Exploring the Association of Vitamin D and VDR Polymorphisms with Disease Severity in COVID-19 and Influenza
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Participants and Variables
2.3. Vitamin D and Polymorphism Receptors Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Summary of Findings
4.2. Vitamin D and Clinical Outcomes in COVID-19
4.3. Vitamin D Receptor Polymorphisms (BsmI, TaqI, and ApaI) in SARS-CoV-2 Infection
4.3.1. rs1544410 (BsmI)
4.3.2. rs731236 (TaqI)
4.3.3. rs7975232 (ApaI)
4.4. Vitamin D, Polymorphisms, and Influenza
4.5. Vitamin D, Immunity, and Inflammation
4.6. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ARDS | Acute respiratory distress syndrome |
| A | Adenine |
| COVID-19 | Coronavirus disease, 2019 |
| C | Cytosine |
| CRP | C-reactive protein |
| CT | Computed tomography |
| DNA | Deoxyribonucleic acid |
| ELISA | Enzyme-linked immunosorbent assay |
| G | Guanine |
| ICU | Intensive care unit |
| IQR | Interquartile range |
| NLR | Neutrophil to lymphocyte ratio |
| NG/mL | Nanograms per milliliter |
| NA | Not applicable |
| PCR | Polymerase chain reaction |
| RT-PCT | Polymerase chain reaction |
| SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
| SNP | Single-nucleotide polymorphism |
| T | Thymine |
| VDR | Vitamin D receptor |
| WHO | World Health Organization |
References
- Xie, Y.; Choi, T.; Al-Aly, Z. Mortality in Patients Hospitalized for COVID-19 vs Influenza in Fall-Winter 2023–2024. JAMA 2024, 331, 1963–1965. [Google Scholar] [CrossRef]
- Mostafa, H.H.; Fall, A.; Norton, J.M.; Sachithanandham, J.; Yunker, M.; Abdullah, O.; Hanlon, A.; Gluck, L.; Morris, C.P.; Pekosz, A.; et al. Respiratory Virus Disease and Outcomes at a Large Academic Medical Center in the United States: A Retrospective Observational Study of the Early 2023/2024 Respiratory Viral Season. Microbiol. Spectr. 2024, 12, e01116-24. [Google Scholar] [CrossRef] [PubMed]
- Analiza Bolilor Transmisibile Aflate în Supraveghere—Raport Pentru Anul 2023—Institutul Național de Sănătate Publică 2024. Available online: https://insp.gov.ro/download/analiza-bolilor-transmisibile-aflate-in-supraveghere-raport-pentru-anul-2023/ (accessed on 3 March 2025).
- Tian, C.; Lovrics, O.; Vaisman, A.; Chin, K.J.; Tomlinson, G.; Lee, Y.; Englesakis, M.; Parotto, M.; Singh, M. Risk Factors and Protective Measures for Healthcare Worker Infection During Highly Infectious Viral Respiratory Epidemics: A Systematic Review and Meta-Analysis. Infect. Control Hosp. Epidemiol. 2022, 43, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Leung, N.H.L. Transmissibility and Transmission of Respiratory Viruses. Nat. Rev. Microbiol. 2021, 19, 528–545. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, S.; Zhang, H.; Duan, Y.; Li, Z.; Jiang, L.; Cao, W.; Peng, Q.; Chen, X. A Panel of Janus Kinase Inhibitors Identified with Anti-Inflammatory Effects Protect Mice from Lethal Influenza Virus Infection. Antimicrob. Agents Chemother. 2024, 68, e01350-23. [Google Scholar] [CrossRef]
- Greiller, C.L.; Martineau, A.R. Modulation of the Immune Response to Respiratory Viruses by Vitamin D. Nutrients 2015, 7, 4240–4270. [Google Scholar] [CrossRef]
- Hewison, M. An Update on Vitamin D and Human Immunity. Clin. Endocrinol. 2012, 76, 315–325. [Google Scholar] [CrossRef]
- Martineau, A.R.; Jolliffe, D.A.; Hooper, R.L.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; et al. Vitamin D Supplementation to Prevent Acute Respiratory Tract Infections: Systematic Review and Meta-Analysis of Individual Participant Data. BMJ 2017, 356, i6583. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhu, X.; Gu, L.; Zhan, Y.; Chen, L.; Li, X. Association Between Vitamin D and Influenza: Meta-Analysis and Systematic Review of Randomized Controlled Trials. Front. Nutr. 2021, 8, 799709. [Google Scholar] [CrossRef] [PubMed]
- Gruber-Bzura, B.M. Vitamin D and Influenza—Prevention or Therapy? Int. J. Mol. Sci. 2018, 19, 2419. [Google Scholar] [CrossRef]
- Petrelli, F.; Luciani, A.; Perego, G.; Dognini, G.; Colombelli, P.L.; Ghidini, A. Therapeutic and Prognostic Role of Vitamin D for COVID-19 Infection: A Systematic Review and Meta-Analysis of 43 Observational Studies. J. Steroid Biochem. Mol. Biol. 2021, 211, 105883. [Google Scholar] [CrossRef]
- Stroehlein, J.K.; Wallqvist, J.; Iannizzi, C.; Mikolajewska, A.; Metzendorf, M.-I.; Benstoem, C.; Meybohm, P.; Becker, M.; Skoetz, N.; Stegemann, M.; et al. Vitamin D Supplementation for the Treatment of COVID-19: A Living Systematic Review—Stroehlein, JK—2021|Cochrane Library. Cochrane Database Syst. Rev. 2021, 5, CD015043. [Google Scholar] [CrossRef]
