Alarmins in Chronic Spontaneous Urticaria: Immunological Insights and Therapeutic Perspectives
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Epithelial-Derived Alarmins (IL-33, IL-25, TLSP)
3.1.1. Interleukin-33 (IL-33)
3.1.2. Interleukin-25 (IL-25)
3.1.3. Thymic Stromal Lymphopoietin (TSLP)
3.2. Role of Non-Epithelial-Derived Alarmins (HSPs, SP100, EDN, Uric Acid, β-Defensins)
3.2.1. Heat Shock Proteins (HSPs)
3.2.2. S100 Proteins
3.2.3. Eosinophil-Derived Neurotoxin (EDN)
3.2.4. Uric Acid
3.2.5. β-Defensins
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kolkhir, P.; Bonnekoh, H.; Metz, M.; Maurer, M. Chronic Spontaneous Urticaria: A Review. JAMA 2024, 332, 1464–1477. [Google Scholar] [CrossRef] [PubMed]
- Fricke, J.; Ávila, G.; Keller, T.; Weller, K.; Lau, S.; Maurer, M.; Zuberbier, T.; Keil, T. Prevalence of chronic urticaria in children and adults across the globe: Systematic review with meta-analysis. Allergy 2020, 75, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Zuberbier, T.; Abdul Latiff, A.H.; Abuzakouk, M.; Aquilina, S.; Asero, R.; Baker, D.; Ballmer-Weber, B.; Bangert, C.; Ben-Shoshan, M.; Bernstein, J.A.; et al. The international EAACI/GA2LEN/EuroGuiDerm/APAAACI guideline for the definition, classification, diagnosis, and management of urticaria. Allergy 2022, 77, 734–766. [Google Scholar] [CrossRef]
- Church, M.K.; Kolkhir, P.; Metz, M.; Maurer, M. The role and relevance of mast cells in urticaria. Immunol. Rev. 2018, 282, 232–247. [Google Scholar] [CrossRef]
- Dobrican, C.-T.; Muntean, I.A.; Pintea, I.; Petricău, C.; Deleanu, D.-M.; Filip, G.A. Immunological signature of chronic spontaneous urticaria (Review). Exp. Ther. Med. 2022, 23, 381. [Google Scholar] [CrossRef]
- Maurer, M.; Eyerich, K.; Eyerich, S.; Ferrer, M.; Gutermuth, J.; Hartmann, K.; Jakob, T.; Kapp, A.; Kolkhir, P.; Larenas-Linnemann, D.; et al. Urticaria: Collegium Internationale Allergologicum (CIA) Update 2020. Int. Arch. Allergy Immunol. 2020, 181, 321–333. [Google Scholar] [CrossRef]
- Dobrican-Băruța, C.-T.; Deleanu, D.M.; Muntean, I.A.; Nedelea, I.; Bălan, R.-G.; Filip, G.A.; Procopciuc, L.M. The Alarmin Triad-IL-25, IL-33, and TSLP-Serum Levels and Their Clinical Implications in Chronic Spontaneous Urticaria. Int. J. Mol. Sci. 2024, 25, 2026. [Google Scholar] [CrossRef]
- Lin, W.; Zhou, Q.; Liu, C.; Ying, M.; Xu, S. Increased plasma IL-17, IL-31, and IL-33 levels in chronic spontaneous urticaria. Sci. Rep. 2017, 7, 17797. [Google Scholar] [CrossRef]
- Danieli, M.G.; Antonelli, E.; Piga, M.A.; Claudi, I.; Palmeri, D.; Tonacci, A.; Allegra, A.; Gangemi, S. Alarmins in autoimmune diseases. Autoimmun. Rev. 2022, 21, 103142. [Google Scholar] [CrossRef]
- Roh, J.S.; Sohn, D.H. Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Netw. 2018, 18, e27. [Google Scholar] [CrossRef]
- Papa, V.; Li Pomi, F.; Borgia, F.; Vaccaro, M.; Pioggia, G.; Gangemi, S. Alarmins in cutaneous malignant melanoma: An updated overview of emerging evidence on their pathogenetic, diagnostic, prognostic, and therapeutic role. J. Dermatol. 2024, 51, 927–938. [Google Scholar] [CrossRef] [PubMed]
- Palmer, G.; Gabay, C. Interleukin-33 biology with potential insights into human diseases. Nat. Rev. Rheumatol. 2011, 7, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, H.; Hayakawa, M.; Kume, A.; Tominaga, S. Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation. J. Biol. Chem. 2007, 282, 26369–26380. [Google Scholar] [CrossRef] [PubMed]
- Murdaca, G.; Greco, M.; Tonacci, A.; Negrini, S.; Borro, M.; Puppo, F.; Gangemi, S. IL-33/IL-31 Axis in Immune-Mediated and Allergic Diseases. Int. J. Mol. Sci. 2019, 20, 5856. [Google Scholar] [CrossRef]
- Di Salvo, E.; Ventura-Spagnolo, E.; Casciaro, M.; Navarra, M.; Gangemi, S. IL-33/IL-31 Axis: A Potential Inflammatory Pathway. Mediat. Inflamm. 2018, 2018, 3858032. [Google Scholar] [CrossRef]
- Maier, E.; Werner, D.; Duschl, A.; Bohle, B.; Horejs-Hoeck, J. Human Th2 but not Th9 cells release IL-31 in a STAT6/NF-κB-dependent way. J. Immunol. 2014, 193, 645–654. [Google Scholar] [CrossRef]
