, 1028–1059. [Google Scholar] [CrossRef] [PubMed]
- Appin, C.L.; Hong, C.; Suwala, A.K.; Hilz, S.; Mathur, R.; Solomon, D.A.; Smirnov, I.V.; Stevers, N.O.; Shai, A.; Wang, A.; et al. Whole Tumor Analysis Reveals Early Origin of the TERT Promoter Mutation and Intercellular Heterogeneity in TERT Expression. Neuro-Oncol. 2024, 26, 640–652. [Google Scholar] [CrossRef]
- Aggarwal, C.; Thompson, J.C.; Black, T.A.; Katz, S.I.; Fan, R.; Yee, S.S.; Chien, A.L.; Evans, T.L.; Bauml, J.M.; Alley, E.W.; et al. Clinical Implications of Plasma-Based Genotyping with the Delivery of Personalized Therapy in Metastatic Non–Small Cell Lung Cancer. JAMA Oncol. 2019, 5, 173. [Google Scholar] [CrossRef]
- Grünewald, T.G.; Alonso, M.; Avnet, S.; Banito, A.; Burdach, S.; Cidre-Aranaz, F.; Di Pompo, G.; Distel, M.; Dorado-Garcia, H.; Garcia-Castro, J.; et al. Sarcoma Treatment in the Era of Molecular Medicine. EMBO Mol. Med. 2020, 12, e11131. [Google Scholar] [CrossRef]
- Volante, M.; Lam, A.K.; Papotti, M.; Tallini, G. Molecular Pathology of Poorly Differentiated and Anaplastic Thyroid Cancer: What Do Pathologists Need to Know? Endocr. Pathol. 2021, 32, 63–76. [Google Scholar] [CrossRef]
- Koelsche, C.; Schrimpf, D.; Stichel, D.; Sill, M.; Sahm, F.; Reuss, D.E.; Blattner, M.; Worst, B.; Heilig, C.E.; Beck, K.; et al. Sarcoma Classification by DNA Methylation Profiling. Nat. Commun. 2021, 12, 498. [Google Scholar] [CrossRef]
- Kokkali, S.; Boukovinas, I.; De Bree, E.; Koumarianou, A.; Georgoulias, V.; Kyriazoglou, A.; Tsoukalas, N.; Memos, N.; Papanastassiou, J.; Stergioula, A.; et al. The Impact of Expert Pathology Review and Molecular Diagnostics on the Management of Sarcoma Patients: A Prospective Study of the Hellenic Group of Sarcomas and Rare Cancers. Cancers 2024, 16, 2314. [Google Scholar] [CrossRef] [PubMed]
- Dickson, M.A.; Tap, W.D.; Keohan, M.L.; D’Angelo, S.P.; Gounder, M.M.; Antonescu, C.R.; Landa, J.; Qin, L.-X.; Rathbone, D.D.; Condy, M.M.; et al. Phase II Trial of the CDK4 Inhibitor PD0332991 in Patients with Advanced CDK4 -Amplified Well-Differentiated or Dedifferentiated Liposarcoma. J. Clin. Oncol. 2013, 31, 2024–2028. [Google Scholar] [CrossRef] [PubMed]
- M.S., A.; K., C.; Bhargavan, R.V.; Somanathan, T.; Subhadradevi, L. An Overview on Liposarcoma Subtypes: Genetic Alterations and Recent Advances in Therapeutic Strategies. J. Mol. Histol. 2024, 55, 227–240. [Google Scholar] [CrossRef] [PubMed]
- Haddad, R.I.; Bischoff, L.; Ball, D.; Bernet, V.; Blomain, E.; Busaidy, N.L.; Campbell, M.; Dickson, P.; Duh, Q.-Y.; Ehya, H.; et al. Thyroid Carcinoma, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 925–951. [Google Scholar] [CrossRef]
- Von Mehren, M.; Kane, J.M.; Agulnik, M.; Bui, M.M.; Carr-Ascher, J.; Choy, E.; Connelly, M.; Dry, S.; Ganjoo, K.N.; Gonzalez, R.J.; et al. Soft Tissue Sarcoma, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 815–833. [Google Scholar] [CrossRef]
- Gronchi, A.; Miah, A.B.; Dei Tos, A.P.; Abecassis, N.; Bajpai, J.; Bauer, S.; Biagini, R.; Bielack, S.; Blay, J.Y.; Bolle, S.; et al. Soft Tissue and Visceral Sarcomas: ESMO–EURACAN–GENTURIS Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2021, 32, 1348–1365. [Google Scholar] [CrossRef]
- Biermann, J.S.; Hirbe, A.; Ahlawat, S.; Bernthal, N.M.; Binitie, O.; Boles, S.; Brigman, B.; Callan, A.K.; Cipriano, C.; Cranmer, L.D.; et al. Bone Cancer, Version 2.2025, NCCN Clinical Practice Guidelines In Oncology. J. Natl. Compr. Cancer Netw. 2025, 23, e250017. [Google Scholar] [CrossRef]
