Apocynin and Hyperbaric Oxygen Therapy Improve Renal Function and Structure in an Animal Model of CKD
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Protocol
2.3. Hemodynamic Measurements
2.4. Biochemical Analysis
2.5. Western Blot Analysis
2.6. Histopathological Examination
2.7. Immunohistochemical Analysis
2.8. Statistical Analysis
3. Results
3.1. Blood Pressure, Urinary Protein Excretion, and Kidney Structure
3.2. Desmin, FN, and HIF-1a Protein Expression in the Kidneys
3.3. Immunohistochemical Detection of Desmin, FN, and HIF-1a in the Kidney
4. Discussion
5. Conclusions
5.1. Study Limits
5.2. Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bao, Y.W.; Yuan, Y.; Chen, J.H.; Lin, W.Q. Kidney disease models: Tools to identify mechanisms and potential therapeutic targets. Zool. Res. 2018, 39, 72–86. [Google Scholar] [PubMed]
- Charles, C.; Ferris, A.H. Chronic kidney disease. Prim. Care 2020, 47, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.Z.; Zhong, X.; Li, J.C.; Zhang, Y.W.; Yan, Y.; Liao, Y.; Wen, D.; Diao, H.; Wang, L.; Shen, H.C. An optimized 5/6 nephrectomy mouse model based on unilateral kidney ligation and its application in renal fibrosis research. Ren. Fail. 2019, 41, 555–566. [Google Scholar] [CrossRef] [PubMed]
- de Cos, M.; Xipell, M.; Garcia-Herrera, A.; Lledo, G.M.; Guillen, E.; Blasco, M.; Espinosa, G.; Cervera, R.; Quintana, L.F. Assessing and counteracting fibrosis is a cornerstone of the treatment of CKD secondary to systemic and renal limited autoimmune disorders. Autoimmun. Rev. 2022, 21, 103014. [Google Scholar] [CrossRef]
- Nogueira, A.; Pires, M.J.; Oliveira, P.A. Pathophysiological mechanisms of renal fibrosis: A review of animal models and therapeutic strategies. In Vivo 2017, 31, 1–22. [Google Scholar] [CrossRef]
- Hosszu, A.; Kaucsar, T.; Seeliger, E.; Fekete, A. Animal models of renal pathophysiology and disease. Methods Mol. Biol. 2021, 2216, 27–44. [Google Scholar]
- Adam, R.J.; Williams, A.C.; Kriegel, A.J. Comparison of the surgical resection and infarct 5/6 nephrectomy rat models of chronic kidney disease. Am. J. Physiol. Renal Physiol. 2022, 322, F639–F654. [Google Scholar] [CrossRef]
- Kim, J.Y.; Park, J.; Lee, J.E.; Yenari, M.A. NOX inhibitors—A promising avenue for ischemic stroke. Exp. Neurobiol. 2017, 26, 195–205. [Google Scholar] [CrossRef]
- Kovacevic, S.; Ivanov, M.; Zivotic, M.; Brkic, P.; Miloradovic, Z.; Jeremic, R.; Mihailovic-Stanojevic, N.; Vajic, U.J.; Karanovic, D.; Jovovic, D.; et al. Immunohistochemical analysis of 4-HNE, NGAL, and HO-1 tissue expression after apocynin treatment and HBO preconditioning in postischemic acute kidney injury induced in spontaneously hypertensive rats. Antioxidants 2021, 10, 1163. [Google Scholar] [CrossRef]
- Hwang, Y.J.; Nam, S.J.; Chun, W.; Kim, S.I.; Park, S.C.; Kang, C.D.; Lee, S.J. Anti-inflammatory effects of apocynin on dextran sulfate sodium-induced mouse colitis model. PLoS ONE 2019, 14, e0217642. [Google Scholar] [CrossRef]
- Asaba, K.; Tojo, A.; Onozato, M.L.; Goto, A.; Quinn, M.T.; Fujita, T.; Wilcox, C.S. Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney Int. 2005, 67, 1890–1898. [Google Scholar] [CrossRef] [PubMed]