- Sîrbu, A.C.; Sabin, O.; Bocșan, I.C.; Vesa, Ș.C.; Buzoianu, A.D. The Effect of Vitamin D Supplementation on the Length of Hospitalisation, Intensive Care Unit Admission, and Mortality in COVID-19—A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 3470. [Google Scholar] [CrossRef]
- Esposito, S.; Lelii, M. Vitamin D and Respiratory Tract Infections in Childhood. BMC Infect. Dis. 2015, 15, 487. [Google Scholar] [CrossRef]
- Roth, D.E.; Jones, A.B.; Prosser, C.; Robinson, J.L.; Vohra, S. Vitamin D Receptor Polymorphisms and the Risk of Acute Lower Respiratory Tract Infection in Early Childhood. J. Infect. Dis. 2008, 197, 676–680. [Google Scholar] [CrossRef]
- Usategui-Martín, R.; De Luis-Román, D.-A.; Fernández-Gómez, J.M.; Ruiz-Mambrilla, M.; Pérez-Castrillón, J.-L. Vitamin D Receptor (VDR) Gene Polymorphisms Modify the Response to Vitamin D Supplementation: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 360. [Google Scholar] [CrossRef]
- Triantos, C.; Aggeletopoulou, I.; Kalafateli, M.; Spantidea, P.I.; Vourli, G.; Diamantopoulou, G.; Tapratzi, D.; Michalaki, M.; Manolakopoulos, S.; Gogos, C.; et al. Prognostic Significance of Vitamin D Receptor (VDR) Gene Polymorphisms in Liver Cirrhosis. Sci. Rep. 2018, 8, 14065. [Google Scholar] [CrossRef]
- He, L.; Zhou, X.; Mo, H.; Li, X.; Guo, S. The Association between Vitamin D Receptor Gene Polymorphisms and Asthma: A Systematic Review and Meta-Analysis. Ann. Palliat. Med. 2022, 11, 57487–57587. [Google Scholar] [CrossRef] [PubMed]
- Imani, D.; Razi, B.; Motallebnezhad, M.; Rezaei, R. Association between Vitamin D Receptor (VDR) Polymorphisms and the Risk of Multiple Sclerosis (MS): An Updated Meta-Analysis. BMC Neurol. 2019, 19, 339. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.-R.; Yu, Y.-G. Meta-Analysis of the Association between Vitamin D Receptor Polymorphisms and the Risk of Autoimmune Thyroid Disease. Int. J. Endocrinol. 2018, 2018, 2846943. [Google Scholar] [CrossRef] [PubMed]
- Shimada, A.; Kanazawa, Y.; Motohashi, Y.; Yamada, S.; Maruyama, T.; Ikegami, H.; Awata, T.; Kawasaki, E.; Kobayashi, T.; Nakanishi, K.; et al. Evidence for Association between Vitamin D Receptor BsmI Polymorphism and Type 1 Diabetes in Japanese. J. Autoimmun. 2008, 30, 207–211. [Google Scholar] [CrossRef]
- Panierakis, C.; Goulielmos, G.; Mamoulakis, D.; Petraki, E.; Papavasiliou, E.; Galanakis, E. Vitamin D Receptor Gene Polymorphisms and Susceptibility to Type 1 Diabetes in Crete, Greece. Clin. Immunol. 2009, 133, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Salimi, S.; Eskandari, F.; Rezaei, M.; Sandoughi, M. Vitamin D Receptor Rs2228570 and Rs731236 Polymorphisms Are Susceptible Factors for Systemic Lupus Erythematosus. Adv. Biomed. Res. 2019, 8, 48. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Wu, F.; Ni, S.; Guo, S.; Lu, L.; Zhao, X. Vitamin D Receptor Gene Polymorphisms Are Associated with the Risk and Features of Myasthenia Gravis in the Han Chinese Population. Immunol. Res. 2023, 71, 404–412. [Google Scholar] [CrossRef]
- Yang, S.-K.; Liu, N.; Zhang, W.-J.; Song, N.; Yang, J.-P.; Zhang, H.; Gui, M. Impact of Vitamin D Receptor Gene Polymorphism on Systemic Lupus Erythematosus Susceptibility: A Pooled Analysis. Genet. Test. Mol. Biomark. 2022, 26, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Li, L.; Tian, L.; Liu, D.; Jian, J.; Zhou, Y.; Xu, Y. 5Apal, Taql, Fokl, and Bsml Polymorphisms and the Susceptibility of Behcet’s Disease: An Updated Meta-Analysis. Immunol. Res. 2022, 70, 781–792. [Google Scholar] [CrossRef]
- Mohamed, A.; Baiomy, N.; Rawy, A.; Ghanem, M.; Abd, S.; Salam, E.; Nasraldin, K.; Ezz, M.; Arab, A.; Samir, H.; et al. Influence of Vitamin D Status and the VDR Gene Polymorphism on COVID-19 Susceptibility and Outcome. J. Pure Appl. Microbiol. 2024, 18, 2688–2702. [Google Scholar] [CrossRef]
- Alhammadin, G.; Jarrar, Y.; Madani, A.; Lee, S.-J. Exploring the Influence of VDR Genetic Variants TaqI, ApaI, and FokI on COVID-19 Severity and Long-COVID-19 Symptoms. J. Pers. Med. 2023, 13, 1663. [Google Scholar] [CrossRef]
- National Institute of Public Health(Romania). Informare Cazuri Cu Variante De Îngrijorare (Voc) Și Variante De Interes (Voi)—Institutul Național De Sănătate Publică. 2024. Available online: https://insp.gov.ro/downloads/informare-cazuri-voc-si-voi/page/6/ (accessed on 6 March 2025).