- Strauss, S.J.; Frezza, A.M.; Abecassis, N.; Bajpai, J.; Bauer, S.; Biagini, R.; Bielack, S.; Blay, J.Y.; Bolle, S.; Bonvalot, S.; et al. Bone Sarcomas: ESMO–EURACAN–GENTURIS–ERN PaedCan Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2021, 32, 1520–1536. [Google Scholar] [CrossRef]
- Fusco, M.J.; Knepper, T.C.; Balliu, J.; Del Cueto, A.; Laborde, J.M.; Hooda, S.M.; Brohl, A.S.; Bui, M.M.; Hicks, J.K. Evaluation of Targeted Next-Generation Sequencing for the Management of Patients Diagnosed with a Cancer of Unknown Primary. The Oncol. 2022, 27, e9–e17. [Google Scholar] [CrossRef] [PubMed]
- Cobain, E.F.; Wu, Y.-M.; Vats, P.; Chugh, R.; Worden, F.; Smith, D.C.; Schuetze, S.M.; Zalupski, M.M.; Sahai, V.; Alva, A.; et al. Assessment of Clinical Benefit of Integrative Genomic Profiling in Advanced Solid Tumors. JAMA Oncol. 2021, 7, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yuan, X.; Sun, K.; Wu, F.; Liu, K.; Jin, Y.; Chervova, O.; Nie, Y.; Yang, A.; Jin, Y.; et al. Optimizing the NGS-Based Discrimination of Multiple Lung Cancers from the Perspective of Evolution. NPJ Precis. Oncol. 2025, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Cabanillas, M.E.; Dadu, R.; Ferrarotto, R.; Gule-Monroe, M.; Liu, S.; Fellman, B.; Williams, M.D.; Zafereo, M.; Wang, J.R.; Lu, C.; et al. Anti–Programmed Death Ligand 1 Plus Targeted Therapy in Anaplastic Thyroid Carcinoma: A Nonrandomized Clinical Trial. JAMA Oncol. 2024, 10, 1672. [Google Scholar] [CrossRef]
- Wang, J.R.; Montierth, M.; Xu, L.; Goswami, M.; Zhao, X.; Cote, G.; Wang, W.; Iyer, P.; Dadu, R.; Busaidy, N.L.; et al. Impact of Somatic Mutations on Survival Outcomes in Patients with Anaplastic Thyroid Carcinoma. JCO Precis. Oncol. 2022, 6, e2100504. [Google Scholar] [CrossRef]
- Vasan, N.; Baselga, J.; Hyman, D.M. A View on Drug Resistance in Cancer. Nature 2019, 575, 299–309. [Google Scholar] [CrossRef]
- Nussinov, R.; Tsai, C.-J.; Jang, H. Anticancer Drug Resistance: An Update and Perspective. Drug Resist. Updates 2021, 59, 100796. [Google Scholar] [CrossRef]
- Lindhoff-Last, E.; Schönborn, L.; Zaninetti, C.; Warkentin, T.E.; Greinacher, A. Rescue Therapy in Chronic Prothrombotic Autoimmune Anti-PF4 Disorder. N. Engl. J. Med. 2023, 389, 1339–1341. [Google Scholar] [CrossRef]
- Stockhammer, P.; Grant, M.; Wurtz, A.; Foggetti, G.; Expósito, F.; Gu, J.; Zhao, H.; Choi, J.; Chung, S.; Li, F.; et al. Co-Occurring Alterations in Multiple Tumor Suppressor Genes Are Associated with Worse Outcomes in Patients with EGFR-Mutant Lung Cancer. J. Thorac. Oncol. 2024, 19, 240–251. [Google Scholar] [CrossRef]
- Raghav, K.P.; Stephen, B.; Karp, D.D.; Piha-Paul, S.A.; Hong, D.S.; Jain, D.; Chudy Onwugaje, D.O.; Abonofal, A.; Willett, A.F.; Overman, M.; et al. Efficacy of Pembrolizumab in Patients with Advanced Cancer of Unknown Primary (CUP): A Phase 2 Non-Randomized Clinical Trial. J. Immunother. Cancer 2022, 10, e004822. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhang, X.; Wang, F.; Zhang, M.; Sun, B.; Yin, W.; Deng, S.; Wan, Y.; Lu, W. The Diagnostic Accuracy of Liquid Biopsy in EGFR-Mutated NSCLC: A Systematic Review and Meta-Analysis of 40 Studies. SLAS Technol. 2021, 26, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Zhuang, W.; Lai, J.; Xu, H.; He, Y.; Lin, J.; Shi, Q.; Chen, S.; Huang, Z.; Chen, S.; et al. Plasma EGFR Mutation ctDNA Dynamics in Patients with Advanced EGFR-Mutated NSCLC Treated with Icotinib: Phase 2 Multicenter Trial Result. Sci. Rep. 2024, 14, 23115. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Guo, H.; Xia, Y.; Le, X.; Tan, D.S.W.; Ramalingam, S.S.; Zhou, C. The Changing Treatment Landscape of EGFR-Mutant Non-Small-Cell Lung Cancer. Nat. Rev. Clin. Oncol. 2025, 22, 95–116. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Deng, Y.; Wu, X.; Zheng, Z.; Zhou, Y.; Cai, S.; Zhang, Y.; Zhang, J.; Tao, K.; et al. Efficacy and Safety of Avapritinib in Treating Unresectable or Metastatic Gastrointestinal Stromal Tumors: A Phase I/II, Open-Label, Multicenter Study. Oncologist 2023, 28, 187-e114. [Google Scholar] [CrossRef]