- Sedeek, M.; Nasrallah, R.; Touyz, R.M.; Hebert, R.L. NADPH oxidases, reactive oxygen species, and the kidney: Friend and foe. J. Am. Soc. Nephrol. 2013, 24, 1512–1518. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahman, R.S. Protective effect of apocynin against gentamicin-induced nephrotoxicity in rats. Hum. Exp. Toxicol. 2017, 37, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Montes-Rivera, J.O.; Tamay-Cach, F.; Quintana-Pérez, J.C.; Guevara-Salazar, J.A.; Trujillo-Ferrara, J.G.; Del Valle-Mondragón, L.; Arellano-Mendoza, M.G. Apocynin combined with drugs as coadjuvant could be employed to prevent and/or treat the chronic kidney disease. Ren. Fail. 2018, 40, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.C.; Abdul Sattar, M.; Ahmeda, A.F.; Abdul Karim Khan, N.; Murugaiyah, V.; Ahmad, A.; Hassan, Z.; Kaur, G.; Abdulla, M.H.; Johns, E.J. Apocynin and catalase prevent hypertension and kidney injury in Cyclosporine A-induced nephrotoxicity in rats. PLoS ONE 2020, 15, e0231472. [Google Scholar] [CrossRef]
- Choudhury, R. Hypoxia and hyperbaric oxygen therapy: A review. Int. J. Gen. Med. 2018, 11, 431–442. [Google Scholar] [CrossRef]
- Tanaka, H.L.; Rees, J.R.; Zhang, Z.; Ptak, J.A.; Hannigan, P.M.; Silverman, E.M.; Peacock, J.L.; Buckey, J.C.; Multicenter Registry for Hyperbaric Oxygen Treatment Consortium. Emerging indications for hyperbaric oxygen treatment: Registry cohort study. Interact. J. Med. Res. 2024, 13, e53821. [Google Scholar] [CrossRef]
- Kovacevic, S.; Ivanov, M.; Miloradovic, Z.; Brkic, P.; Vajic, U.J.; Zivotic, M.; Mihailovic-Stanojevic, N.; Jovovic, D.; Karanovic, D.; Jeremic, R.; et al. Hyperbaric oxygen preconditioning and the role of NADPH oxidase inhibition in postischemic acute kidney injury induced in spontaneously hypertensive rats. PLoS ONE 2020, 15, e0226974. [Google Scholar] [CrossRef]
- Uchida, L.; Tanaka, T.; Saito, H.; Sugahara, M.; Wakashima, T.; Fukui, K.; Nangaku, M. Effects of a prolyl hydroxylase inhibitor on kidney and cardiovascular complications in a rat model of chronic kidney disease. Am. J. Physiol. Renal Physiol. 2020, 318, F388–F401. [Google Scholar] [CrossRef]
- Teles, F.; da Silva, T.M.; da Cruz Júnior, F.P.; Honorato, V.H.; de Oliveira Costa, H.; Barbosa, A.P.F.; de Oliveira, S.G.; Porfírio, Z.; Libório, A.B.; Borges, R.L.; et al. Brazilian Red Propolis attenuates hypertension and renal damage in 5/6 renal ablation model. PLoS ONE 2015, 10, e0116535. [Google Scholar] [CrossRef]
- Brkic, P.; Stojiljkovic, M.; Jovanovic, T.; Dacic, S.; Lavrnja, I.; Savic, D.; Parabucki, A.; Bjelobaba, I.; Rakic, L.; Pekovic, S. Hyperbaric oxygenation improves locomotor ability by enhancing neuroplastic responses after cortical ablation in rats. Brain Inj. 2012, 26, 1273–1284. [Google Scholar] [CrossRef] [PubMed]
- Kilic, T.; Parlakpinar, H.; Taslidere, E.; Yildiz, S.; Polat, A.; Vardi, N.; Colak, C.; Ermis, H. Protective and therapeutic effect of apocynin on bleomycin-induced lung fibrosis in rats. Inflammation 2014, 38, 1166–1180. [Google Scholar] [CrossRef] [PubMed]