- Stott, B.; Lavender, P.; Lehmann, S.; Pennino, D.; Durham, S.; Schmidt-Weber, C.B. Human IL-31 is induced by IL-4 and promotes TH2-driven inflammation. J. Allergy Clin. Immunol. 2013, 132, 446–454.e5. [Google Scholar] [CrossRef]
- Puxeddu, I.; Italiani, P.; Giungato, P.; Pratesi, F.; Panza, F.; Bartaloni, D.; Rocchi, V.; Del Corso, I.; Boraschi, D.; Migliorini, P. Free IL-18 and IL-33 cytokines in chronic spontaneous urticaria. Cytokine 2013, 61, 741–743. [Google Scholar] [CrossRef]
- Metz, M.; Krull, C.; Maurer, M. Histamine, TNF, C5a, IL-6, -9, -18, -31, -33, TSLP, neopterin, and VEGF are not elevated in chronic spontaneous urticaria. J. Dermatol. Sci. 2013, 70, 222–225. [Google Scholar] [CrossRef]
- Zheng, R.; Qian, L.; Yu, J.; Li, M.; Qian, Q. Analysis of the changes in Th9 cells and related cytokines in the peripheral blood of spontaneous urticaria patients. Biomed. Rep. 2017, 6, 633–639. [Google Scholar] [CrossRef]
- Topal, F.A.; Zuberbier, T.; Makris, M.P.; Hofmann, M. The role of IL-17, IL-23 and IL-31, IL-33 in allergic skin diseases. Curr. Opin. Allergy Clin. Immunol. 2020, 20, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Vadasz, Z.; Toubi, E. The role of increased T helper cell 2 cytokine expression in skin weals of chronic spontaneous urticaria: Are they always activating cytokines? Br. J. Dermatol. 2015, 172, 1185–1186. [Google Scholar] [CrossRef] [PubMed]
- Kay, A.B.; Clark, P.; Maurer, M.; Ying, S. Elevations in T-helper-2-initiating cytokines (interleukin-33, interleukin-25 and thymic stromal lymphopoietin) in lesional skin from chronic spontaneous (‘idiopathic’) urticaria. Br. J. Dermatol. 2015, 172, 1294–1302. [Google Scholar] [CrossRef] [PubMed]
- Moy, A.P.; Murali, M.; Nazarian, R.M. Identification of a Th2- and Th17-skewed immune phenotype in chronic urticaria with Th22 reduction dependent on autoimmunity and thyroid disease markers. J. Cutan. Pathol. 2016, 43, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Garcovich, S.; Maurelli, M.; Gisondi, P.; Peris, K.; Yosipovitch, G.; Girolomoni, G. Pruritus as a Distinctive Feature of Type 2 Inflammation. Vaccines 2021, 9, 303. [Google Scholar] [CrossRef]
- Schwendinger-Schreck, J.; Wilson, S.R.; Bautista, D.M. Interactions between keratinocytes and somatosensory neurons in itch. Handb. Exp. Pharmacol. 2015, 226, 177–190. [Google Scholar] [CrossRef]
- Liu, B.; Tai, Y.; Achanta, S.; Kaelberer, M.M.; Caceres, A.I.; Shao, X.; Fang, J.; Jordt, S.-E. IL-33/ST2 signaling excites sensory neurons and mediates itch response in a mouse model of poison ivy contact allergy. Proc. Natl. Acad. Sci. USA 2016, 113, E7572–E7579. [Google Scholar] [CrossRef]
- Wilson, S.R.; Thé, L.; Batia, L.M.; Beattie, K.; Katibah, G.E.; McClain, S.P.; Pellegrino, M.; Estandian, D.M.; Bautista, D.M. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 2013, 155, 285–295. [Google Scholar] [CrossRef]
- Trier, A.M.; Ver Heul, A.M.; Fredman, A.; Le, V.; Wang, Z.; Auyeung, K.; Meixiong, J.; Lovato, P.; Holtzman, M.J.; Wang, F.; et al. IL-33 potentiates histaminergic itch. J. Allergy Clin. Immunol. 2024, 153, 852–859.e3. [Google Scholar] [CrossRef]
- Zheng, D.; Yang, X. Clinical observation on the therapeutic effect of desloratadine citrate disodium in the treatment of chronic urticaria and changes in IL4, IL18, IL23 and IL-33 levels before and after treatment. Pak. J. Pharm. Sci. 2017, 30, 1139–1142. [Google Scholar]
- Kulumbegov, B.; Chikovani, T.; Gotua, M.; Kikodze, N.; Magen, E. Interleukin-33, endothelin-1, and inflammatory parameters in chronic spontaneous urticaria. Allergy Asthma Proc. 2023, 44, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Borowczyk, J.; Shutova, M.; Brembilla, N.C.; Boehncke, W.-H. IL-25 (IL-17E) in epithelial immunology and pathophysiology. J. Allergy Clin. Immunol. 2021, 148, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Borgia, F.; Li Pomi, F.; Alessandrello, C.; Vaccaro, M.; Gangemi, S. Potential Role of Innate Lymphoid Cells in the Pathogenesis and Treatment of Skin Diseases. J. Clin. Med. 2023, 12, 3043. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Oka, T.; Demehri, S. Alarmin Cytokines as Central Regulators of Cutaneous Immunity. Front. Immunol. 2022, 13, 876515. [Google Scholar] [CrossRef]