- Heinrich, M.C.; Jones, R.L.; Von Mehren, M.; Schöffski, P.; Serrano, C.; Kang, Y.-K.; Cassier, P.A.; Mir, O.; Eskens, F.; Tap, W.D.; et al. Avapritinib in Advanced PDGFRA D842V-Mutant Gastrointestinal Stromal Tumour (NAVIGATOR): A Multicentre, Open-Label, Phase 1 Trial. Lancet Oncol. 2020, 21, 935–946, Erratum in: Lancet Oncol. 2020, 21, e418. https://doi.org/10.1016/S1470-2045(20)30489-7. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.J.; Lisberg, A.; Goto, Y.; Sands, J.; Hong, M.H.; Paz-Ares, L.; Pons-Tostivint, E.; Pérol, M.; Felip, E.; Sugawara, S.; et al. A pooled analysis of datopotamab deruxtecan in patients with EGFR-mutated NSCLC. J. Thorac. Oncol. 2025. [Google Scholar] [CrossRef]
- Fang, W.; Li, X.; Wang, Q.; Meng, X.; Zheng, W.; Sun, L.; Yao, W.; Zhuang, W.; Fan, Y.; Zhuo, M.; et al. Sacituzumab tirumotecan versus docetaxel for previously treated EGFR-mutated advanced non-small-cell lung cancer: Multicenter, open label, randomized controlled trial. BMJ 2025, 389, e085680. [Google Scholar] [CrossRef]
- Arrieta, O.; Lara-Mejía, L.; Rios-Garcia, E.; Caballé-Perez, E.; Cabrera-Miranda, L.; Ramos-Ramírez, M.; Dávila-Dupont, D.; Cardona, A.F.; Cruz-Rico, G.; Remon, J.; et al. Alectinib in combination with bevacizumab as first-line treatment in ALK-rearranged non-small-cell lung cancer (ALEK-B): A single-arm, phase 2 trial. Nat. Commun. 2025, 16, 4553. [Google Scholar] [CrossRef] [PubMed]
- Camelliti, S.; Le Noci, V.; Bianchi, F.; Moscheni, C.; Arnaboldi, F.; Gagliano, N.; Balsari, A.; Garassino, M.C.; Tagliabue, E.; Sfondrini, L.; et al. Mechanisms of Hyperprogressive Disease after Immune Checkpoint Inhibitor Therapy: What We (Don’t) Know. J. Exp. Clin. Cancer Res. 2020, 39, 236. [Google Scholar] [CrossRef] [PubMed]
- Zoler, E.; Meyer, T.; Bellón, J.S.; Mönnig, M.; Sun, B.; Piehler, J.; Schreiber, G. Promiscuous Janus Kinase Binding to Cytokine Receptors Modulates Signaling Efficiencies and Contributes to Cytokine Pleiotropy. Sci. Signal. 2024, 17, eadl1892. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Sui, J.; Nie, K.; Zhao, Y.; Lv, X.; Xie, J.; Tan, L.; Au-Yeung, R.K.H.; Ma, J.; Inghirami, G.; et al. Tumor Evolution Analysis Uncovered Immune-Escape Related Mutations in Relapse of Diffuse Large B-Cell Lymphoma. Leukemia 2024, 38, 2276–2280. [Google Scholar] [CrossRef]
- Sahin, U.; Türeci, Ö. Personalized Vaccines for Cancer Immunotherapy. Science 2018, 359, 1355–1360. [Google Scholar] [CrossRef]
- Liu, J.; Fu, M.; Wang, M.; Wan, D.; Wei, Y.; Wei, X. Cancer Vaccines as Promising Immuno-Therapeutics: Platforms and Current Progress. J. Hematol. Oncol. 2022, 15, 28. [Google Scholar] [CrossRef]
- Terai, M.; Sato, T. Individualised Neoantigen Cancer Vaccine Therapy. Lancet 2024, 403, 590–591. [Google Scholar] [CrossRef]
- Lorentzen, C.L.; Haanen, J.B.; Met, Ö.; Svane, I.M. Clinical Advances and Ongoing Trials of mRNA Vaccines for Cancer Treatment. Lancet Oncol. 2022, 23, e450–e458, Erratum in: Lancet Oncol. 2022, 23, e492. https://doi.org/10.1016/S1470-2045(22)00608-8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sahin, U.; Derhovanessian, E.; Miller, M.; Kloke, B.-P.; Simon, P.; Löwer, M.; Bukur, V.; Tadmor, A.D.; Luxemburger, U.; Schrörs, B.; et al. Personalized RNA Mutanome Vaccines Mobilize Poly-Specific Therapeutic Immunity against Cancer. Nature 2017, 547, 222–226. [Google Scholar] [CrossRef]