- European Centre for Disease Prevention and Control (ECDC). Seasonal Influenza, 2023−2024, Annual Epidemiological Report. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/seasonal-influenza-annual-epidemiological-report-2023-2024.pdf (accessed on 8 March 2025).
- Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Available online: https://www.who.int/publications/i/item/report-of-the-who-china-joint-mission-on-coronavirus-disease-2019-(covid-19) (accessed on 8 March 2025).
- World Health Organization. Living Guidance for Clinical Management of COVID-19. 2021. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-2 (accessed on 8 March 2025).
- PROTOCOL 28/02/2024—Portal Legislativ. Available online: https://legislatie.just.ro/public/DetaliiDocument/279607 (accessed on 6 March 2025).
- World Health Organization. Case Description. In WHO Guidelines for Pharmacological Management of Pandemic Influenza A(H1N1) 2009 and Other Influenza Viruses; World Health Organization: Geneva, Switzerland, 2010; Available online: https://www.who.int/publications/i/item/9789241547994 (accessed on 10 March 2025).
- Wæhre, T.; Tunheim, G.; Bodin, J.E.; Laake, I.; Kvale, D.; Kran, A.-M.B.; Brekke, H.; Løken, R.; Oftung, F.; Mjaaland, S.; et al. Clinical Characteristics and Outcomes in Hospitalized Adult Influenza Patients: An Observational Study from Norway 2014–2018. Infect. Dis. 2022, 54, 367–377. [Google Scholar] [CrossRef]
- Lee, N.; Choi, K.W.; Chan, P.K.S.; Hui, D.S.C.; Lui, G.C.Y.; Wong, B.C.K.; Wong, R.Y.K.; Sin, W.Y.; Hui, W.M.; Ngai, K.L.K.; et al. Outcomes of Adults Hospitalised with Severe Influenza. Thorax 2010, 65, 510–515. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Endocrine Society Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef]
- Holick, M.F. The Vitamin D Deficiency Pandemic: Approaches for Diagnosis, Treatment and Prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [CrossRef]
- The Jamovi Project. Jamovi. 2022. Available online: https://www.jamovi.org (accessed on 21 February 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 21 February 2025).
- Campi, I.; Gennari, L.; Merlotti, D.; Mingiano, C.; Frosali, A.; Giovanelli, L.; Torlasco, C.; Pengo, M.F.; Heilbron, F.; Soranna, D.; et al. Vitamin D and COVID-19 Severity and Related Mortality: A Prospective Study in Italy. BMC Infect. Dis. 2021, 21, 566. [Google Scholar] [CrossRef] [PubMed]
- Topan, A.; Lupse, M.; Calin, M.; Jianu, C.; Leucuta, D.-C.; Briciu, V. 25 Hydroxyvitamin D Serum Concentration and COVID-19 Severity and Outcome—A Retrospective Survey in a Romanian Hospital. Nutrients 2023, 15, 1227. [Google Scholar] [CrossRef]
- Dirican, E.; Bal, T. COVID-19 Disease Severity to Predict Persistent Symptoms: A Systematic Review and Meta-Analysis. Prim. Health Care Res. Dev. 2022, 23, e69. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.; Dantas Damascena, A.; Galvão Azevedo, L.M.; de Almeida Oliveira, T.; da Mota Santana, J. Vitamin D Deficiency Aggravates COVID-19: Systematic Review and Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2022, 62, 1308–1316. [Google Scholar] [CrossRef]
- Chiodini, I.; Gatti, D.; Soranna, D.; Merlotti, D.; Mingiano, C.; Fassio, A.; Adami, G.; Falchetti, A.; Eller-Vainicher, C.; Rossini, M.; et al. Vitamin D Status and SARS-CoV-2 Infection and COVID-19 Clinical Outcomes. Front. Public Health 2021, 9, 736665. [Google Scholar] [CrossRef] [PubMed]