- Wang, S.-H.; Zuo, Y.-G. Thymic Stromal Lymphopoietin in Cutaneous Immune-Mediated Diseases. Front. Immunol. 2021, 12, 698522. [Google Scholar] [CrossRef]
- Harada, M.; Hirota, T.; Jodo, A.I.; Doi, S.; Kameda, M.; Fujita, K.; Miyatake, A.; Enomoto, T.; Noguchi, E.; Yoshihara, S.; et al. Functional analysis of the thymic stromal lymphopoietin variants in human bronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 2009, 40, 368–374. [Google Scholar] [CrossRef]
- Park, L.S.; Martin, U.; Garka, K.; Gliniak, B.; Di Santo, J.P.; Muller, W.; Largaespada, D.A.; Copeland, N.G.; Jenkins, N.A.; Farr, A.G.; et al. Cloning of the murine thymic stromal lymphopoietin (TSLP) receptor: Formation of a functional heteromeric complex requires interleukin 7 receptor. J. Exp. Med. 2000, 192, 659–670. [Google Scholar] [CrossRef]
- Pandey, A.; Ozaki, K.; Baumann, H.; Levin, S.D.; Puel, A.; Farr, A.G.; Ziegler, S.F.; Leonard, W.J.; Lodish, H.F. Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin. Nat. Immunol. 2000, 1, 59–64. [Google Scholar] [CrossRef]
- Ziegler, S.F.; Roan, F.; Bell, B.D.; Stoklasek, T.A.; Kitajima, M.; Han, H. The biology of thymic stromal lymphopoietin (TSLP). Adv. Pharmacol. 2013, 66, 129–155. [Google Scholar] [CrossRef]
- Soumelis, V.; Reche, P.A.; Kanzler, H.; Yuan, W.; Edward, G.; Homey, B.; Gilliet, M.; Ho, S.; Antonenko, S.; Lauerma, A.; et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol. 2002, 3, 673–680. [Google Scholar] [CrossRef]
- Kashyap, M.; Rochman, Y.; Spolski, R.; Samsel, L.; Leonard, W.J. Thymic stromal lymphopoietin is produced by dendritic cells. J. Immunol. 2011, 187, 1207–1211. [Google Scholar] [CrossRef] [PubMed]
- Jafari, A.J.; Rivera, M.; Hebert, A.A. The role of thymic stromal lymphopoietin in cutaneous disorders. Arch. Dermatol. Res. 2024, 316, 123. [Google Scholar] [CrossRef] [PubMed]
- Tissières, A.; Mitchell, H.K.; Tracy, U.M. Protein synthesis in salivary glands of Drosophila melanogaster: Relation to chromosome puffs. J. Mol. Biol. 1974, 84, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Kampinga, H.H.; Hageman, J.; Vos, M.J.; Kubota, H.; Tanguay, R.M.; Bruford, E.A.; Cheetham, M.E.; Chen, B.; Hightower, L.E. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 2009, 14, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Milani, A.; Basirnejad, M.; Bolhassani, A. Heat-shock proteins in diagnosis and treatment: An overview of different biochemical and immunological functions. Immunotherapy 2019, 11, 215–239. [Google Scholar] [CrossRef]
- Gu, C.; Fan, X.; Yu, W. Functional Diversity of Mammalian Small Heat Shock Proteins: A Review. Cells 2023, 12, 1947. [Google Scholar] [CrossRef]
- Kasperska-Zając, A.; Damasiewicz-Bodzek, A.; Bieniek, K.; Skrzypulec-Frankel, A.; Tyrpien-Golder, K.; Grzanka, A. Elevated circulating heat shock protein 70 and its antibody concentrations in chronic spontaneous urticaria. Int. J. Immunopathol. Pharmacol. 2018, 31, 394632017750440. [Google Scholar] [CrossRef]
- Asea, A.; Kraeft, S.K.; Kurt-Jones, E.A.; Stevenson, M.A.; Chen, L.B.; Finberg, R.W.; Koo, G.C.; Calderwood, S.K. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med. 2000, 6, 435–442. [Google Scholar] [CrossRef]
- Kasperska-Zajac, A.; Grzanka, A.; Damasiewicz-Bodzek, A. IL-6 Transsignaling in Patients with Chronic Spontaneous Urticaria. PLoS ONE 2015, 10, e0145751. [Google Scholar] [CrossRef]
- Horwich, A.L.; Fenton, W.A.; Chapman, E.; Farr, G.W. Two families of chaperonin: Physiology and mechanism. Annu. Rev. Cell Dev. Biol. 2007, 23, 115–145. [Google Scholar] [CrossRef]
- Spierings, J.; van Eden, W. Heat shock proteins and their immunomodulatory role in inflammatory arthritis. Rheumatology 2017, 56, 198–208. [Google Scholar] [CrossRef] [PubMed]