- Ozbek, O.; Altintas, R.; Polat, A.; Vardi, N.; Parlakpinar, H.; Sagir, M.; Duran, Z.R.; Yildiz, A. The protective effect of apocynin on testicular ischemia-reperfusion injury. J. Urol. 2015, 193, 1417–1422. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Tan, X.; Chen, Y.; Zhang, X. Postconditioning protects renal fibrosis by attenuating oxidative stress-induced mitochondrial injury. Nephrol. Dial. Transplant. 2017, 32, 1628–1636. [Google Scholar] [CrossRef]
- Berkovitch, M.; Shain, Y.; Kozer, E.; Goldman, M.; Abu-Kishk, I. Hyperbaric oxygen treatment and nephrotoxicity induced by gentamicin in rats. BMC Nephrol. 2017, 18, 347. [Google Scholar] [CrossRef]
- Bennett, M.H.; Mitchell, S.J. Emerging indications for hyperbaric oxygen. Curr. Opin. Anaesthesiol. 2019, 32, 792–798. [Google Scholar] [CrossRef]
- Boshtam, M.; Kouhpayeh, S.; Amini, F.; Azizi, Y.; Najaflu, M.; Shariati, L.; Khanahmad, H. Anti-inflammatory effects of apocynin: A narrative review of the evidence. All. Life 2021, 14, 997–1010. [Google Scholar] [CrossRef]
- Schottlender, N.; Gottfried, I.; Ashery, U. Hyperbaric oxygen treatment: Effects on mitochondrial function and oxidative stress. Biomolecules 2021, 11, 1827. [Google Scholar] [CrossRef]
- Karanovic, D.; Grujic-Milanovic, J.; Miloradovic, Z.; Ivanov, M.; Jovovic, D.; Vajic, U.-J.; Zivotic, M.; Markovic-Lipkovski, J.; Mihailovic-Stanojevic, N. Effects of single and combined losartan and tempol treatments on oxidative stress, kidney structure and function in spontaneously hypertensive rats with early course of proteinuric nephropathy. PLoS ONE 2016, 11, e0161706. [Google Scholar] [CrossRef]
- Ergur, B.U.; Micili, S.C.; Yilmaz, O.; Akokay, P. The effects of α-lipoic acid on aortic injury and hypertension in the rat remnant kidney (5/6 nephrectomy) model. Anatol. J. Cardiol. 2015, 15, 443–449. [Google Scholar] [CrossRef]
- Fujihara, C.K.; Antunes, G.R.; Mattar, A.L.; Malheiros, D.M.A.C.; Vieira, J.M., Jr.; Zatz, R. Chronic inhibition of nuclear factor-kappaB attenuates renal injury in the 5/6 renal ablation model. Am. J. Physiol. Renal Physiol. 2007, 292, F92–F99. [Google Scholar] [CrossRef] [PubMed]
- Saud, A.; Luiz, R.S.; Leite, A.P.O.; Muller, C.R.; Visona, I.; Reinecke, N.; Silva, W.H.; Gloria, M.A.; Razvickas, C.V.; Casarini, D.E.; et al. Resistance exercise training ameliorates chronic kidney disease outcomes in a 5/6 nephrectomy model. Life Sci. 2021, 275, 119362. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Piao, L.; Wang, H.; Huang, Z.; Meng, X.; Sasaki, T.; Inoue, A.; Nakamura, K.; Wan, Y.; Xu, S.; et al. Cathepsin K deficiency prevented kidney damage and dysfunction in response to 5/6 nephrectomy injury in mice with or without chronic stress. Hypertension 2022, 79, 1713–1723. [Google Scholar] [CrossRef] [PubMed]
- Virdis, A.; Neves, M.F.; Amiri, F.; Touyz, R.M.; Schiffrin, E.L. Role of NAD(P)H oxidase on vascular alterations in angiotensin II-infused mice. J. Hypertens. 2004, 22, 535–542. [Google Scholar] [CrossRef]
- Tain, Y.L.; Hsu, C.N.; Huang, L.T.; Lau, Y.T. Apocynin attenuates oxidative stress and hypertension in young spontaneously hypertensive rats independent of ADMA/NO pathway. Free Radic. Res. 2012, 46, 68–76. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Liu, X.; Chen, J.; Zhang, K.; Huang, F.; Wang, J.-F.; Tang, W.; Huang, H. Apocynin attenuates cardiac Injury in type 4 cardiorenal syndrome via suppressing cardiac fibroblast growth factor-2 with oxidative stress inhibition. J. Am. Heart Assoc. 2015, 4, e001598. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, Y.; Liu, X.; Chen, J.; Cai, Q.; Wang, J.; Huang, H. Apocynin improving cardiac remodeling in chronic renal failure disease is associated with up-regulation of epoxyeicosatrienoic acids. Oncotarget 2015, 6, 24699–24708. [Google Scholar] [CrossRef]