- Hernández, J.L.; Nan, D.; Fernandez-Ayala, M.; García-Unzueta, M.; Hernández-Hernández, M.A.; López-Hoyos, M.; Muñoz-Cacho, P.; Olmos, J.M.; Gutiérrez-Cuadra, M.; Ruiz-Cubillán, J.J.; et al. Vitamin D Status in Hospitalized Patients with SARS-CoV-2 Infection. J. Clin. Endocrinol. Metab. 2021, 106, e1343–e1353. [Google Scholar] [CrossRef]
- Hastie, C.E.; Pell, J.P.; Sattar, N. Vitamin D and COVID-19 Infection and Mortality in UK Biobank. Eur. J. Nutr. 2021, 60, 545–548. [Google Scholar] [CrossRef]
- Lohia, P.; Nguyen, P.; Patel, N.; Kapur, S. Exploring the Link between Vitamin D and Clinical Outcomes in COVID-19. Am. J. Physiol. Endocrinol. Metab. 2021, 320, E520–E526. [Google Scholar] [CrossRef]
- De Niet, S.; Trémège, M.; Coffiner, M.; Rousseau, A.-F.; Calmes, D.; Frix, A.-N.; Gester, F.; Delvaux, M.; Dive, A.-F.; Guglielmi, E.; et al. Positive Effects of Vitamin D Supplementation in Patients Hospitalized for COVID-19: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2022, 14, 3048. [Google Scholar] [CrossRef]
- Elamir, Y.M.; Amir, H.; Lim, S.; Rana, Y.P.; Lopez, C.G.; Feliciano, N.V.; Omar, A.; Grist, W.P.; Via, M.A. A Randomized Pilot Study Using Calcitriol in Hospitalized COVID-19 Patients. Bone 2022, 154, 116175. [Google Scholar] [CrossRef] [PubMed]
- Cannata-Andía, J.B.; Díaz-Sottolano, A.; Fernández, P.; Palomo-Antequera, C.; Herrero-Puente, P.; Mouzo, R.; Carrillo-López, N.; Panizo, S.; Ibañez, G.H.; Cusumano, C.A.; et al. A Single-Oral Bolus of 100,000 IU of Cholecalciferol at Hospital Admission Did Not Improve Outcomes in the COVID-19 Disease: The COVID-VIT-D—A Randomised Multicentre International Clinical Trial. BMC Med. 2022, 20, 83. [Google Scholar] [CrossRef]
- Talida, V.; Tudor, S.S.; Mihaela, I.; Daniela-Rodica, M.; Gabriela, A.F.; Lucia Maria, P. The Impact of Vitamin D Receptor Gene Polymorphisms (FokI, ApaI, TaqI) in Correlation with Oxidative Stress and Hormonal and Dermatologic Manifestations in Polycystic Ovary Syndrome. Medicina 2024, 60, 1501. [Google Scholar] [CrossRef] [PubMed]
- Marian, D.; Rusu, D.; Stratul, S.-I.; Calniceanu, H.; Sculean, A.; Anghel, A. Association of Vitamin D Receptor Gene Polymorphisms with Chronic Periodontitis in a Population in Western Romania. Oral Health Prev. Dent. 2019, 17, 157–165. [Google Scholar] [CrossRef]
- Al-Gharrawi, A.N.R.; Anvari, E.; Fateh, A. Association of ApaI Rs7975232 and BsmI Rs1544410 in Clinical Outcomes of COVID-19 Patients According to Different SARS-CoV-2 Variants. Sci. Rep. 2023, 13, 3612. [Google Scholar] [CrossRef]
- Aci, R.; Keskin, A.; Yigit, S.; Sezer, O.; Kaya, M.T. Effect of Vitamin D Receptor Gene BsmI Polymorphism on Hospitalization of SARS-CoV-2 Positive Patients. Nucleosides Nucleotides Nucleic Acids 2024, 43, 264–275. [Google Scholar] [CrossRef]
- Balzanelli, M.G.; Distratis, P.; Lazzaro, R.; Pham, V.H.; Tran, T.C.; Dipalma, G.; Bianco, A.; Serlenga, E.M.; Aityan, S.K.; Pierangeli, V.; et al. Analysis of Gene Single Nucleotide Polymorphisms in COVID-19 Disease Highlighting the Susceptibility and the Severity towards the Infection. Diagnostics 2022, 12, 2824. [Google Scholar] [CrossRef]
- Abdollahzadeh, R.; Shushizadeh, M.H.; Barazandehrokh, M.; Choopani, S.; Azarnezhad, A.; Paknahad, S.; Pirhoushiaran, M.; Makani, S.Z.; Yeganeh, R.Z.; Al-Kateb, A.; et al. Association of Vitamin D Receptor Gene Polymorphisms and Clinical/Severe Outcomes of COVID-19 Patients. Infect. Genet. Evol. 2021, 96, 105098. [Google Scholar] [CrossRef]
- Peralta, E.M.; Rosales, Y.Z.; Mesa, T.C.; González, E.N.S.; Pérez, Y.H.; de los Ángeles González Torres, M.; Balbuena, H.R.; Teruel, B.M. TaqI Polymorphism of the VDR Gene: Aspects Related to the Clinical Behavior of COVID-19 in Cuban Patients. Egypt. J. Med. Hum. Genet. 2021, 22, 83. [Google Scholar] [CrossRef] [PubMed]
