Urinary GADD45G Protein Excretion Is Associated with IgA Nephropathy Progression
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Enzyme-Linked Immunosorbent Assays (ELISA)
2.3. Immunohistochemistry
2.4. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Correlation Between Urinary GADD45G Concentrations and Clinical Parameters
3.3. Association of Urinary GADD45G Concentration with Renal Prognosis
3.4. Renal Pathologic Features and Immunohistochemical Staining of GADD45G
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Smith, M.L.; Chen, I.T.; Zhan, Q.; Bae, I.; Chen, C.Y.; Gilmer, T.M.; Kastan, M.B.; O’Connor, P.M.; Fornace, A.J., Jr. Interaction of the P53-Regulated Protein Gadd45 with Proliferating Cell Nuclear Antigen. Science 1994, 266, 1376–1380. [Google Scholar] [CrossRef]
- Zerbini, L.F.; Wang, Y.; Czibere, A.; Correa, R.G.; Cho, J.Y.; Ijiri, K.; Wei, W.; Joseph, M.; Gu, X.; Grall, F.; et al. Nf-Kappa B-Mediated Repression of Growth Arrest- and DNA-Damage-Inducible Proteins 45alpha and Gamma Is Essential for Cancer Cell Survival. Proc. Natl. Acad. Sci. USA 2004, 101, 13618–13623. [Google Scholar] [CrossRef]
- Li, L.S.; Liu, Z.H. Epidemiologic Data of Renal Diseases from a Single Unit in China: Analysis Based on 13,519 Renal Biopsies. Kidney Int. 2004, 66, 920–923. [Google Scholar] [CrossRef] [PubMed]
- Oh, T.R.; Choi, H.S.; Oh, S.W.; Oh, J.; Lee, D.W.; Kim, C.S.; Ma, S.K.; Kim, S.W.; Bae, E.H.; Korean GlomeruloNEphritis sTudy (KoGNET) Group. Association Between the Progression of immunoglobulin A nephropathy and a Controlled Status of Hypertension in the First Year After Diagnosis. Korean J. Intern. Med. 2022, 37, 146–153. [Google Scholar] [CrossRef]
- Lv, J.; Shi, S.; Xu, D.; Zhang, H.; Troyanov, S.; Cattran, D.C.; Wang, H. Evaluation of the Oxford Classification of Iga Nephropathy: A Systematic Review and Meta-Analysis. Am. J. Kidney Dis. 2013, 62, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Vleming, L.J.; de Fijter, J.W.; Westendorp, R.G.; Daha, M.R.; Bruijn, J.A.; van Es, L.A. Histomorphometric Correlates of Renal Failure in Iga Nephropathy. Clin. Nephrol. 1998, 49, 337–344. [Google Scholar] [PubMed]
- Thomas, G.L.; Yang, B.; Wagner, B.E.; Savill, J.; El Nahas, A.M. Cellular Apoptosis and Proliferation in Experimental Renal Fibrosis. Nephrol. Dial. Transplant. 1998, 13, 2216–2226. [Google Scholar] [CrossRef] [PubMed]
- Grgic, I.; Campanholle, G.; Bijol, V.; Wang, C.; Sabbisetti, V.S.; Ichimura, T.; Humphreys, B.D.; Bonventre, J.V. Targeted Proximal Tubule Injury Triggers Interstitial Fibrosis and Glomerulosclerosis. Kidney Int. 2012, 82, 172–183. [Google Scholar] [CrossRef]
- Yao, J.; Ke, Z.; Wang, X.; Peng, F.; Li, B.; Wu, R. Epithelial-Mesenchymal Transition and Apoptosis of Renal Tubular Epithelial Cells Are Associated with Disease Progression in Patients with Iga Nephropathy. Mol. Med. Rep. 2014, 10, 39–44. [Google Scholar] [CrossRef]
- Shin, G.T.; Kim, D.R.; Lim, J.E.; Yim, H.; Kim, H. Upregulation and Function of Gadd45gamma in Unilateral Ureteral Obstruction. Kidney Int. 2008, 73, 1251–1265. [Google Scholar] [CrossRef] [PubMed]
- Shin, G.T.; Lee, H.J.; Park, J.E. Growth Arrest and DNA Damage 45gamma Is Required for Caspase-Dependent Renal Tubular Cell Apoptosis. PLoS ONE 2019, 14, e0212818. [Google Scholar] [CrossRef]
- Yu, S.; Cho, J.; Park, I.; Kim, S.J.; Kim, H.; Shin, G.T. Urinary Gadd45gamma Expression Is Associated with Progression of Lga Nephropathy. Am. J. Nephrol. 2009, 30, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Trimarchi, H.; Barratt, J.; Cattran, D.C.; Cook, H.T.; Coppo, R.; Haas, M.; Liu, Z.H.; Roberts, I.S.; Yuzawa, Y.; Zhang, H.; et al. Oxford Classification of Iga Nephropathy 2016: An Update from the Iga Nephropathy Classification Working Group. Kidney Int. 2017, 91, 1014–1021. [Google Scholar] [CrossRef] [PubMed]