- Al-Waili, N.S.; Butler, G.J.; Beale, J.; Abdullah, M.S.; Finkelstein, M.; Merrow, M.; Rivera, R.; Petrillo, R.; Carrey, Z.; Lee, B.; et al. Influences of hyperbaric oxygen on blood pressure, heart rate and blood glucose levels in patients with diabetes mellitus and hypertension. Arch. Med. Res. 2006, 37, 991–997. [Google Scholar] [CrossRef]
- Heyboer, M., 3rd; Sharma, D.; Santiago, W.; McCulloch, N. Hyperbaric oxygen therapy: Side effects defined and quantified. Adv. Wound Care 2017, 6, 210–224. [Google Scholar] [CrossRef]
- Demchenko, I.T.; Zhilyaev, S.Y.; Moskvin, A.N.; Krivchenko, A.I.; Piantadosi, C.A.; Allen, B.W. Baroreflex-mediated cardiovascular responses to hyperbaric oxygen. J. Appl. Physiol. 2013, 115, 819–828. [Google Scholar] [CrossRef]
- Augustyniak, R.A.; Picken, M.M.; Leonard, D.; Zhou, X.J.; Zhang, W.; Victor, R.G. Sympathetic nerves and the progression of chronic kidney disease during 5/6 nephrectomy: Studies in sympathectomized rats. Clin. Exp. Pharmacol. Physiol. 2010, 37, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Ku, E.; Lee, B.J.; Wei, J.; Weir, M.R. Hypertension in CKD: Core curriculum 2019. Am. J. Kidney Dis. 2019, 74, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Shimokawa, T.; Yamagata, M.; Yoneda, K. Inhibition of α2-adrenoceptor is renoprotective in 5/6 nephrectomy-induced chronic kidney injury rats. J. Pharmacol. Sci. 2021, 145, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Oscarsson, N.; Ny, L.; Molne, J.; Lind, F.; Ricksten, S.-E.; Seeman-Lodding, H.; Giglio, D. Hyperbaric oxygen treatment reverses radiation induced pro-fibrotic and oxidative stress responses in a rat model. Free Radic. Biol. Med. 2017, 103, 248–255. [Google Scholar] [CrossRef]
- Barsheshet, M.; Ertracht, O.; Boginya, A.; Reuveni, T.; Atar, S.; Szuchman-Sapir, A. Vasodilation and blood pressure-lowering effect mediated by 5,6-EEQ lactone in 5/6 nephrectomy hypertensive rats. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2021, 1866, 159031. [Google Scholar] [CrossRef]
- Makhammajanov, Z.; Gaipov, A.; Myngbay, A.; Bukasov, R.; Aljofan, M.; Kanbay, M. Tubular toxicity of proteinuria and the progression of chronic kidney disease. Nephrol. Dial. Transplant. 2024, 39, 589–599. [Google Scholar] [CrossRef]
- Shankland, S.J. The podocyte’s response to injury: Role in proteinuria and glomerulosclerosis. Kidney Int. 2006, 69, 2131–2147. [Google Scholar] [CrossRef]
- Luo, S.; Coresh, J.; Tin, A.; Rebholz, C.M.; Appel, L.J.; Chen, J.; Vasan, R.S.; Anderson, A.H.; Feldman, H.I.; Kimmel, P.L.; et al. Serum metabolomic alterations associated with proteinuria in CKD. Clin. J. Am. Soc. Nephrol. 2019, 14, 342–353. [Google Scholar] [CrossRef]
- Liu, F.; Wei, C.C.; Wu, S.J.; Chenier, I.; Zhang, S.L.; Filep, J.G.; Ingelfinger, J.R.; Chan, J.S.D. Apocynin attenuates tubular apoptosis and tubulointerstitial fibrosis in transgenic mice independent of hypertension. Kidney Int. 2009, 75, 156–166. [Google Scholar] [CrossRef]