- Li, L.; Wang, F.; Mo, S.; Deng, J.; Wang, X.; Ai, J.; Xiao, Y.; Zeng, Y.; Li, Q.; Zhang, Y.; et al. A Spatially Distributed Microneedle System for Bioorthogonal T Cell-Guided Cancer Therapy. Adv. Sci. 2025, 12, 2416841. [Google Scholar] [CrossRef]
- Wermke, M.; Araujo, D.M.; Chatterjee, M.; Tsimberidou, A.M.; Holderried, T.A.; Jazaeri, A.A.; Reshef, R.; Bokemeyer, C.; Alsdorf, W.; Wetzko, K.; et al. Autologous T Cell Therapy for PRAME+ Advanced Solid Tumors in HLA-A*02+ Patients: A Phase 1 Trial. Nat. Med. 2025, 31, 2365–2374, Erratum in: Nat. Med. 2025, 31, 2453. https://doi.org/10.1038/s41591-025-03731-6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ali-Fehmi, R.; Krause, H.B.; Morris, R.T.; Wallbillich, J.J.; Corey, L.; Bandyopadhyay, S.; Kheil, M.; Elbashir, L.; Zaiem, F.; Quddus, M.R.; et al. Analysis of Concordance Between Next-Generation Sequencing Assessment of Microsatellite Instability and Immunohistochemistry-Mismatch Repair From Solid Tumors. JCO Precis. Oncol. 2024, 8, e2300648. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lamberti, G.; Di Federico, A.; Alessi, J.; Ferrara, R.; Sholl, M.L.; Awad, M.M.; Vokes, N.; Ricciuti, B. Tumor Mutational Burden for the Prediction of PD-(L)1 Blockade Efficacy in Cancer: Challenges and Opportunities. Ann. Oncol. 2024, 35, 508–522. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H.; et al. Association of Tumour Mutational Burden with Outcomes in Patients with Advanced Solid Tumours Treated with Pembrolizumab: Prospective Biomarker Analysis of the Multicohort, Open-Label, Phase 2 KEYNOTE-158 Study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef]
- Ocampo-Navia, M.I.; Marín Navas, F.; Agudelo-Arrieta, M.; Taub-Krivoy, A.; Feo Lee, O.H. Molecular Markers in Gliomas: A Practical Review and Algorithm Proposal. Interdiscip. Neurosurg. 2025, 41, 102062. [Google Scholar] [CrossRef]
- Ermini, L.; Driguez, P. The Application of Long-Read Sequencing to Cancer. Cancers 2024, 16, 1275. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, H. Next-generation sequencing in liquid biopsy: Cancer screening and early detection. Hum. Genom. 2019, 13, 34. [Google Scholar] [CrossRef]
- Erwin, G.S.; Grieshop, M.P.; Ali, A.; Qi, J.; Lawlor, M.; Kumar, D.; Ahmad, I.; McNally, A.; Teider, N.; Worringer, K.; et al. Synthetic transcription elongation factors license transcription across repressive chromatin. Science 2017, 358, 1617–1622. [Google Scholar] [CrossRef]
- Shang, Y.; Yang, L.; Hu, P.; Zhao, S.; Xu, J.; Zhao, Y.; Ren, X.; Zhang, D.; He, Q.; Liu, X. Applying next-generation sequencing to detect microsatellite instability in pan-cancer patients: A retrospective study of 35,563 Chinese cases. NPJ Precis. Oncol. 2025, 9, 303. [Google Scholar] [CrossRef]
- Eisfeldt, J.; Ek, M.; Nordenskjöld, M.; Lindstrand, A. Toward Clinical Long-Read Genome Sequencing for Rare Diseases. Nat. Genet. 2025, 57, 1334–1343. [Google Scholar] [CrossRef]
- Gilpatrick, T.; Lee, I.; Graham, J.E.; Raimondeau, E.; Bowen, R.; Heron, A.; Downs, B.; Sukumar, S.; Sedlazeck, F.J.; Timp, W. Targeted Nanopore Sequencing with Cas9-Guided Adapter Ligation. Nat. Biotechnol. 2020, 38, 433–438. [Google Scholar] [CrossRef]