- Bartosik, L.P.; Lajoie, G.; Sugar, L.; Cattran, D.C. Predicting Progression in Iga Nephropathy. Am. J. Kidney Dis. 2001, 38, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.Y.; Cai, G.Y.; Chen, Y.Z.; Liang, S.; Liu, S.W.; Wu, J.; Qiu, Q.; Lin, S.P.; Zhang, X.G.; Chen, X.M. Aging Promotes Progression of Iga Nephropathy: A Systematic Review and Meta-Analysis. Am. J. Nephrol. 2013, 38, 241–252. [Google Scholar] [CrossRef]
- Kawai, Y.; Masutani, K.; Torisu, K.; Katafuchi, R.; Tanaka, S.; Tsuchimoto, A.; Mitsuiki, K.; Tsuruya, K.; Kitazono, T. Association Between Serum Albumin Level and Incidence of End-Stage Renal Disease in Patients with Immunoglobulin a Nephropathy: A Possible Role of Albumin as an Antioxidant Agent. PLoS ONE 2018, 13, e0196655. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wei, W.; Yu, C.; Xing, L.; Wang, M.; Liu, R.; Ma, J.; Liu, X.; Xie, R.; Sui, M. Epidemiology and Risk Factors for Progression in Chinese Patients with Iga Nephropathy. Med. Clin. 2021, 157, 267–273. [Google Scholar] [CrossRef]
- Youden, W.J. Index for Rating Diagnostic Tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Le, W.; Zeng, C.H.; Liu, Z.; Liu, D.; Yang, Q.; Lin, R.X.; Xia, Z.K.; Fan, Z.M.; Zhu, G.; Wu, Y.; et al. Validation of the Oxford Classification of Iga Nephropathy for Pediatric Patients from China. BMC Nephrol. 2012, 13, 158. [Google Scholar] [CrossRef] [PubMed]
- Alamartine, E.; Sauron, C.; Laurent, B.; Sury, A.; Seffert, A.; Mariat, C. The Use of the Oxford Classification of Iga Nephropathy to Predict Renal Survival. Clin. J. Am. Soc. Nephrol. 2011, 6, 2384–2388. [Google Scholar] [CrossRef]
- Becker, B.N.; Becker, Y.T.; Leverson, G.E.; Heisey, D.M. Erythropoietin Therapy May Retard Progression in Chronic Renal Transplant Dysfunction. Nephrol. Dial. Transplant. 2002, 17, 1667–1673. [Google Scholar] [CrossRef]
- Yasuda, T.; Endoh, M.; Suzuki, D.; Yoshimura, A.; Ideura, T.; Tamura, K.; Kamata, K.; Toya, Y.; Umemura, S.; Kimura, K.; et al. Effects of Valsartan on Progression of Kidney Disease in Japanese Hypertensive Patients with Advanced, Predialysis, Chronic Kidney Disease: Kanagawa Valsartan Trial (Kvt). Hypertens. Res. 2013, 36, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.Y.; Rainprecht, D.; Eichmair, E.; Messner, B.; Oehler, R. Serum-Dependent Processing of Late Apoptotic Cells and Their Immunogenicity. Apoptosis 2015, 20, 1444–1456. [Google Scholar] [CrossRef]
- Wickman, G.R.; Julian, L.; Mardilovich, K.; Schumacher, S.; Munro, J.; Rath, N.; Zander, S.A.; Mleczak, A.; Sumpton, D.; Morrice, N.; et al. Blebs Produced by Actin-Myosin Contraction During Apoptosis Release Damage-Associated Molecular Pattern Proteins Before Secondary Necrosis Occurs. Cell Death Differ. 2013, 20, 1293–1305. [Google Scholar] [CrossRef]
- Mahajan, A.; Herrmann, M.; Munoz, L.E. Clearance Deficiency and Cell Death Pathways: A Model for the Pathogenesis of Sle. Front. Immunol. 2016, 7, 35. [Google Scholar] [CrossRef]
- Chan, F.K.; Moriwaki, K.; De Rosa, M.J. Detection of Necrosis by Release of Lactate Dehydrogenase Activity. Methods Mol. Biol. 2013, 979, 65–70. [Google Scholar] [CrossRef]
- Zhao, Y.F.; Zhu, L.; Liu, L.J.; Shi, S.F.; Lv, J.C.; Zhang, H. Measures of Urinary Protein and Albumin in the Prediction of Progression of Iga Nephropathy. Clin. J. Am. Soc. Nephrol. 2016, 11, 947–955. [Google Scholar] [CrossRef]