- Kinugasa, S.; Tojo, A.; Sakai, T.; Tsumura, H.; Takahashi, M.; Hirata, Y.; Fujita, T. Selective albuminuria via podocyte albumin transport in puromycin nephrotic rats is attenuated by an inhibitor of NADPH oxidase. Kidney Int. 2011, 80, 1328–1338. [Google Scholar] [CrossRef]
- D’Amico, G.; Bazzi, C. Pathophysiology of proteinuria. Kidney Int. 2003, 63, 809–825. [Google Scholar] [CrossRef] [PubMed]
- Mii, A.; Shimizu, A.; Masuda, Y.; Ishizaki, M.; Kawachi, H.; Iino, Y.; Katayama, Y.; Fukuda, Y. Angiotensin II receptor blockade inhibits acute glomerular injuries with the alteration of receptor expression. Lab. Investig. 2009, 89, 164–177. [Google Scholar] [CrossRef] [PubMed]
- Sedlacek, M.; Harlan, N.P.; Buckey, J.C., Jr. Renal effects of hyperbaric oxygen therapy in patients with diabetes mellitus: A retrospective study. Int. J. Nephrol. 2021, 2021, 9992352. [Google Scholar] [CrossRef] [PubMed]
- Klinkhammer, B.M.; Boor, P. Kidney fibrosis: Emerging diagnostic and therapeutic strategies. Mol. Asp. Med. 2023, 93, 101206. [Google Scholar] [CrossRef]
- Grupp, C.; Lottermoser, J.; Cohen, D.I.; Begher, M.; Franz, H.E.; Muller, G.A. Transformation of rat inner medullary fibroblasts to myofibroblasts in vitro. Kidney Int. 1997, 52, 1279–1290. [Google Scholar] [CrossRef]
- Miyazaki, Y.; Shimizu, A.; Pastan, I.; Taguchi, K.; Naganuma, E.; Suzuki, T.; Hosoya, T.; Yokoo, T.; Saito, A.; Miyata, T.; et al. Keap1 inhibition attenuates glomerulosclerosis. Nephrol. Dial. Transplant. 2014, 29, 783–791. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, P.; Chang, M.; Chen, B.; Ge, Y.; Malhotra, D.K.; Dworkin, L.D.; Gong, R. Melanocortin therapy ameliorates podocytopathy and proteinuria in experimental focal segmental glomerulosclerosis involving a podocyte specific non-MC1R-mediated melanocortinergic signaling. Clin. Sci. 2020, 134, 695–710. [Google Scholar] [CrossRef]
- Ennulat, D.; Steffens, W.L.; Brown, S.A. Desmin expression in mesangial cells and fibroblasts in vitro. In Vitro Cell. Dev. Biol. Anim. 1998, 34, 450–454. [Google Scholar] [CrossRef]
- Manotham, K.; Tanaka, T.; Matsumoto, M.; Ohse, T.; Inagi, R.; Miyata, T.; Kurokawa, K.; Fujita, T.; Ingelfinger, J.R.; Nangaku, M. Transdifferentiation of cultured tubular cells induced by hypoxia. Kidney Int. 2004, 65, 871–880. [Google Scholar] [CrossRef]
- Yuasa, T.; Juniantito, V.; Ichikawa, C.; Yano, R.; Izawa, T.; Kuwamura, M.; Yamate, J. Thy-1 expression, a possible marker of early myofibroblast development, in renal tubulointerstitial fibrosis induced in rats by cisplatin. Exp. Toxicol. Pathol. 2013, 65, 651–659. [Google Scholar] [CrossRef]
- Kumar, S.; Fan, X.; Rasouly, H.M.; Sharma, R.; Salant, D.J.; Lu, W. ZEB2 controls kidney stromal progenitor differentiation and inhibits abnormal myofibroblast expansion and kidney fibrosis. JCI Insight 2023, 8, e158418. [Google Scholar] [CrossRef] [PubMed]
- Wolf, G.; Haberstroh, U.; Neilson, E.G. Angiotensin II stimulates the proliferation and biosynthesis of type I collagen in cultured murine mesangial cells. Am. J. Pathol. 1992, 140, 95–107. [Google Scholar] [PubMed]