- David, S.; Bucchieri, F.; Corrao, S.; Czarnecka, A.M.; Campanella, C.; Farina, F.; Peri, G.; Tomasello, G.; Sciumè, C.; Modica, G.; et al. Hsp10: Anatomic distribution, functions, and involvement in human disease. Front. Biosci. (Elite Ed.) 2013, 5, 768–778. [Google Scholar] [CrossRef] [PubMed]
- Athanasas-Platsis, S.; Zhang, B.; Hillyard, N.C.; Cavanagh, A.C.; Csurhes, P.A.; Morton, H.; McCombe, P.A. Early pregnancy factor suppresses the infiltration of lymphocytes and macrophages in the spinal cord of rats during experimental autoimmune encephalomyelitis but has no effect on apoptosis. J. Neurol. Sci. 2003, 214, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Stafforini, D.M.; McIntyre, T.M.; Zimmerman, G.A.; Prescott, S.M. Platelet-activating factor, a pleiotrophic mediator of physiological and pathological processes. Crit. Rev. Clin. Lab. Sci. 2003, 40, 643–672. [Google Scholar] [CrossRef] [PubMed]
- Vanags, D.; Williams, B.; Johnson, B.; Hall, S.; Nash, P.; Taylor, A.; Weiss, J.; Feeney, D. Therapeutic efficacy and safety of chaperonin 10 in patients with rheumatoid arthritis: A double-blind randomised trial. Lancet 2006, 368, 855–863. [Google Scholar] [CrossRef]
- Johnson, B.J.; Le, T.T.T.; Dobbin, C.A.; Banovic, T.; Howard, C.B.; de Flores, F.M.L.; Vanags, D.; Naylor, D.J.; Hill, G.R.; Suhrbier, A. Heat shock protein 10 inhibits lipopolysaccharide-induced inflammatory mediator production. J. Biol. Chem. 2005, 280, 4037–4047. [Google Scholar] [CrossRef]
- Choi, B.Y.; Yang, E.-M.; Jung, H.-W.; Shin, M.-K.; Jo, J.; Cha, H.-Y.; Park, H.-S.; Kang, H.-C.; Ye, Y.-M. Anti-heat shock protein 10 IgG in chronic spontaneous urticaria: Relation with miRNA-101-5p and platelet-activating factor. Allergy 2023, 78, 3166–3177. [Google Scholar] [CrossRef]
- Bao, L.; Chau, C.; Bao, J.; Tsoukas, M.M.; Chan, L.S. IL-4 dysregulates microRNAs involved in inflammation, angiogenesis and apoptosis in epidermal keratinocytes. Microbiol. Immunol. 2018, 62, 732–736. [Google Scholar] [CrossRef]
- Wierzbicki, T.; Iqbal, S.M.; Cuvelier, S.L.; Awong, G.; Tibbles, L.A.; Patel, K.D. IL-4 primes human endothelial cells for secondary responses to histamine. J. Leukoc. Biol. 2003, 74, 420–427. [Google Scholar] [CrossRef]
- Andrades, E.; Clarós, M.; Torres, J.V.; Nonell, L.; González, M.; Curto-Barredo, L.; Rozas-Muñoz, E.; Gimeno, R.; Barranco, C.; Pujol, R.M.; et al. New transcriptome and clinical findings of platelet-activating factor in chronic spontaneous urticaria: Pathogenic and treatment relevance. Biofactors 2022, 48, 1284–1294. [Google Scholar] [CrossRef]
- Tukaj, S. Dual role of autoantibodies to heat shock proteins in autoimmune diseases. Front. Immunol. 2024, 15, 1421528. [Google Scholar] [CrossRef] [PubMed]
- Dow, C.T.M. paratuberculosis Heat Shock Protein 65 and Human Diseases: Bridging Infection and Autoimmunity. Autoimmune Dis. 2012, 2012, 150824. [Google Scholar] [CrossRef] [PubMed]
- Izaki, S.; Goto, Y.; Kitamura, K.; Nomaguchi, H. Antibody to 65-kD stress protein (HSP65) of Mycobacterium leprae in various inflammatory skin diseases. A preliminary report. J. Jpn. Soc. Lepr. 1994, 63, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Sánchez Caraballo, A.; Guzmán, Y.; Sánchez, J.; Munera, M.; Garcia, E.; Gonzalez-Devia, D. Potential contribution of Helicobacter pylori proteins in the pathogenesis of type 1 gastric neuroendocrine tumor and urticaria. In silico approach. PLoS ONE 2023, 18, e0281485. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, Y.-J.; Lee, H.J.; Hong, J.Y.; Park, A.Y.; Chung, E.H.; Lee, S.Y.; Lee, J.S.; Park, Y.L.; Lee, S.H.; et al. Systematic review and meta-analysis: Effect of Helicobacter pylori eradication on chronic spontaneous urticaria. Helicobacter 2019, 24, e12661. [Google Scholar] [CrossRef]
- Moore, B.W.; Mcgregor, D. Chromatographic and electrophoretic fractionation of soluble proteins of brain and liver. J. Biol. Chem. 1965, 240, 1647–1653. [Google Scholar] [CrossRef]