- Zhang, T.; Li, H.; Jiang, M.; Hou, H.; Gao, Y.; Li, Y.; Wang, F.; Wang, J.; Peng, K.; Liu, Y.-X. Nanopore Sequencing: Flourishing in Its Teenage Years. J. Genet. Genom. 2024, 51, 1361–1374. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Bollas, A.; Wang, Y.; Au, K.F. Nanopore Sequencing Technology, Bioinformatics and Applications. Nat. Biotechnol. 2021, 39, 1348–1365. [Google Scholar] [CrossRef]
- Dyshlovoy, S.A.; Paigin, S.; Afflerbach, A.; Lobermeyer, A.; Werner, S.; Schüller, U.; Bokemeyer, C.; Schuh, A.H.; Bergmann, L.; Von Amsberg, G.; et al. Applications of Nanopore Sequencing in Precision Cancer Medicine. Int. J. Cancer 2024, 155, 2129–2140. [Google Scholar] [CrossRef]
- Brown, L.C.; Tucker, M.D.; Sedhom, R.; Schwartz, E.B.; Zhu, J.; Kao, C.; Labriola, M.K.; Gupta, R.T.; Marin, D.; Wu, Y.; et al. LRP1B Mutations Are Associated with Favorable Outcomes to Immune Checkpoint Inhibitors across Multiple Cancer Types. J. Immunother. Cancer 2021, 9, e001792. [Google Scholar] [CrossRef] [PubMed]
- Quick, J.; Loman, N.J.; Duraffour, S.; Simpson, J.T.; Severi, E.; Cowley, L.; Bore, J.A.; Koundouno, R.; Dudas, G.; Mikhail, A.; et al. Real-Time, Portable Genome Sequencing for Ebola Surveillance. Nature 2016, 530, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.-S.; Au, C.-H.; Leung, H.C.-M.; Ho, D.N.; Li, D.; Chan, T.-L.; Lam, T.-W.; Ma, E.S.-K.; Tang, B.S.-F. Potential Utility of Metagenomic Sequencing for Improving Etiologic Diagnosis of Infective Endocarditis. Future Cardiol. 2019, 15, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Ip, H.S.; Uhm, S.; Killian, M.L.; Torchetti, M.K. An Evaluation of Avian Influenza Virus Whole-Genome Sequencing Approaches Using Nanopore Technology. Microorganisms 2023, 11, 529. [Google Scholar] [CrossRef]
- Fong, W.; Rockett, R.; Timms, V.; Sintchenko, V. Optimization of Sample Preparation for Culture-Independent Sequencing of Bordetella Pertussis. Microb. Genom. 2020, 6, e000332. [Google Scholar] [CrossRef]
- Morsli, M.; Kerharo, Q.; Amrane, S.; Parola, P.; Fournier, P.E.; Drancourt, M. Real-Time Whole Genome Sequencing Direct Diagnosis of Streptococcus Pneumoniae Meningitis: A Case Report. J. Infect. 2021, 83, 709–737. [Google Scholar] [CrossRef]
- Long, J.; Yu, C.; Sun, L.; Peng, M.; Song, C.; Mao, A.; Zhan, J.; Liu, E. Comprehensive Analysis of Thalassemia Alleles (CATSA) Based on Third-Generation Sequencing Is a Comprehensive and Accurate Approach for Neonatal Thalassemia Screening. Clin. Chim. Acta 2024, 560, 119749. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, D.; Yu, D.; Liang, Q.; Chen, G.; Li, F.; Gao, L.; Li, Z.; Xie, T.; Wu, L.; et al. Comprehensive Analysis of Hemophilia A (CAHEA): Towards Full Characterization of the F8 Gene Variants by Long-Read Sequencing. Thromb. Haemost. 2023, 123, 1151–1164. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Tang, D.; Liao, Y.; Li, P.; Zhang, Y.; Wang, M.; Liang, F.; Wang, X.; Gao, Y.; Wen, L.; et al. Single-Cell RNA-Seq Analysis of Mouse Preimplantation Embryos by Third-Generation Sequencing. PLoS Biol. 2020, 18, e3001017. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, C.A.; Grimont, A.; Park, J.; Meng, Y.; Sisso, W.J.; Seier, K.; Jang, G.H.; Walch, H.; Aveson, V.G.; Falvo, D.J.; et al. Distinct Clinical Outcomes and Biological Features of Specific KRAS Mutants in Human Pancreatic Cancer. Cancer Cell 2024, 42, 1614–1629.e5. [Google Scholar] [CrossRef]
- Shiau, C.; Cao, J.; Gong, D.; Gregory, M.T.; Caldwell, N.J.; Yin, X.; Cho, J.-W.; Wang, P.L.; Su, J.; Wang, S.; et al. Spatially Resolved Analysis of Pancreatic Cancer Identifies Therapy-Associated Remodeling of the Tumor Microenvironment. Nat. Genet. 2024, 56, 2466–2478. [Google Scholar] [CrossRef]