- Apaydin, T.; Polat, H.; Dincer Yazan, C.; Ilgin, C.; Elbasan, O.; Dashdamirova, S.; Bayram, F.; Tukenmez Tigen, E.; Unlu, O.; Tekin, A.F.; et al. Effects of Vitamin D Receptor Gene Polymorphisms on the Prognosis of COVID-19. Clin. Endocrinol. 2022, 96, 819–830. [Google Scholar] [CrossRef]
- Albu-Mohammed, W.H.M.; Anvari, E.; Fateh, A. Evaluating the Role of BglI Rs739837 and TaqI Rs731236 Polymorphisms in Vitamin D Receptor with SARS-CoV-2 Variants Mortality Rate. Genes 2022, 13, 2346. [Google Scholar] [CrossRef]
- Karonova, T.; Grineva, E.; Belyaeva, O.; Bystrova, A.; Jude, E.B.; Andreeva, A.; Kostareva, A.; Pludowski, P. Relationship Between Vitamin D Status and Vitamin D Receptor Gene Polymorphisms With Markers of Metabolic Syndrome Among Adults. Front. Endocrinol. 2018, 9, 448. [Google Scholar] [CrossRef] [PubMed]
- de Souza Freitas, R.; Fratelli, C.F.; de Souza Silva, C.M.; de Lima, L.R.; Stival, M.M.; da Silva, I.C.R.; Schwerz Funghetto, S. Association of Vitamin D with the TaqI Polymorphism of the VDR Gene in Older Women Attending the Basic Health Unit of the Federal District, DF (Brazil). J. Aging Res. 2020, 2020, 7145193. [Google Scholar] [CrossRef]
- Jafarpoor, A.; Jazayeri, S.M.; Bokharaei-Salim, F.; Ataei-Pirkooh, A.; Ghaziasadi, A.; Soltani, S.; Sadeghi, A.; Marvi, S.S.; Poortahmasebi, V.; Khorrami, S.M.S.; et al. VDR Gene Polymorphisms Are Associated with the Increased Susceptibility to COVID-19 among Iranian Population: A Case-Control Study. Int. J. Immunogenet. 2022, 49, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Saba, A.A.; Mahmud, Z.; Ansari, F.; Ahmed, R.; Nur, J.; Alam, M.S.; Chakraborty, S.; Nabi, A.H.M.N.; Islam, L.N.; Howlader, M.Z.H. Single Nucleotide Variants Rs7975232 and Rs2228570 within Vitamin D Receptor Gene Confers Protection against Severity of COVID-19 Infection in Bangladeshi Population. Gene Rep. 2024, 36, 101981. [Google Scholar] [CrossRef]
- Zhou, J.; Du, J.; Huang, L.; Wang, Y.; Shi, Y.; Lin, H. Preventive Effects of Vitamin D on Seasonal Influenza A in Infants: A Multicenter, Randomized, Open, Controlled Clinical Trial. Pediatr. Infect. Dis. J. 2018, 37, 749–754. [Google Scholar] [CrossRef]
- Urashima, M.; Segawa, T.; Okazaki, M.; Kurihara, M.; Wada, Y.; Ida, H. Randomized Trial of Vitamin D Supplementation to Prevent Seasonal Influenza A in Schoolchildren. Am. J. Clin. Nutr. 2010, 91, 1255–1260. [Google Scholar] [CrossRef]
- Hurst, E.A.; Mellanby, R.J.; Handel, I.; Griffith, D.M.; Rossi, A.G.; Walsh, T.S.; Shankar-Hari, M.; Dunning, J.; Homer, N.Z.; Denham, S.G.; et al. Vitamin D Insufficiency in COVID-19 and Influenza A, and Critical Illness Survivors: A Cross-Sectional Study. BMJ Open 2021, 11, e055435. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Mao, Z.; Xiao, M.; Wang, L.; Qi, S.; Zhou, F. Predictive Values of Neutrophil-to-Lymphocyte Ratio on Disease Severity and Mortality in COVID-19 Patients: A Systematic Review and Meta-Analysis. Crit. Care 2020, 24, 647. [Google Scholar] [CrossRef]
- Smilowitz, N.R.; Kunichoff, D.; Garshick, M.; Shah, B.; Pillinger, M.; Hochman, J.S.; Berger, J.S. C-Reactive Protein and Clinical Outcomes in Patients with COVID-19. Eur. Heart J. 2021, 42, 2270–2279. [Google Scholar] [CrossRef]
- Hopefl, R.; Ben-Eltriki, M.; Deb, S. Association Between Vitamin D Levels and Inflammatory Markers in COVID-19 Patients: A Meta-Analysis of Observational Studies. J. Pharm. Pharm. Sci. 2022, 25, 124–136. [Google Scholar] [CrossRef]