- Abdi, W.; Romasco, A.; Alkurdi, D.; Santacruz, E.; Okinedo, I.; Zhang, Y.; Kannan, S.; Shakiba, S.; Richmond, J.M. An overview of S100 proteins and their functions in skin homeostasis, interface dermatitis conditions and other skin pathologies. Exp. Dermatol. 2024, 33, e15158. [Google Scholar] [CrossRef]
- Donato, R.; Cannon, B.R.; Sorci, G.; Riuzzi, F.; Hsu, K.; Weber, D.J.; Geczy, C.L. Functions of S100 proteins. Curr. Mol. Med. 2013, 13, 24–57. [Google Scholar] [CrossRef]
- Zeng, W.; Xia, J.; Zeng, Q. Levels of serum inflammatory cytokines and their correlations with disease severity in patients with chronic spontaneous urticaria. Adv. Dermatol. Allergol. Postępy Dermatol. I Alergol. 2024, 41, 85–90. [Google Scholar] [CrossRef]
- Wang, S.; Song, R.; Wang, Z.; Jing, Z.; Wang, S.; Ma, J. S100A8/A9 in Inflammation. Front. Immunol. 2018, 9, 1298. [Google Scholar] [CrossRef]
- Meijer, B.; Gearry, R.B.; Day, A.S. The role of S100A12 as a systemic marker of inflammation. Int. J. Inflam. 2012, 2012, 907078. [Google Scholar] [CrossRef] [PubMed]
- Xia, P.; Ji, X.; Yan, L.; Lian, S.; Chen, Z.; Luo, Y. Roles of S100A8, S100A9 and S100A12 in infection, inflammation and immunity. Immunology 2024, 171, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.-Y.; Lin, W.; Zhu, X.-X.; Xu, S.-L.; Ying, M.-X.; Shi, L.; Lin, B.-J. Increased Plasma Levels of S100A8, S100A9, and S100A12 in Chronic Spontaneous Urticaria. Indian J. Dermatol. 2019, 64, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Ehlermann, P.; Eggers, K.; Bierhaus, A.; Most, P.; Weichenhan, D.; Greten, J.; Nawroth, P.P.; Katus, H.A.; Remppis, A. Increased proinflammatory endothelial response to S100A8/A9 after preactivation through advanced glycation end products. Cardiovasc. Diabetol. 2006, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- Simard, J.-C.; Cesaro, A.; Chapeton-Montes, J.; Tardif, M.; Antoine, F.; Girard, D.; Tessier, P.A. S100A8 and S100A9 induce cytokine expression and regulate the NLRP3 inflammasome via ROS-dependent activation of NF-κB(1.). PLoS ONE 2013, 8, e72138. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Zhang, X.; Zheng, Y.; Peng, L.; Hou, J.; Meng, H. S100A9-induced release of interleukin (IL)-6 and IL-8 through toll-like receptor 4 (TLR4) in human periodontal ligament cells. Mol. Immunol. 2015, 67, 223–232. [Google Scholar] [CrossRef]
- Yang, Z.; Yan, W.X.; Cai, H.; Tedla, N.; Armishaw, C.; Di Girolamo, N.; Wang, H.W.; Hampartzoumian, T.; Simpson, J.L.; Gibson, P.G.; et al. S100A12 provokes mast cell activation: A potential amplification pathway in asthma and innate immunity. J. Allergy Clin. Immunol. 2007, 119, 106–114. [Google Scholar] [CrossRef]
- Yan, W.X.; Armishaw, C.; Goyette, J.; Yang, Z.; Cai, H.; Alewood, P.; Geczy, C.L. Mast cell and monocyte recruitment by S100A12 and its hinge domain. J. Biol. Chem. 2008, 283, 13035–13043. [Google Scholar] [CrossRef]
- Rosenberg, H.F.; Dyer, K.D.; Foster, P.S. Eosinophils: Changing perspectives in health and disease. Nat. Rev. Immunol. 2013, 13, 9–22. [Google Scholar] [CrossRef]
- Shin, S.-W.; Park, J.S.; Park, C.-S. Elevation of Eosinophil-Derived Neurotoxin in Plasma of the Subjects with Aspirin-Exacerbated Respiratory Disease: A Possible Peripheral Blood Protein Biomarker. PLoS ONE 2013, 8, e66644. [Google Scholar] [CrossRef]
- Kim, C.-K. Eosinophil-derived neurotoxin: A novel biomarker for diagnosis and monitoring of asthma. Korean J. Pediatr. 2013, 56, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Kephart, G.M.; Alexander, J.A.; Arora, A.S.; Romero, Y.; Smyrk, T.C.; Talley, N.J.; Kita, H. Marked deposition of eosinophil-derived neurotoxin in adult patients with eosinophilic esophagitis. Am. J. Gastroenterol. 2010, 105, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Kalach, N.; Kapel, N.; Waligora-Dupriet, A.-J.; Castelain, M.-C.; Cousin, M.O.; Sauvage, C.; Ba, F.; Nicolis, I.; Campeotto, F.; Butel, M.J.; et al. Intestinal permeability and fecal eosinophil-derived neurotoxin are the best diagnosis tools for digestive non-IgE-mediated cow’s milk allergy in toddlers. Clin. Chem. Lab. Med. 2013, 51, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.A.; Al-Obaidi, A.M.; Behiry, E.G.; Hamed, A.M. Serum Levels of Eosinophil-derived Neurotoxin in Patients with Chronic Urticaria. J. Clin. Aesthet. Dermatol. 2020, 13, 21–23. [Google Scholar] [PubMed]
