Intraductal Papillary Mucinous Neoplasms and GLP-1 Receptor Agonists: Navigating Therapeutic Uncertainty in Diabetes Management
Abstract
1. Introduction
2. IPMN Biology and Risk Stratification
3. GLP-1 Receptor Agonists: Mechanism of Action and Pancreatic Effects
4. Clinical Evidence: Reconciling Theory and Reality
5. A Pragmatic Management Framework
- Low-risk BD-IPMNs (<3 cm, no worrisome features): GLP-1RA therapy may be initiated, provided that routine imaging surveillance is maintained. The systemic benefits outweigh the theoretical risks.
- High-risk or MD-IPMNs (a main duct ≥ 10 mm, mural nodules, or high-risk stigmata): Defer GLP-1RA therapy until multidisciplinary evaluation is complete. In the meantime, consider alternative glucose-lowering agents with a neutral pancreatic profile (e.g., SGLT2 inhibitors and metformin).
| Patient with Diabetes and IPMN. | |
|---|---|
| Branch-Duct IPMN <3 cm, no worrisome features | Main-Duct IPMN or High-Risk Stigmata (duct ≥ 10 mm, mural nodules, etc.) |
| → GLP-1RA appropriate (with annual imaging surveillance) | → Defer GLP-1RA Consider alternatives (SGLT2 inhibitors and metformin) Multidisciplinary evaluation |
6. Conclusions and Future Directions
- Prospective registries of patients with IPMNs exposed to incretin therapies;
- Smarter imaging tools capable of detecting subtle progression earlier;
- Integration of molecular biomarkers into surveillance protocols;
- Artificial-intelligence-driven risk models that combine imaging, molecular, and clinical data to personalize therapy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| IPMNs | Intraductal Papillary Mucinous Neoplasms |
| GLP-1Ras | Glucagon-Like Peptide-1 Receptor Agonists |
| CT | Computed Tomography |
| MRI | Magnetic Resonance Imaging |
| T2DM | Type 2 Diabetes Mellitus |
| RCTs | Randomized Controlled Trials |
| CI | Confidence Interval |
References
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of Hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2022, 45, 2753–2786. [Google Scholar] [CrossRef] [PubMed]
- Aziz, H.; Acher, A.W.; Krishna, S.G.; Cloyd, J.M.; Pawlik, T.M. Comparison of Society Guidelines for the Management and Diagnosis of Pancreatic Cystic Lesions. JAMA Surg. 2022, 157, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.E.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Suryadevara, V.; Roy, A.; Sahoo, J.; Kamalanathan, S.; Naik, D.; Mohan, P.; Kalayarasan, R. Incretin based therapy and pancreatic cancer: Realising the reality. World J. Gastroenterol. 2022, 28, 2881–2889. [Google Scholar] [CrossRef] [PubMed]
- Gardner, T.B.; Park, W.G.; Allen, P.J. Diagnosis and Management of Pancreatic Cysts. Gastroenterology 2024, 167, 454–468. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuka, T.; Fernández-del Castillo, C.; Furukawa, T.; Hijioka, S.; Jang, J.-Y.; Lennon, A.M.; Miyasaka, Y.; Ohno, E.; Salvia, R.; Wolfgang, C.L.; et al. International Evidence-Based Kyoto Guidelines for the Management of Intraductal Papillary Mucinous Neoplasm of the Pancreas. Pancreatology 2024, 24, 255–270. [Google Scholar] [CrossRef] [PubMed]
- Macgregor-Das, A.M.; Iacobuzio-Donahue, C.A. Molecular pathways in pancreatic carcinogenesis. J. Surg. Oncol. 2013, 107, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.D.; Finan, B.; Bloom, S.R.; D’Alessio, D.; Drucker, D.J.; Flatt, P.R.; Fritsche, A.; Gribble, F.; Grill, H.J.; Habener, J.F.; et al. Glucagon-like Peptide-1 (GLP-1). Mol. Metab. 2019, 30, 72–130. [Google Scholar] [CrossRef] [PubMed]
- Butler, P.C.; Elashoff, M.; Elashoff, R.; Gale, E.A. A critical analysis of the clinical use of incretin-based therapies: Are the GLP-1 therapies safe? Diabetes Care 2013, 36, 2118–2125. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.A.; Mirna, A.E.A.; Quast, D.R. Meta-analysis of head-to-head clinical trials comparing incretin-based glucose-lowering medications and basal insulin: An update including recently developed glucagon-like peptide-1 (GLP-1) receptor agonists and the glucose-dependent insulinotropic polypeptide/GLP-1 receptor co-agonist tirzepatide. Diabetes Obes. Metab. 2023, 25, 1361–1371. [Google Scholar] [CrossRef] [PubMed]
- Egan, A.G.; Blind, E.; Dunder, K.; de Graeff, P.A.; Hummer, B.T.; Bourcier, T.; Rosebraugh, C. Pancreatic Safety of Incretin-Based Drugs. N. Engl. J. Med. 2014, 370, 794–797. [Google Scholar] [CrossRef] [PubMed]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef] [PubMed]
- Gamborga, M.; Grand, M.K.; Grell, K.; Rosthøj, S.; Pedersen-Bjergaard, U.; Torp-Pedersen, C.; Mørch, L.S. Long-Term Cancer Risk in Users of GLP-1 Receptor Agonists in Denmark: A Nationwide Cohort Study. Lancet Reg. Health Eur. 2025, 55, 101346. [Google Scholar] [CrossRef] [PubMed]
- Dankner, R.; Murad, H.; Agay, N.; Olmer, L.; Freedman, L.S. Glucagon-Like Peptide-1 Receptor Agonists and Pancreatic Cancer Risk in Patients with Type 2 Diabetes. JAMA Netw. Open 2024, 7, e2350408. [Google Scholar] [CrossRef] [PubMed]
- Duchemin, L.; Morice, A.; Morice, P.M.; Bernardeau, C.; Alexandre, J.; Fedrizzi, S.; Da Silva, A.; Boismoreau, L.; Faillie, J.L.; Dolladille, C. Risk of thyroid cancer related to glucagon-like peptide-1 receptor agonists: A systematic review with meta-analysis of harms of randomized controlled trials. Diabetes Obes. Metab. 2025, 27, 4607–4610. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tassone, F.; Saraceno, G. Intraductal Papillary Mucinous Neoplasms and GLP-1 Receptor Agonists: Navigating Therapeutic Uncertainty in Diabetes Management. Biomedicines 2025, 13, 2326. https://doi.org/10.3390/biomedicines13102326
Tassone F, Saraceno G. Intraductal Papillary Mucinous Neoplasms and GLP-1 Receptor Agonists: Navigating Therapeutic Uncertainty in Diabetes Management. Biomedicines. 2025; 13(10):2326. https://doi.org/10.3390/biomedicines13102326
Chicago/Turabian StyleTassone, Francesco, and Giovanna Saraceno. 2025. "Intraductal Papillary Mucinous Neoplasms and GLP-1 Receptor Agonists: Navigating Therapeutic Uncertainty in Diabetes Management" Biomedicines 13, no. 10: 2326. https://doi.org/10.3390/biomedicines13102326
APA StyleTassone, F., & Saraceno, G. (2025). Intraductal Papillary Mucinous Neoplasms and GLP-1 Receptor Agonists: Navigating Therapeutic Uncertainty in Diabetes Management. Biomedicines, 13(10), 2326. https://doi.org/10.3390/biomedicines13102326