- Zhou, A.; Hyppönen, E. Vitamin D Deficiency and C-Reactive Protein: A Bidirectional Mendelian Randomization Study. Int. J. Epidemiol. 2023, 52, 260–271. [Google Scholar] [CrossRef]
- Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence That Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients 2020, 12, 988. [Google Scholar] [CrossRef] [PubMed]
- Zdrenghea, M.T.; Makrinioti, H.; Bagacean, C.; Bush, A.; Johnston, S.L.; Stanciu, L.A. Vitamin D Modulation of Innate Immune Responses to Respiratory Viral Infections. Rev. Med. Virol. 2017, 27, e1909. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.; Tecle, T.; Verma, A.; Crouch, E.; White, M.; Hartshorn, K.L. The Human Cathelicidin LL-37 Inhibits Influenza A Viruses through a Mechanism Distinct from That of Surfactant Protein D or Defensins. J. Gen. Virol. 2013, 94, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Currie, S.M.; Findlay, E.G.; McHugh, B.J.; Mackellar, A.; Man, T.; Macmillan, D.; Wang, H.; Fitch, P.M.; Schwarze, J.; Davidson, D.J. The Human Cathelicidin LL-37 Has Antiviral Activity against Respiratory Syncytial Virus. PLoS ONE 2013, 8, e73659. [Google Scholar] [CrossRef]
- Aloul, K.M.; Nielsen, J.E.; Defensor, E.B.; Lin, J.S.; Fortkort, J.A.; Shamloo, M.; Cirillo, J.D.; Gombart, A.F.; Barron, A.E. Upregulating Human Cathelicidin Antimicrobial Peptide LL-37 Expression May Prevent Severe COVID-19 Inflammatory Responses and Reduce Microthrombosis. Front. Immunol. 2022, 13, 880961. [Google Scholar] [CrossRef]
- Sabit, H.; Abdel-Ghany, S.; Abdallah, M.S.; Abul-Maaty, O.; Khoder, A.I.; Shoman, N.A.; Farrag, M.S.; Martasek, P.; Noreddin, A.M.; Nazih, M. Vitamin D: A Key Player in COVID-19 Immunity and Lessons from the Pandemic to Combat Immune-Evasive Variants. Inflammopharmacology 2024, 32, 3631–3652. [Google Scholar] [CrossRef]
- Zhang, Y.; Leung, D.Y.M.; Richers, B.N.; Liu, Y.; Remigio, L.K.; Riches, D.W.; Goleva, E. Vitamin D Inhibits Monocyte/Macrophage Proinflammatory Cytokine Production by Targeting MAPK Phosphatase-1. J. Immunol. 2012, 188, 2127–2135. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, Z.; Liu, Y.; Tu, X.; He, J. Relationship between Serum Vitamin D Levels and Inflammatory Markers in Acute Stroke Patients. Brain Behav. 2018, 8, e00885. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Ge, X.; Du, J.; Deb, D.K.; Li, Y.C. Vitamin D Receptor Inhibits Nuclear Factor κB Activation by Interacting with IκB Kinase β Protein. J. Biol. Chem. 2013, 288, 19450–19458. [Google Scholar] [CrossRef]
- Attiq, A.; Yao, L.J.; Afzal, S.; Khan, M.A. The Triumvirate of NF-κB, Inflammation and Cytokine Storm in COVID-19. Int. Immunopharmacol. 2021, 101, 108255. [Google Scholar] [CrossRef] [PubMed]
- Ao, T.; Kikuta, J.; Ishii, M. The Effects of Vitamin D on Immune System and Inflammatory Diseases. Biomolecules 2021, 11, 1624. [Google Scholar] [CrossRef]
- L Bishop, E.; Ismailova, A.; Dimeloe, S.; Hewison, M.; White, J.H. Vitamin D and Immune Regulation: Antibacterial, Antiviral, Anti-Inflammatory. JBMR Plus 2021, 5, e10405. [Google Scholar] [CrossRef]
- Hansdottir, S.; Monick, M.M.; Hinde, S.L.; Lovan, N.; Look, D.C.; Hunninghake, G.W. Respiratory Epithelial Cells Convert Inactive Vitamin D to Its Active Form: Potential Effects on Host Defense. J. Immunol. 2008, 181, 7090–7099. [Google Scholar] [CrossRef]
- Cutuli, S.L.; Cascarano, L.; Tanzarella, E.S.; Lombardi, G.; Carelli, S.; Pintaudi, G.; Grieco, D.L.; De Pascale, G.; Antonelli, M. Vitamin D Status and Potential Therapeutic Options in Critically Ill Patients: A Narrative Review of the Clinical Evidence. Diagnostics 2022, 12, 2719. [Google Scholar] [CrossRef] [PubMed]