- Gomułka, K.; Mędrala, W. Serum Levels of Vascular Endothelial Growth Factor, Platelet Activating Factor and Eosinophil-Derived Neurotoxin in Chronic Spontaneous Urticaria-A Pilot Study in Adult Patients. Int. J. Mol. Sci. 2022, 23, 9631. [Google Scholar] [CrossRef]
- Ames, B.N.; Cathcart, R.; Schwiers, E.; Hochstein, P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis. Proc. Natl. Acad. Sci. USA 1981, 78, 6858–6862. [Google Scholar] [CrossRef]
- Jin, M.; Yang, F.; Yang, I.; Yin, Y.; Luo, J.J.; Wang, H.; Yang, X.-F. Uric acid, hyperuricemia and vascular diseases. Front. Biosci (Landmark Ed.) 2012, 17, 656–669. [Google Scholar] [CrossRef]
- Jung, S.W.; Kim, S.-M.; Kim, Y.G.; Lee, S.-H.; Moon, J.-Y. Uric acid and inflammation in kidney disease. Am. J. Physiol. Ren. Physiol. 2020, 318, F1327–F1340. [Google Scholar] [CrossRef]
- Kurtkulagi, O.; Tel, B.M.A.; Kahveci, G.; Bilgin, S.; Duman, T.T.; Ertürk, A.; Balci, B.; Aktas, G. Hashimoto’s thyroiditis is associated with elevated serum uric acid to high density lipoprotein-cholesterol ratio. Rom. J. Intern. Med. 2021, 59, 403–408. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, K.; Zhang, X.; Wu, Z.; Wu, Y.; Chu, J.; Kong, W.; Qian, G. Association of serum uric acid-to-high-density lipoprotein cholesterol ratio with non-alcoholic fatty liver disease in American adults: A population-based analysis. Front. Med. 2023, 10, 1164096. [Google Scholar] [CrossRef]
- Metin, Z.; Akca, H.M.; Tur, K.; Akogul, S. Intersecting pathways: Evaluating inflammatory markers and metabolism in chronic spontaneous urticaria with a multi-marker approach. Int. J. Dermatol. 2024, 63, 604–610. [Google Scholar] [CrossRef]
- Štrajtenberger, M.; Stipić-Marković, A.; Barac, E.; Artuković, M.; Lugović-Mihić, L. Human β-defensin 2: A connection between infections and allergic skin diseases. Acta Dermatovenerol. Alp. Pannonica Adriat. 2024, 33, 135–139. [Google Scholar] [CrossRef]
- Tra Cao, T.B.; Cha, H.-Y.; Yang, E.-M.; Choi, B.-Y.; Park, H.-S.; Ye, Y.-M. Serum Human β-Defensin 2 Is Increased in Angioedema Accompanying Chronic Spontaneous Urticaria. Int. Arch. Allergy Immunol. 2021, 182, 1066–1071. [Google Scholar] [CrossRef]
- Rabe, K.F.; Martinez, F.J.; Bhatt, S.P.; Kawayama, T.; Cosio, B.G.; Mroz, R.M.; Boomsma, M.M.; Goulaouic, H.; Nivens, M.C.; Djandji, M.; et al. AERIFY-1/2: Two phase 3, randomised, controlled trials of itepekimab in former smokers with moderate-to-severe COPD. ERJ Open Res. 2024, 10, 00718–02023. [Google Scholar] [CrossRef]
- Yousuf, A.J.; Mohammed, S.; Carr, L.; Yavari Ramsheh, M.; Micieli, C.; Mistry, V.; Haldar, K.; Wright, A.; Novotny, P.; Parker, S.; et al. Astegolimab, an anti-ST2, in chronic obstructive pulmonary disease (COPD-ST2OP): A phase 2a, placebo-controlled trial. Lancet Respir. Med. 2022, 10, 469–477. [Google Scholar] [CrossRef]
- Chan, R.; Stewart, K.; Misirovs, R.; Lipworth, B.J. Targeting Downstream Type 2 Cytokines or Upstream Epithelial Alarmins for Severe Asthma. J. Allergy Clin. Immunol. Pr. 2022, 10, 1497–1505. [Google Scholar] [CrossRef]
- Menzies-Gow, A.; Corren, J.; Bourdin, A.; Chupp, G.; Israel, E.; Wechsler, M.E.; Brightling, C.E.; Griffiths, J.M.; Hellqvist, Å.; Bowen, K.; et al. Tezepelumab in Adults and Adolescents with Severe, Uncontrolled Asthma. N. Engl. J. Med. 2021, 384, 1800–1809. [Google Scholar] [CrossRef]
- Maurer, M.; McLaren, J.; Chon, Y.; Gorski, K.; Bernstein, J.; Hayama, K.; Jain, V.; Sofen, H.; Ponnarambil, S.; Molfino, N. Sustained Improvement in UAS7 After 16-Week Treatment with Tezepelumab in Biologic-Naïve Adults with CSU: Results of the Phase 2b INCEPTION Study. J. Allergy Clin. Immunol. 2024, 153, AB373. [Google Scholar] [CrossRef]