- Johnson, R.J.; Iida, H.; Alpers, C.E.; Majesky, M.W.; Schwartz, S.M.; Pritzi, P.; Gordon, K.; Gown, A.M. Expression of smooth muscle cell phenotype by rat mesangial cells in immune complex nephritis. Alpha-smooth muscle actin is a marker of mesangial cell proliferation. J. Clin. Investig. 1991, 87, 847–858. [Google Scholar] [CrossRef] [PubMed]
- LeBleu, V.S.; Taduri, G.; O’Connell, J.; Teng, Y.; Cooke, V.G.; Woda, C.; Sugimoto, H.; Kalluri, R. Origin and function of myofibroblasts in kidney fibrosis. Nat. Med. 2013, 19, 1047–1053. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Zheng, X.; Song, Y.; Qu, L.; Tang, J.; Meng, L.; Wang, Y. Apocynin attenuates renal fibrosis via inhibition of NOXs-ROS-ERK-myofibroblast accumulation in UUO rats. Free Radic. Res. 2016, 50, 840–852. [Google Scholar] [CrossRef]
- Huang, H.; You, Y.; Lin, X.; Tang, C.; Gu, X.; Huang, M.; Qin, Y.; Tan, J.; Huang, F. Inhibition of TRPC6 signal pathway alleviates podocyte injury induced by TGF-β1. Cell. Physiol. Biochem. 2017, 41, 163–172. [Google Scholar] [CrossRef]
- Lawson, J.S.; Syme, H.M.; Wheeler-Jones, C.P.D.; Elliott, J. Characterisation of feline renal cortical fibroblast cultures and their transcriptional response to transforming growth factor β1. BMC Vet. Res. 2018, 14, 76. [Google Scholar] [CrossRef]
- Panizo, S.; Martinez-Arias, L.; Alonso-Montes, C.; Cannata, P.; Martin-Carro, B.; Fernandez-Martin, J.L.; Naves-Diaz, M.; Carillo-Lopez, N.; Cannata-Andia, J.B. Fibrosis in chronic kidney disease: Pathogenesis and consequences. Int. J. Mol. Sci. 2021, 22, 408. [Google Scholar] [CrossRef]
- Bulow, R.D.; Boor, P. Extracellular matrix in kidney fibrosis: More than just a scaffold. J. Histochem. Cytochem. 2019, 67, 643–661. [Google Scholar] [CrossRef]
- Altrock, E.; Sens, C.; Wuerfel, C.; Vasel, M.; Kawelke, N.; Dooley, S.; Sottile, J.; Nakchbandi, I.A. Inhibition of fibronectin deposition improves experimental liver fibrosis. J. Hepatol. 2015, 62, 625–633. [Google Scholar] [CrossRef]
- Meng, X.M.; Nikolic-Paterson, D.J.; Lan, H.Y. TGF-β: The master regulator of fibrosis. Nat. Rev. Nephrol. 2016, 12, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Liu, Y. New insights into the role and mechanism of Wnt/β-catenin signalling in kidney fibrosis. Nephrology 2018, 23 (Suppl. S4), 38–43. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Ma, T.; Lian, X.; Gao, J.; Wang, W.; Weng, W.; Lu, X.; Sun, W.; Cheng, Y.; Fu, Y.; et al. Clopidogrel reduces fibronectin accumulation and improves diabetes-induced renal fibrosis. Int. J. Biol. Sci. 2019, 15, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Younesi, S.; Parsian, H. Diagnostic accuracy of glycoproteins in the assessment of liver fibrosis: A comparison between laminin, fibronectin, and hyaluronic acid. Turk. J. Gastroenterol. 2019, 30, 524–531. [Google Scholar] [CrossRef]
- Horinouchi, Y.; Murashima, Y.; Yamada, Y.; Yoshioka, S.; Fukushima, K.; Kure, T.; Sasaki, N.; Imanishi, M.; Fujino, H.; Tsuchiya, K.; et al. Pemafibrate inhibited renal dysfunction and fibrosis in a mouse model of adenine-induced chronic kidney disease. Life Sci. 2023, 321, 121590. [Google Scholar] [CrossRef]