- Mao, D.; Liu, C.; Wang, L.; AI-Ouran, R.; Deisseroth, C.; Pasupuleti, S.; Kim, S.Y.; Li, L.; Rosenfeld, J.A.; Meng, L.; et al. AI-MARRVEL—A Knowledge-Driven AI System for Diagnosing Mendelian Disorders. NEJM AI 2024, 1, AIoa2300009. [Google Scholar] [CrossRef]
- Liang, L.; Chen, Y.; Wang, T.; Jiang, D.; Jin, J.; Pang, Y.; Na, Q.; Liu, Q.; Jiang, X.; Dai, W.; et al. Genetic Transformer: An Innovative Large Language Model Driven Approach for Rapid and Accurate Identification of Causative Variants in Rare Genetic Diseases. Medrxiv 2024. [Google Scholar] [CrossRef]
- Cole, J.A.; Peterson, J.R.; Earnest, T.M.; Hallock, M.J.; Pfeiffer, J.R.; Pandey, T.; Braun, E. SimBioSys TumorScope: Spatio-Temporal Modeling of the Tumor Microenvironment to Predict Chemotherapeutic Response. J. Clin. Oncol. 2020, 38, e12650. Available online: https://ascopubs.org/doi/10.1200/JCO.2020.38.15_suppl.e12650 (accessed on 16 June 2025). [CrossRef]
- Brandes, A.A.; Franceschi, E.; Tosoni, A.; Bartolini, S.; Bacci, A.; Agati, R.; Ghimenton, C.; Turazzi, S.; Talacchi, A.; Skrap, M.; et al. O6-Methylguanine DNA-Methyltransferase Methylation Status Can Change between First Surgery for Newly Diagnosed Glioblastoma and Second Surgery for Recurrence: Clinical Implications. Neuro-Oncol. 2010, 12, 283–288. [Google Scholar] [CrossRef]
- Fu, Y.; Land, M.; Kavlashvili, T.; Cui, R.; Kim, M.; DeBitetto, E.; Lieber, T.; Ryu, K.W.; Choi, E.; Masilionis, I.; et al. Engineering mtDNA Deletions by Reconstituting End Joining in Human Mitochondria. Cell 2025, 188, 2778–2793.e21. [Google Scholar] [CrossRef]
- Lareau, C.A.; Ludwig, L.S.; Muus, C.; Gohil, S.H.; Zhao, T.; Chiang, Z.; Pelka, K.; Verboon, J.M.; Luo, W.; Christian, E.; et al. Massively Parallel Single-Cell Mitochondrial DNA Genotyping and Chromatin Profiling. Nat. Biotechnol. 2021, 39, 451–461. [Google Scholar] [CrossRef]
- Li, M.; Schroeder, R.; Ko, A.; Stoneking, M. Fidelity of Capture-Enrichment for mtDNA Genome Sequencing: Influence of NUMTs. Nucleic Acids Res. 2012, 40, e137. [Google Scholar] [CrossRef]
- Guo, X.; Xu, W.; Zhang, W.; Pan, C.; Thalacker-Mercer, A.E.; Zheng, H.; Gu, Z. High-Frequency and Functional Mitochondrial DNA Mutations at the Single-Cell Level. Proc. Natl. Acad. Sci. USA 2023, 120, e2201518120. [Google Scholar] [CrossRef] [PubMed]
- Weiser, N.E.; Watkins, T.B.K.; Chang, H.Y.; Mischel, P.S. A Guide to Extrachromosomal DNA: Cancer’s Dynamic Circular Genome. Cancer Discov. 2025, 15, 1105–1114. [Google Scholar] [CrossRef] [PubMed]
- Dodbele, S.; Mutlu, N.; Wilusz, J.E. Best Practices to Ensure Robust Investigation of Circular RNAs: Pitfalls and Tips. EMBO Rep. 2021, 22, e52072. [Google Scholar] [CrossRef] [PubMed]
- Normanno, N.; Morabito, A.; Rachiglio, A.M.; Sforza, V.; Landi, L.; Bria, E.; Delmonte, A.; Cappuzzo, F.; De Luca, A. Circulating Tumour DNA in Early Stage and Locally Advanced NSCLC: Ready for Clinical Implementation? Nat. Rev. Clin. Oncol. 2025, 22, 215–231. [Google Scholar] [CrossRef]
- Xin, R.; Gao, Y.; Gao, Y.; Wang, R.; Kadash-Edmondson, K.E.; Liu, B.; Wang, Y.; Lin, L.; Xing, Y. isoCirc Catalogs Full-Length Circular RNA Isoforms in Human Transcriptomes. Nat. Commun. 2021, 12, 266. [Google Scholar] [CrossRef]
- Zhang, J.; Hou, L.; Zuo, Z.; Ji, P.; Zhang, X.; Xue, Y.; Zhao, F. Comprehensive Profiling of Circular RNAs with Nanopore Sequencing and CIRI-Long. Nat. Biotechnol. 2021, 39, 836–845. [Google Scholar] [CrossRef]
- Rahimi, K.; Venø, M.T.; Dupont, D.M.; Kjems, J. Nanopore Sequencing of Brain-Derived Full-Length circRNAs Reveals circRNA-Specific Exon Usage, Intron Retention and Microexons. Nat. Commun. 2021, 12, 4825. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, E. circFL-Seq, A Full-Length circRNA Sequencing Method. Bio-Protoc. 2022, 12, e4384. [Google Scholar] [CrossRef]