- Hornung, V.; Gaidt, M.M. Friendly fire: Recognition of self by the innate immune system. Curr. Opin. Immunol. 2024, 90, 102457. [Google Scholar] [CrossRef]
- Seirin-Lee, S.; Takahagi, S.; Hide, M. Pathophysiological Mechanisms of the Onset, Development, and Disappearance Phases of Skin Eruptions in Chronic Spontaneous Urticaria. Bull. Math. Biol. 2024, 87, 1. [Google Scholar] [CrossRef]
- Tukaj, S. Heat Shock Protein 70 as a Double Agent Acting Inside and Outside the Cell: Insights into Autoimmunity. Int. J. Mol. Sci. 2020, 21, 5298. [Google Scholar] [CrossRef]
- Ziegert, M.; Witkin, S.S.; Sziller, I.; Alexander, H.; Brylla, E.; Härtig, W. Heat shock proteins and heat shock protein-antibody complexes in placental tissues. Infect. Dis. Obs. Gynecol. 1999, 7, 180–185. [Google Scholar] [CrossRef]
- Birnie, D.H.; Vickers, L.E.; Hillis, W.S.; Norrie, J.; Cobbe, S.M. Increased titres of anti-human heat shock protein 60 predict an adverse one year prognosis in patients with acute cardiac chest pain. Heart 2005, 91, 1148–1153. [Google Scholar] [CrossRef]
- Keijzer, C.; Wieten, L.; van Herwijnen, M.; van der Zee, R.; Van Eden, W.; Broere, F. Heat shock proteins are therapeutic targets in autoimmune diseases and other chronic inflammatory conditions. Expert. Opin. Ther. Targets 2012, 16, 849–857. [Google Scholar] [CrossRef]
- Kulkarni, O.P.; Ryu, M.; Kantner, C.; Sárdy, M.; Naylor, D.; Lambert, D.; Brown, R.; Anders, H.-J. Recombinant chaperonin 10 suppresses cutaneous lupus and lupus nephritis in MRL-(Fas)lpr mice. Nephrol. Dial. Transpl. 2012, 27, 1358–1367. [Google Scholar] [CrossRef]
- van Eden, W. XToll, a recombinant chaperonin 10 as an anti-inflammatory immunomodulator. Curr. Opin. Investig. Drugs 2008, 9, 523–533. [Google Scholar]
- Liang, H.; Li, J.; Zhang, K. Pathogenic role of S100 proteins in psoriasis. Front. Immunol. 2023, 14, 1191645. [Google Scholar] [CrossRef]
- Lou, Y.; Zheng, Y.; Fan, B.; Zhang, L.; Zhu, F.; Wang, X.; Chen, Z.; Tan, X. Serum S100A12 levels are correlated with clinical severity in patients with dermatomyositis-associated interstitial lung disease. J. Int. Med. Res. 2020, 48, 300060519887841. [Google Scholar] [CrossRef]
- de Carvalho, G.C.; Domingues, R.; de Sousa Nogueira, M.A.; Calvielli Castelo Branco, A.C.; Gomes Manfrere, K.C.; Pereira, N.V.; Aoki, V.; Sotto, M.N.; Da Silva Duarte, A.J.; Sato, M.N. Up-regulation of Proinflammatory Genes and Cytokines Induced by S100A8 in CD8+ T Cells in Lichen Planus. Acta Derm. Venereol. 2016, 96, 485–489. [Google Scholar] [CrossRef]
- Tydén, H.; Lood, C.; Gullstrand, B.; Jönsen, A.; Ivars, F.; Leanderson, T.; Bengtsson, A.A. Pro-inflammatory S100 proteins are associated with glomerulonephritis and anti-dsDNA antibodies in systemic lupus erythematosus. Lupus 2017, 26, 139–149. [Google Scholar] [CrossRef]
Alarmins | Author (Country) | Type of Experiments | N°Patients/NCs | Levels of Alarmins in CSU | Potential Biological Effects in CSU | Year [Ref.] |
---|---|---|---|---|---|---|
Epithelial-derived Alarmins | ||||||
IL-33 | Puxeddu I. (Italy) | In vivo (humans) | 73/40 | No detected differences between the two groups (in serum) | No role in pathogenesis of CSU | 2013 [18] |
Metz M. (Germany) | In vivo (humans) | 30/10 | No detected differences between the two groups (in serum) | No role in pathogenesis of CSU | 2013 [19] | |
Zheng R. (China) | In vivo (humans) | 28/28 | No differences in serum IL-33 values | Th2 response may not be important in CSU pathogenesis | 2017 [20] | |
Lin W. (China) | In vivo (humans) | 51/20 | ↑ IL-33 (in plasma) | Possible pathogenic involvement | 2017 [8] | |
Kay AB (UK, Germany) | In vivo (humans) | 8/9 | ↑ IL-33 (in lesional cutaneous biopsies) | Role of IL-33 in inflammatory responses | 2015 [23] | |
Dobrican-Băruța CT (Romania) | In vivo (humans) | 50/38 | ↑ IL-33 (serum) | IL-33 as a possible biomarker in CSU | 2024 [7] | |
Trier AM (St Louis; New York; Baltimore; Denmark; China) | In vivo (mouse) and in vitro (mouse and humans) | NA | ↑ IL-33 and IL-33R (in skin/epidermal biopsies from mice and humans) | IL-33 potentiates histaminergic itch | 2024 [29] | |