- Luo, S.; Yang, M.; Zhao, H.; Han, Y.; Jiang, N.; Yang, J.; Chen, W.; Li, C.; Liu, Y.; Zhao, C.; et al. Caveolin-1 regulates cellular metabolism: A potential therapeutic target in kidney disease. Front. Pharmacol. 2021, 12, 768100. [Google Scholar] [CrossRef]
- Sottile, J.; Chandler, J. Fibronectin matrix turnover occurs through a caveolin-1—dependent process. Mol. Biol. Cell 2005, 16, 757–768. [Google Scholar] [CrossRef]
- Shi, F.; Sottile, J. Caveolin-1-dependent β1 integrin endocytosis is a critical regulator of fibronectin turnover. J. Cell Sci. 2008, 121, 2360–2371. [Google Scholar] [CrossRef]
- Hung, T.W.; Liou, J.H.; Yeh, K.T.; Tsai, J.P.; Wu, S.W.; Tai, H.C.; Kao, W.T.; Lin, S.H.; Cheng, Y.W.; Chang, H.R. Renal expression of hypoxia inducible factor-1α in patients with chronic kidney disease: A clinicopathologic study from nephrectomized kidneys. Indian J. Med. Res. 2013, 137, 102–110. [Google Scholar]
- Faivre, A.; Dissard, R.; Kuo, W.; Verissimo, T.; Legouis, D.; Arnoux, G.; Heckenmeyer, C.; Fernandez, M.; Tihy, M.; Rajaram, R.D.; et al. Evolution of hypoxia and hypoxia-inducible factor asparaginyl hydroxylase regulation in chronic kidney disease. Nephrol. Dial. Transplant. 2023, 38, 2276–2288. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; Xiong, J. The role of hypoxia-inducible factor-1 alpha in renal disease. Molecules 2022, 27, 7318. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Lu, F.; Wang, M.; Wang, L.; Ye, C.; Yang, S.; Wang, C. Linking renal hypoxia and oxidative stress in chronic kidney disease: Based on clinical subjects and animal models. Biomol. Biomed. 2024, 24, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Q.; Li, X.B.; Guo, S.J.; Chu, S.L.; Gao, P.J.; Zhu, D.L.; Niu, W.Q.; Jia, N. Apocynin attenuates oxidative stress and cardiac fibrosis in angiotensin II-induced cardiac diastolic dysfunction in mice. Acta Pharmacol. Sin. 2013, 34, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Fayed, M.R.; El-Naga, R.N.; Akool, E.S.; El-Demerdash, E. The potential antifibrotic impact of apocynin and alpha-lipoic acid in concanavalin A-induced liver fibrosis in rats: Role of NADPH oxidases 1 and 4. Drug Discov. Ther. 2018, 12, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Thallas-Bonke, V.; Coughlan, M.T.; Bach, L.A.; Cooper, M.E.; Forbes, J.M. Preservation of kidney function with combined inhibition of NADPH oxidase and angiotensin-converting enzyme in diabetic nephropathy. Am. J. Nephrol. 2010, 32, 73–82. [Google Scholar] [CrossRef]
- Zhang, L.; Pang, S.; Deng, B.; Qian, L.; Chen, J.; Zou, J.; Zheng, J.; Yang, L.; Zhang, C.; Chen, X.; et al. High glucose induces renal mesangial cell proliferation and fibronectin expression through JNK/NF-kB/NADPH oxidase/ROS pathway, which is inhibited by resveratrol. Int. J. Biochem. Cell Biol. 2012, 44, 629–638. [Google Scholar] [CrossRef]
- Rhyu, D.Y.; Park, J.; Sharma, B.R.; Ha, H. Role of reactive oxygen species in transforming growth factor-beta1–induced extracellular matrix accumulation in renal tubular epithelial cells. Transplant. Proc. 2012, 44, 625–628. [Google Scholar] [CrossRef]