- Panch, T.; Mattie, H.; Atun, R. Artificial intelligence and algorithmic bias: Implications for health systems. J. Glob. Health 2019, 9, 010318. [Google Scholar] [CrossRef]
- Naqvi, H.; L’Esperance, V. Tackling bias in medical devices: The Equity in Medical Devices Independent Review is welcome, but could have gone further. Br. Med. J. 2024, 384, q620. [Google Scholar] [CrossRef]
- Ferreira-Gonzalez, A.; Ko, G.; Fusco, N.; Stewart, F.; Kistler, K.; Appukkuttan, S.; Hocum, B.; Allen, S.M.; Babajanyan, S. Barriers and facilitators to next-generation sequencing use in United States oncology settings: A systematic review. Future Oncol. 2024, 20, 2765–2777. [Google Scholar] [CrossRef]
- Getchell, M.; Wulandari, S.; De Alwis, R.; Agoramurthy, S.; Khoo, Y.K.; Mak, T.M.; Moe, L.; Stona, A.-C.; Pang, J.; Momin, M.H.F.H.A.; et al. Pathogen genomic surveillance status among lower resource settings in Asia. Nat. Microbiol. 2024, 9, 2738–2747. [Google Scholar] [CrossRef]
- Whitehead, M.; Carrol, E.; Kee, F.; Ali, R.; Holmes, C. Equity in medical devices: Trainers and educators play a vital role. Br. Med. J. 2024, 385, q1091. [Google Scholar] [CrossRef]




| Origin of Tumor | Type of Tumor | Common Mutation Genes | 
|---|---|---|
| Epithelial origin | Female breast | TP53, ERBB2, BRCA1/2, PIK3CA/AKT1/PTEN, ESR1, TROP-2 | 
| Lung cancer | EGFR, ALK, ROS1, BRAF, NTRK, KRAS, TP53, MET, RET, ERBB2, NRG1 | |
| Prostate | TMPRSS2-ERG, SPOP, PTEN, TP53, AR, BRCA1/2, CDK12, MSH2/6 | |
| Non-melanoma of skin | TP53, PTCH1 and SMO, SUFU, RAS, NOTCH, FAT1 | |
| Colon | APC, KRAS, NRAS, TP53, PIK3CA, SMAD4, CTNNB1, BRAF, ERBB2, RET, POLE, POLD1, NTRK1, NTRK2, NTRK3. | |
| Stomach | TP53, CDH1, KRAS, PIK3CA, ERBB2, ARID1A | |
| Liver | TP53, TERT, CTNNB1, AXIN1, ARID1A, RB1, TSC2 | |
| Rectum | APC, KRAS, NRAS, TP53, PIK3CA, SMAD4, BRAF, ERBB2, RET, POLE, POLD1, NTRK1, NTRK2, NTRK3 | |
| Esophagus | TP53, PIK3CA, FBXW7, KRAS, CDKN2A, NFE2L2, ZNF750, NOTCH1 | |
| Bladder | FGFR3, TP53, RB1, PIK3CA, KDM6A | |
| Pancreas | KRAS, TP53, CDKN2A, SMAD4, BRCA1/2, MLL3, PALB2, ATM, ARID1A | |
| Kidney | VHL, PBRM1, MET, ERBB2, (Clear cell renal cell carcinoma) CDKN2A, CDKN2B, CTNNB1, (Papillary renal cell carcinoma) TERT, BAP1, (Chromophobe cell carcinoma) KDM5C, TERT, BAP1, TP53, (Collecting duct carcinoma) | |
| Corpus uteri | ARID1A, PTEN, MUC16, PIK3CA, POLE, MMR, TP53, ERBB2, BRCA1/2 | |
| Lip, oral cavity | TP53, CDKN2A, PIK3CA, PIK3CA, HRAS, NOTCH1 | |
| Melanoma of skin | BRAF, KRAS/NRAS, KIT, KAT, PIK3CG | |
| Larynx | TP53, CDKN2A, PIK3CA, NOTCH1, FAT1, CCND1, LAMA3 | |
| Nasopharynx | LMP1/2, TP53, PIK3CA, CDKN2A, IKK | |
| Gallbladder | KRAS, TP53, CDKN2A, PIK3CA, ARID1A, FGFR2, ERBB2, BAP1, IDH1/2, MLL3/KMT2C | |
| Oropharynx | HPV, PIK3CA, FAT1, CDKN2A, TP53, NOTCH1, CASP8, SOX2 | |
| Hypopharynx | TP53, PIK3CA, CDKN2A, HRAS, NOTCH1 | |
| Salivary glands | MYB-NFIB, RET, NR4A3, NBN | |
| Anus | PIK3CA, MLL2/3, TP53, ATM, HUWE1, BRCA1/2, EP300, SMARCB1, SMARCA4 | |
| Vulva | HPV, PIK3CA, TP53, KIT, NF1 | |
| Penis | TP53, PIK3CA, CDKN2A, HRAS | |
| Mesothelioma | BAP1, CDKN2A, NF2, TP53, RB1, DDR2, FGFR, SEDT2 | |
| Vagina | TP53, PIK3CA, CDKN2A, HRAS | |
| Mesenchymal origin | Kaposi sarcoma | HHV-8, PIK3CA, TP53, RAC1, CCNB1, VEGF, HIF1A | 
| Nervous system origin | Brian, nervous system | IDH1/2, ATRX, TERT, MGMT, EGFR, (Glioma) PTCH1, SMO, TP53, MYCN, (Medulloblastoma) NF2, LZTR1, (Neurilemmoma) NF2, TRAF7, KLF4, SMO, (Meningiomas) | 