- Sanchez-Nino, M.D.; Fernandez-Fernandez, B.; Perez-Gomez, M.V.; Poveda, J.; Sanz, A.B.; Cannata-Ortiz, P.; Ruiz-Ortega, M.; Egido, J.; Selgas, R.; Ortiz, A. Albumin-Induced Apoptosis of Tubular Cells is Modulated by Basp1. Cell Death Dis. 2015, 6, e1644. [Google Scholar] [CrossRef] [PubMed]
- Donadio, J.V.; Bergstralh, E.J.; Grande, J.P.; Rademcher, D.M. Proteinuria Patterns and Their Association with Subsequent End-Stage Renal Disease in Iga Nephropathy. Nephrol. Dial. Transplant. 2002, 17, 1197–1203. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.N.; Chan, L.Y.; Leung, J.C. Mechanisms of Tubulointerstitial Injury in Iga Nephropathy. Kidney Int. Suppl. 2005, 67 (Suppl. 94), S110–S115. [Google Scholar] [CrossRef]
- Bank, J.R.; van der Pol, P.; Vreeken, D.; Monge-Chaubo, C.; Bajema, I.M.; Schlagwein, N.; van Gijlswijk, D.J.; van der Kooij, S.W.; Reinders, M.E.J.; de Fijter, J.W.; et al. Kidney Injury Molecule-1 Staining in Renal Allograft Biopsies 10 Days After Transplantation Is Inversely Correlated with Functioning Proximal Tubular Epithelial Cells. Nephrol. Dial. Transplant. 2017, 32, 2132–2141. [Google Scholar] [CrossRef] [PubMed]
Characteristics | N = 45 | Range |
---|---|---|
Male (%) | 26 (57.8) | – |
Urinary GADD45G, μg/g creatinine | 1.26 [0.69–2.20] | 0.00–9.03 |
Urinary protein, g/g creatinine | 0.65 [0.24–1.60] | 0.06–8.18 |
Serum albumin, g/dL | 4.07 ± 0.58 | 1.70–4.90 |
Age, years | 43.97 ± 15.65 | 18–78 |
Serum cholesterol, mg/dL | 182.57 ± 47.60 | 95–326 |
SCr, mg/dL | 1.26 ± 0.51 | 0.52–2.64 |
Body mass index, kg/m2 | 24.61 ± 4.10 | 18.35–39.90 |
Urinary GADD45G | SCr-Slope | Urinary Protein | Age | BMI | SCr | Albumin | Cholesterol | |
---|---|---|---|---|---|---|---|---|
Urinary GADD45G | 1 | 0.372 * | 0.774 ** | 0.340 * | 0.28 | 0.256 | −0.651 ** | 0.066 |
SCr-slope | 0.372 * | 1 | 0.375 * | 0.243 | 0.08 | 0.406 ** | −0.329 * | 0.171 |
Urinary protein | 0.774 ** | 0.375 * | 1 | 0.285 | 0.28 | 0.126 | −0.849 ** | 0.320 * |
Albumin | −0.651 ** | −0.329 * | −0.849 ** | −0.408 ** | −0.20 | −0.158 | 1 | −0.321 * |
Age | 0.340 * | 0.243 | 0.285 | 1 | −0.02 | 0.346 * | −0.408 ** | 0.011 |
Cholesterol | 0.066 | 0.171 | 0.320 * | 0.011 | 0.06 | −0.262 | −0.312 * | 1 |
SCr | 0.256 | 0.406 ** | 0.126 | 0.346 * | 0.17 | 1 | −0.158 | −0.262 |
BMI | 0.276 | 0.08 | 0.284 | −0.023 | 1 | 0.167 | −0.199 | 0.058 |
Variables | HR (95% CI) | p Value |
---|---|---|
Urinary GADD45G | 1.63 (1.12–2.36) | 0.010 |
Urine protein | 1.89 (1.34–2.66) | <0.001 |
Age | 1.06 (1.01–1.12) | 0.023 |
Serum Albumin | 0.31 (0.14–0.66) | 0.002 |
Serum cholesterol | 1.02 (1.01–1.03) | 0.007 |
BMI | 1.04 (0.90–1.19) | 0.628 |
SCr | 2.16 (0.61–7.58) | 0.230 |
Male | 3.25 (0.67–15.84) | 0.145 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.-J.; Yim, H.; Park, J.E.; Park, I.; Kim, H.; Shin, G.-T. Urinary GADD45G Protein Excretion Is Associated with IgA Nephropathy Progression. Biomedicines 2024, 12, 2846. https://doi.org/10.3390/biomedicines12122846
Lee M-J, Yim H, Park JE, Park I, Kim H, Shin G-T. Urinary GADD45G Protein Excretion Is Associated with IgA Nephropathy Progression. Biomedicines. 2024; 12(12):2846. https://doi.org/10.3390/biomedicines12122846
Chicago/Turabian StyleLee, Min-Jeong, Hyunee Yim, Ji Eun Park, Inwhee Park, Heungsoo Kim, and Gyu-Tae Shin. 2024. "Urinary GADD45G Protein Excretion Is Associated with IgA Nephropathy Progression" Biomedicines 12, no. 12: 2846. https://doi.org/10.3390/biomedicines12122846
APA StyleLee, M.-J., Yim, H., Park, J. E., Park, I., Kim, H., & Shin, G.-T. (2024). Urinary GADD45G Protein Excretion Is Associated with IgA Nephropathy Progression. Biomedicines, 12(12), 2846. https://doi.org/10.3390/biomedicines12122846