Kulumbegov B (Georgia, Israel) | In vivo (humans) | 68/20 | ↑ IL-33 in antihistamine-resistant patients | IL-33 as marker of antihistamine resistance | 2023 [31] | |
TSLP | Dobrican-Băruța CT (Romania) | In vivo (humans) | 50/38 | ↑ TSLP (in serum) | Possible pathogenic involvement | 2024 [7] |
Kay AB (UK, Germany) | In vivo (humans) | 8/9 | ↑ TSLP (in lesional skin biopsies) | Possible pathogenic involvement | 2015 [23] | |
Metz M (Germany) | In vivo (humans) | 62/10 | No detected differences between CSU and healthy subjects (in serum) | Not useful as a biomarker of CSU | 2013 [19] | |
IL-25 | Dobrican-Băruța CT (Romania) | In vivo (humans) | 50/38 | No statistically significant differences | Marginal role of IL25 in CSU | 2024 [7] |
Kay AB (UK, Germany) | In vivo (humans) | 8/9 | ↑ IL-25 (in lesional skin biopsies) | Role of IL25 in the pathogenesis of CSU | 2015 [23] | |
Non-Epithelial-derived Alarmins | ||||||
HSPs | Kasperska-Zając (Poland) | In vivo (humans) | 58/22 | ↑ HSP70 ↑ anti-HSP70 antibodies ↑ CRP concentration (in serum) | Enhanced anti-Hsp70 antibody expression correlates with the grade of inflammation; Unclear role of HSP-70: anti-inflammatory, pro-inflammatory, or epiphenomenal effects? | 2018 [47] |
Choi, B.Y. South (Korea) | In vivo (humans) In vitro | 86/44 | ↑ anti-HSP10 IgG ↓ HSP10 ↑ IL-4 and PAF ↑ MiR-101-5p (in serum) | HSP10 has anti-inflammatory effects; Possible role of severity biomarker for anti-HSP10 IgG | 2023 [57] | |
Izaki S. (Japan) | In vivo (humans) | 30/9 | ↑ anti-HSP65 IgG ↑ anti-HSP65 IgM (in serum) | Potential immunomodulation by mycobacterial HSP65 in CSU, occasionally infection-induced | 1994 [63] | |
Sánchez Caraballo A. (Colombia, USA) | In silico | NA | No identity between HSP60 and Helicobacter p. proteome | Low probability of molecular mimicry | 2023 [64] | |
S100 proteins | Zhou QY (China) | In vivo (humans) | 51/20 | ↑ S100A8, S100A9, and S100A12 (in plasma); No significant relationship with UAS7; Significant inverse correlation with basophils | S100 proteins as potential biomarkers in CSU | 2019 [73] |
EDN | Saleh AA (Egypt) | In vivo (humans) | 50/30 | ↑ EDN (in serum); Positive correlation between serum EDN levels and the severity of the disease | Possible pathogenic involvement, with therapeutic implications | 2020 [84] |
Gomułka K (Poland) | In vivo (humans) | 15/15 | ↑ EDN (in serum) | Possible pathogenic involvement | 2022 [85] | |
Uric Acid | Metin Z (Turkey) | In vivo (humans) | 90/90 | ↓ uric acid ↑ UHR (in serum) | UHR as a promising research area for CSU | 2024 [91] |
β-Defensins | Tra Cao TB (Republic of Korea) | In vivo (humans) | 124/56 | ↑ HBD2 levels (in serum), especially in cases of CSU + angioedema | Potential role of HBD2 in pathogenesis of CSU accompanying angioedema | 2021 [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzi, A.; Li Pomi, F.; Inchingolo, R.; Viola, M.; Borgia, F.; Gangemi, S. Alarmins in Chronic Spontaneous Urticaria: Immunological Insights and Therapeutic Perspectives. Biomedicines 2024, 12, 2765. https://doi.org/10.3390/biomedicines12122765
Rizzi A, Li Pomi F, Inchingolo R, Viola M, Borgia F, Gangemi S. Alarmins in Chronic Spontaneous Urticaria: Immunological Insights and Therapeutic Perspectives. Biomedicines. 2024; 12(12):2765. https://doi.org/10.3390/biomedicines12122765
Chicago/Turabian StyleRizzi, Angela, Federica Li Pomi, Riccardo Inchingolo, Marinella Viola, Francesco Borgia, and Sebastiano Gangemi. 2024. "Alarmins in Chronic Spontaneous Urticaria: Immunological Insights and Therapeutic Perspectives" Biomedicines 12, no. 12: 2765. https://doi.org/10.3390/biomedicines12122765
APA StyleRizzi, A., Li Pomi, F., Inchingolo, R., Viola, M., Borgia, F., & Gangemi, S. (2024). Alarmins in Chronic Spontaneous Urticaria: Immunological Insights and Therapeutic Perspectives. Biomedicines, 12(12), 2765. https://doi.org/10.3390/biomedicines12122765