| Germ cell origin | Ovary | BRCA1/2, TP53, KRAS, PIK3CA, PTEN, ARID1A | 
| Testis | KIT, KRAS, TP53, CTNNB1 | |
| Thyroid origin | Thyroid | BRAF, RAS, RET, TERT, TP53, ALK, PAX8 | 
| Others | Cervix uteri | HPV, TP53, KRAS, PIK3CA, PTEN, CCND1, FGFR, NOTCH, MLL, PAX | 
| Test Kit Name | Company | Year of Approval | Number of Genes | Sequencing Instrument | Approved Use | 
|---|---|---|---|---|---|
| MSK-Impact | MSK | 2017 | 468 | HiSeq 2500, Illumina | Tumor qualitative IVD detection products (including MSI) | 
| FoundationOne CDX | Foundation Medicine | 2017 | 324 | HiSeq 4000, Illumina | Companion diagnosis: mutation, fusion, TMB, and MSI | 
| PGDx elio tissue complete | PGDx | 2020 | 505 | NextSeq 550DX, Illumina | Tumor qualitative IVD detection products (including MSI and TMB) | 
| FoundationOne Liquid CDX | Foundation Medicine | 2020 | 324 | NextSeq 6000, Illumina | Companion diagnosis: mutation and fusion | 
| NYU Langone Genome PACT | NYU Langone Health (NYU) | 2021 | 607 | NextSeq 500/550, Illumina | Tumor qualitative IVD detection products: Point mutations and insertions or deletions of less than 35 bp | 
| xT CDx | Tempus Labs, Inc. (Tempus) | 2023 | 648 | NovaSeq 6000, Illumina | Companion diagnostics: mutation; IVD: MSI | 
| GENESEEQPRIME™ TMB | Geneseeq | 2023 | 425 | NextSeq 550DX/HiSeq 4000, Illumina | TMB in EGFR mutation-negative and ALK-negative non-squamous NSCLC patients | 
| TruSight Oncology Comprehensive | Illumina | 2024 | 517 | NextSeq 550DX, Illumina | Companion diagnostics: fusion, tumor qualitative IVD detection products (including mutation and TMB) | 
| Medication Regimen | Mutation Genes | Prognostic Measures | Data Resources | 
|---|---|---|---|
| Dato-DXd | EGFR 19Del, L858R, and T790M | ORR:43% (95%CI: 34–52%), median DOR: 7.0 months (95% CI: 4.2–9.8), median PFS: 5.8 months (95% CI: 5.4–8.2), and median OS: 15.6 months (95% CI: 13.1–19.0) | [110] | 
| sac-TMT vs. docetaxel | EGFR mutation with inhibitors resistant to tyrosine kinase | ORR: 29% better than docetaxel (95% CI:15–43%), median PFS: 6.9 v 2.8 months (HR 0.30, 95% CI 0.20–0.46), and 1 year’s OS rate: 73% v 54% (HR: 0.49, 95% CI: 0.27–0.88) | [111] | 
| alectinib with bevacizumab | ALK rearrangement | 1 year’s PFS rate: 97.1% (95% CI: 92.6–100%), 36 months’ PFS rate: 64.2% (95% CI: 56.1–85.2), and 36 months’ OS rate: 87.9% (95% CI74 ~96.6) | [112] | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Xiong, C.; Chu, C.; Zhang, Y.; Wang, Z.; Wan, Z.; Tang, P.; Zhu, S.; Zhou, Y. Shaping Precision Medicine: The Journey of Sequencing Technologies Across Human Solid Tumors. Biomedicines 2025, 13, 2660. https://doi.org/10.3390/biomedicines13112660
Li W, Xiong C, Chu C, Zhang Y, Wang Z, Wan Z, Tang P, Zhu S, Zhou Y. Shaping Precision Medicine: The Journey of Sequencing Technologies Across Human Solid Tumors. Biomedicines. 2025; 13(11):2660. https://doi.org/10.3390/biomedicines13112660
Chicago/Turabian StyleLi, Wanwen, Chanyu Xiong, Chen Chu, Yun Zhang, Zihao Wang, Zunmin Wan, Peng Tang, Shikai Zhu, and Yu Zhou. 2025. "Shaping Precision Medicine: The Journey of Sequencing Technologies Across Human Solid Tumors" Biomedicines 13, no. 11: 2660. https://doi.org/10.3390/biomedicines13112660
APA StyleLi, W., Xiong, C., Chu, C., Zhang, Y., Wang, Z., Wan, Z., Tang, P., Zhu, S., & Zhou, Y. (2025). Shaping Precision Medicine: The Journey of Sequencing Technologies Across Human Solid Tumors. Biomedicines, 13(11), 2660. https://doi.org/10.3390/biomedicines13112660
 
        


 
       