- Amrein, K.; Papinutti, A.; Mathew, E.; Vila, G.; Parekh, D. Vitamin D and Critical Illness: What Endocrinology Can Learn from Intensive Care and Vice Versa. 2018, 7, R304–R315. Endocr. Connect. 2018, 7, R304–R315. [Google Scholar] [CrossRef]
- Al-Tarrah, K.; Hewison, M.; Moiemen, N.; Lord, J.M. Vitamin D Status and Its Influence on Outcomes Following Major Burn Injury and Critical Illness. Burn. Trauma 2018, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, A.; Ochola, J.; Mundy, J.; Jones, M.; Kruger, P.; Duncan, E.; Venkatesh, B. Acute Fluid Shifts Influence the Assessment of Serum Vitamin D Status in Critically Ill Patients. Crit. Care 2010, 14, R216. [Google Scholar] [CrossRef]
- Dancer, R.C.A.; Parekh, D.; Lax, S.; D’Souza, V.; Zheng, S.; Bassford, C.R.; Park, D.; Bartis, D.G.; Mahida, R.; Turner, A.M.; et al. Vitamin D Deficiency Contributes Directly to the Acute Respiratory Distress Syndrome (ARDS). Thorax 2015, 70, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Vanichkulbodee, A.; Romposra, M.; Inboriboon, P.C.; Trongtrakul, K. Effects of Vitamin D Insufficiency on Sepsis Severity and Risk of Hospitalisation in Emergency Department Patients: A Cross-Sectional Study. BMJ Open 2023, 13, e064985. [Google Scholar] [CrossRef]
- Malinverni, S.; Ochogavia, Q.; Lecrenier, S.; Scorpinniti, M.; Preiser, J.-C.; Cotton, F.; Mols, P.; Bartiaux, M. Severe Vitamin D Deficiency in Patients Admitted to the Emergency Department with Severe Sepsis Is Associated with an Increased 90-Day Mortality. Emerg. Med. J. 2023, 40, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Moromizato, T.; Litonjua, A.A.; Braun, A.B.; Gibbons, F.K.; Giovannucci, E.; Christopher, K.B. Association of Low Serum 25-Hydroxyvitamin D Levels and Sepsis in the Critically Ill. Crit. Care Med. 2014, 42, 97–107. [Google Scholar] [CrossRef] [PubMed]
| Characteristics | Mild COVID-19 | Moderate COVID-19 | Severe/Critical COVID-19 | Severe Influenza |
|---|---|---|---|---|
| N | 26 | 22 | 15 | 8 |
| Median Age (IQR) | 56 (39.3–70) | 65.5 (52.3–71.3) | 74 (63.5–80) | 76.5 (69.5–81.8) |
| M (%) | 11 (42.31) | 8 (36.36) | 8 (53.33) | 4 (50) |
| F (%) | 15 (57.69) | 14 (63.64) | 7 (46.67) | 4 (50) |
| Cardiovascular (%) | 12 (46.15) | 14 (63.64) | 11 (73.33) | 8 (100) |
| Pulmonary (%) | 2 (7.69) | 2 (9.09) | 1 (6.67) | 4 (50) |
| Diabetes (%) | 3 (11.54) | 5 (22.73) | 7 (46.67) | 3 (37.5) |
| Renal (%) | 0 | 1 (4.55) | 3 (20) | 2 (25) |
| Hepatic (%) | 4 (15.38) | 2 (9.09) | 1 (6.67) | 0 |
| Endocrine (%) | 2 (7.69) | 1 (4.55) | 4 (26.67) | 2 (25) |
| Neurological (%) | 2 (7.69) | 0 | 3 (20) | 1 (12.5) |
| Oncological (%) | 1 (3.85) | 0 | 0 | 0 |
| COVID-19 Vaccination (%) | 21 (80.7) | 19 (86.3) | 5 (33.3) | NA |
| ICU Admission | 0 | 0 | 1 | 0 |
| Mortality | 0 | 0 | 1 | 0 |
| Parameters | Mild COVID-19 (N = 26) | Moderate COVID-19 (N = 22) | Severe COVID-19 (N = 15) | Severe Influenza (N = 8) | p-Value | |
|---|---|---|---|---|---|---|
| Vitamin D (ng/mL) | 20.8 (7.56–38.7) | 32.6 (13.0–38.6) | 8.08 (4.79–15.7) | 25.6 (18.9–34.5) | 0.022 | |
| Leukocytes (cells/µL) | 5900 (5025–7700) | 5700 (5258–6375) | 8270 (6025–9300) | 7440 (5698–9405) | 0.086 | |
| Neutrophils (cells/µL) | 3258 (2432–4612) | 3382 (2886–4131) | 6390 (4540–7595) | 5275 (3095–6250) | 0.006 | |
| Lymphocytes (cells/µL) | 1536 (1153–2148) | 1417 (1023–1925) | 740 (505–1115) | 840 (668–1598) | < 0.001 | |
| Monocytes (cells/µL) | 723 (547–877) | 624 (421–792) | 447 (255–550) | 405 (278–835) | 0.049 | |
| NLR | 1.99 (1.36–3.13) | 1.94 (1.71–3.52) | 6.6 (4.67–13.2) | 7.45 (2.5–12.4) | <0 .001 | |