- Liu, X.; Deng, Y.; Shang, J.; Yang, X.H.; Liu, K.; Liu, H.G.; Xu, Y.J. Effect of NADPH oxidase inhibitor apocynin on the expression of hypoxia-induced factor-1α and endothelin-1 in rat carotid body exposed to chronic intermittent hypoxia. J. Huazhong Univ. Sci. Technol. Med. Sci. 2013, 33, 178–184. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, Y.; Qiao, G.; Zhou, Y.; Xu, Z.; Hill, C.; Jiang, Z.; Wang, Y. Hyperbaric oxygen ameliorates bleomycin-induced pulmonary fibrosis in mice. Front. Mol. Biosci. 2021, 8, 675437. [Google Scholar] [CrossRef]
- Silva, F.S.; de Souza, K.S.C.; Galdino, O.A.; de Moraes, M.V.; Ishikawa, U.; Medeiros, M.A.; Lima, J.P.M.S.; Medeiros, K.C.P.; Farias, N.B.S.; de Araujo Junior, R.F.; et al. Hyperbaric oxygen therapy mitigates left ventricular remodeling, upregulates MMP-2 and VEGF, and inhibits the induction of MMP-9, TGF-β1, and TNF-α in streptozotocin-induced diabetic rat heart. Life Sci. 2022, 295, 120393. [Google Scholar] [CrossRef]
- Song, K.X.; Liu, S.; Zhang, M.Z.; Liang, W.Z.; Liu, H.; Dong, X.H.; Wang, Y.B.; Wang, X.J. Hyperbaric oxygen therapy improves the effect of keloid surgery and radiotherapy by reducing the recurrence rate. J. Zhejiang Univ. Sci. B 2018, 19, 853–862. [Google Scholar] [CrossRef] [PubMed]
- van der Loop, F.T.; Gabbiani, G.; Kohnen, G.; Ramaekers, F.C.; van Eys, G.J. Differentiation of smooth muscle cells in human blood vessels as defined by smoothelin, a novel marker for the contractile phenotype. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Stenman, S.; Vaheri, A. Distribution of a major connective tissue protein, fibronectin, in normal human tissues. J. Exp. Med. 1978, 147, 1054–1064. [Google Scholar] [CrossRef] [PubMed]
- Manotham, K.; Tanaka, T.; Ohse, T.; Kojima, I.; Miyata, T.; Inagi, R.; Tanaka, H.; Sassa, R.; Fujita, T.; Nangaku, M. A biologic role of HIF-1 in the renal medulla. Kidney Int. 2005, 67, 1428–1439. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vukovic, A.; Karanovic, D.; Mihailovic-Stanojevic, N.D.; Miloradovic, Z.; Brkic, P.; Zivotic, M.; Nesovic Ostojic, J.; Ivanov, M.; Kovacevic, S.; Vajic, U.-J.; et al. Apocynin and Hyperbaric Oxygen Therapy Improve Renal Function and Structure in an Animal Model of CKD. Biomedicines 2024, 12, 2788. https://doi.org/10.3390/biomedicines12122788
Vukovic A, Karanovic D, Mihailovic-Stanojevic ND, Miloradovic Z, Brkic P, Zivotic M, Nesovic Ostojic J, Ivanov M, Kovacevic S, Vajic U-J, et al. Apocynin and Hyperbaric Oxygen Therapy Improve Renal Function and Structure in an Animal Model of CKD. Biomedicines. 2024; 12(12):2788. https://doi.org/10.3390/biomedicines12122788
Chicago/Turabian StyleVukovic, Andrija, Danijela Karanovic, Nevena D Mihailovic-Stanojevic, Zoran Miloradovic, Predrag Brkic, Maja Zivotic, Jelena Nesovic Ostojic, Milan Ivanov, Sanjin Kovacevic, Una-Jovana Vajic, and et al. 2024. "Apocynin and Hyperbaric Oxygen Therapy Improve Renal Function and Structure in an Animal Model of CKD" Biomedicines 12, no. 12: 2788. https://doi.org/10.3390/biomedicines12122788
APA StyleVukovic, A., Karanovic, D., Mihailovic-Stanojevic, N. D., Miloradovic, Z., Brkic, P., Zivotic, M., Nesovic Ostojic, J., Ivanov, M., Kovacevic, S., Vajic, U.-J., Jovovic, D., & De Luka, S. R. (2024). Apocynin and Hyperbaric Oxygen Therapy Improve Renal Function and Structure in an Animal Model of CKD. Biomedicines, 12(12), 2788. https://doi.org/10.3390/biomedicines12122788