| Platelets (* 103 cells/µL) | 237.5 (184–272.5) | 184.5 (142.5–256) | 173 (137–254) | 182 (163–242) | 0.149 | |
| CRP (mg/dL) | 1.08 (0.515–2.17) | 2.11 (1.18–4.93) | 8.32 (4.81–13.4) | 5.19 (4.57–5.83) | < 0.001 | |
| GOT (U/L) | 22.0 (19.3–30.8) | 25.5 (22.3–31.8) | 35 (24.5–46.5) | 33.5 (23.5–50.3) | 0.102 | |
| GPT (U/L) | 25.5 (16.0–31.8) | 21.5 (16–33) | 26 (16.0–62.5) | 27.5 (20.5–33.5) | 0.836 | |
| Urea (mg/dL) | 29.3 (22.5–35.0) | 32.3 (26.8–38.0) | 39.0 (34.5–94.0) | 80.5 (40.0–126) | 0.002 | |
| rs1544410 | CC (n, %) | 8 (11.3%) | 9 (12.7%) | 5 (7.0%) | 3 (4.2%) | 0.921 |
| CT (n, %) | 13 (18.3%) | 11 (15.5%) | 8 (11.3%) | 3 (4.2%) | ||
| TT (n, %) | 5 (7.0%) | 2 (2.8%) | 2 (2.8%) | 2 (2.8%) | ||
| rs731236 | AA (n, %) | 9 (12.6%) | 10 (14.1%) | 5 (7%) | 4 (5.6%) | 0.97 |
| AG (n, %) | 14 (19.7%) | 10 (14.1%) | 8 (11.2%) | 3 (4.2%) | ||
| GG (n, %) | 3 (4.2%) | 2 (2.8%) | 2 (2.8%) | 1 (1.4%) | ||
| rs7975232 | CC (n, %) | 7 (9.9%) | 8 (11.3%) | 4 (5.6%) | 3 (4.2%) | 0.431 |
| CA (n, %) | 9 (12.7%) | 10 (14.1%) | 9 (12.7%) | 2 (2.8%) | ||
| AA (n, %) | 10 (14.1%) | 4 (5.6%) | 2 (2.8%) | 3 (4.2%) | ||
| Parameters | Vitamin D ≤ 20 | Vitamin D > 20 | p-Value | |
|---|---|---|---|---|
| N | 34 | 37 | - | |
| Age ≥ 65 (%) | 18(52.94%) | 19(51.35%) | 0.893 | |
| M (%) | 16 (47.06%) | 15 (40.54%) | 0.58 | |
| F (%) | 18 (52.94%) | 22 (59.46%) | ||
| Cardiovascular (%) | 19 (55.88%) | 26 (70.27%) | 0.209 | |
| Pulmonary (%) | 3 (8.82%) | 6 (16.22%) | 0.482 * | |
| Diabetes (%) | 11 (32.35%) | 7 (18.92%) | 0.194 | |
| Renal (%) | 4 (11.76%) | 2 (5.41%) | 0.417 * | |
| Hepatic (%) | 4 (11.76%) | 3 (8.11%) | 0.703 * | |
| Endocrine (%) | 4 (11.76%) | 5 (13.51%) | 1 * | |
| Neurological (%) | 3 (8.82%) | 3 (8.11%) | 1 * | |
| Oncological (%) | 1 (2.94%) | 0 (0.00%) | 1 * | |
| rs1544410 | CC (n, %) | 13 (38.2%) | 12 (32.4%) | 0.683 |
| CT (n, %) | 17 (50.0%) | 18 (48.6%) | ||
| TT (n, %) | 4 (11.8%) | 7 (18.9%) | ||
| rs731236 | AA (n, %) | 15 (44.1%) | 13 (35.1%) | 0.679 |
| AG (n, %) | 16 (47.1%) | 19 (51.3%) | ||
| GG (n, %) | 3 (8.8%) | 5 (13.5%) | ||
| rs7975232 | CC (n, %) | 12 (35.3%) | 10 (27.0%) | 0.725 |
| CA (n, %) | 13 (38.2%) | 17 (45.9%) | ||
| AA (n, %) | 9 (26.5%) | 10 (27.0%) | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sîrbu, A.C.; Bocșan, I.C.; Sabin, O.; Pop, R.M.; Vesa, Ș.C.; Feketea, G.; Briciu, V.; Lupșe, M.; Buzoianu, A.D. Exploring the Association of Vitamin D and VDR Polymorphisms with Disease Severity in COVID-19 and Influenza. Biomedicines 2025, 13, 2617. https://doi.org/10.3390/biomedicines13112617
Sîrbu AC, Bocșan IC, Sabin O, Pop RM, Vesa ȘC, Feketea G, Briciu V, Lupșe M, Buzoianu AD. Exploring the Association of Vitamin D and VDR Polymorphisms with Disease Severity in COVID-19 and Influenza. Biomedicines. 2025; 13(11):2617. https://doi.org/10.3390/biomedicines13112617
Chicago/Turabian StyleSîrbu, Alexandru Constantin, Ioana Corina Bocșan, Octavia Sabin, Raluca Maria Pop, Ștefan Cristian Vesa, Gavriela Feketea, Violeta Briciu, Mihaela Lupșe, and Anca Dana Buzoianu. 2025. "Exploring the Association of Vitamin D and VDR Polymorphisms with Disease Severity in COVID-19 and Influenza" Biomedicines 13, no. 11: 2617. https://doi.org/10.3390/biomedicines13112617
APA StyleSîrbu, A. C., Bocșan, I. C., Sabin, O., Pop, R. M., Vesa, Ș. C., Feketea, G., Briciu, V., Lupșe, M., & Buzoianu, A. D. (2025). Exploring the Association of Vitamin D and VDR Polymorphisms with Disease Severity in COVID-19 and Influenza. Biomedicines, 13(11), 2617. https://doi.org/10.3390/biomedicines13112617

