The Effect of Physical Activity Interventions on Executive Function in Overweight and Obese Adults: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information Sources and Search Strategy
2.2. Data Extraction and Risk of Bias Assessment
3. Results
3.1. Search Results
3.2. Risk of Bias Assessment
3.3. Effect of Acute Exercise Sessions on Executive Function
3.4. Effect of Short-Term Exercise Interventions on Executive Function
3.5. Effect of Long-Term Exercise Intervention on Executive Function
3.6. Executive Function as a Predictor for Weight Loss
3.7. Effect of Improving Executive Functions Related to BMI and PA Intervention Program
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 9 October 2024).
- Glibowski, P.; Ćwiklińska, M.; Białasz, A.; Koch, W.; Marzec, Z. Fast Consumption Increases the Risk of Overweight and Obesity. Rocz. Panstw. Zakl. Hig. 2020, 71, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Al Ta’ani, O.; Al-Ajlouni, Y.A.; Aleyadeh, W.; Al-Bitar, F.; Alsakarneh, S.; Saadeh, A.; Alhuneafat, L.; Njei, B. The Impact of Overweight and Obesity on Health Outcomes in the United States from 1990 to 2021. Diabetes Obes. Metab. 2024, 26, 5455–5465. [Google Scholar] [CrossRef]
- Chávez-Manzanera, E.A.; Vera-Zertuche, J.M.; Kaufer-Horwitz, M.; Vázquez-Velázquez, V.; Flores-Lázaro, J.R.; Mireles-Zavala, L.; Calzada-León, R.; Garnica-Cuellar, J.C.; Sánchez-Muñoz, V.; Ramírez-Butanda, E.; et al. Mexican Clinical Practice Guidelines for Adult Overweight and Obesity Management. Curr. Obes. Rep. 2024, 13, 643–666. [Google Scholar] [CrossRef] [PubMed]
- Dakanalis, A.; Voulgaridou, G.; Alexatou, O.; Papadopoulou, S.K.; Jacovides, C.; Pritsa, A.; Chrysafi, M.; Papacosta, E.; Kapetanou, M.G.; Tsourouflis, G.; et al. Overweight and Obesity Is Associated with Higher Risk of Perceived Stress and Poor Sleep Quality in Young Adults. Med. Kaunas Lith. 2024, 60, 983. [Google Scholar] [CrossRef] [PubMed]
- Obregon, G.A.O.; Perroño, Á.F.P.; Santillán, R.R.S.; Perreño, P.M.P. La actividad física como estilo de vida saludable en adultos mayores. Código Científico Rev. Investig. 2023, 4, 1336–1353. [Google Scholar] [CrossRef]
- Conde Schnaider, E.D.; López-Sánchez, C.V.; Velasco Matus, P.W. Relationship Between Physical Activity and Mental Health Indicators. Acta Investig. Psicológica 2022, 12, 106–119. [Google Scholar] [CrossRef]
- Aguirre, J.; Franco, L.; Robles, G.; Montes, K. Relación entre la actividad física y la calidad de vida relacionada con la salud en personas con enfermedades cardiovasculares. Retos Nuevas Tend. Educ. Física Deporte Recreación 2023, 1035–1043. [Google Scholar]
- Franco, L.; Robles, G.; Montes, K.; Aguirre, J. Más allá del control glucémico: Beneficios de la actividad física en la calidad de vida de personas con diabetes mellitus tipo 2: Una revisión narrativa. Retos Nuevas Tend. Educ. Física Deporte Recreación 2024, 262–270. [Google Scholar]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global Trends in Insufficient Physical Activity Among Adolescents: A Pooled Analysis of 298 Population-Based Surveys with 1·6 Million Participants. Lancet Child Adolesc. Health 2020, 4, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Strain, T.; Flaxman, S.; Guthold, R.; Semenova, E.; Cowan, M.; Riley, L.M.; Bull, F.C.; Stevens, G.A.; Country Data Author Group. National, Regional, and Global Trends in Insufficient Physical Activity Among Adults from 2000 to 2022: A Pooled Analysis of 507 Population-Based Surveys with 5·7 Million Participants. Lancet Glob. Health 2024, 12, e1232–e1243. [Google Scholar] [CrossRef]
- Lopez-Marti, A.; Padilla, I.; Lopez-Tellez, A.; Garcia, J. Archivos de Medicina del Deporte; Federación Española de Medicina del Deporte: Zaragoza, Spain, 2022; pp. 168–176. [Google Scholar]
- Ferguson, H.J.; Brunsdon, V.E.A.; Bradford, E.E.F. The Developmental Trajectories of Executive Function from Adolescence to Old Age. Sci. Rep. 2021, 11, 1382. [Google Scholar] [CrossRef] [PubMed]
- Genc, S.; Ball, G.; Chamberland, M.; Raven, E.P.; Tax, C.M.; Ward, I.; Yang, J.Y.-M.; Palombo, M.; Jones, D.K. MRI Signatures of Cortical Microstructure in Human Development Align with Oligodendrocyte Cell-Type Expression. BioRxiv 2024. [Google Scholar] [CrossRef]
- Norbom, L.B.; Rokicki, J.; Alnaes, D.; Kaufmann, T.; Doan, N.T.; Andreassen, O.A.; Westlye, L.T.; Tamnes, C.K. Maturation of Cortical Microstructure and Cognitive Development in Childhood and Adolescence: A T1w/T2w Ratio MRI Study. Hum. Brain Mapp. 2020, 41, 4676–4690. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, L.; Camerota, M.; Willoughby, M.; Blair, C. A Comparison of Three Executive Function Batteries in a Preschool-Aged Sample. Children 2024, 11, 811. [Google Scholar] [CrossRef] [PubMed]
- Nugroho, H.W.; Salimo, H.; Hartono, H.; Hakim, M.A.; Probandari, A. Association Between Poverty, Low Educational Level and Smoking with Adolescent’s Working Memory: Cross Lagged Analysis from Longitudinal Data. Front. Public Health 2024, 12, 1341501. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, W.; Schmeichel, B.J.; Baddeley, A.D. Executive Functions and Self-Regulation. Trends Cogn. Sci. 2012, 16, 174–180. [Google Scholar] [CrossRef]
- Landinez, D.A.L.; Robledo, S.R.; Montoya, D.M.M. Executive Function Performance in Patients with Obesity: A Systematic Review. Psychol. Av. Discip. 2019, 13, 121–134. [Google Scholar] [CrossRef]
- Yang, Y.; Shields, G.S.; Guo, C.; Liu, Y. Executive Function Performance in Obesity and Overweight Individuals: A Meta-Analysis and Review. Neurosci. Biobehav. Rev. 2018, 84, 225–244. [Google Scholar] [CrossRef]
- Allom, V.; Mullan, B.; Smith, E.; Hay, P.; Raman, J. Breaking Bad Habits by Improving Executive Function in Individuals with Obesity. BMC Public Health 2018, 18, 505. [Google Scholar] [CrossRef]
- Ravichandran, S.; Bhatt, R.R.; Pandit, B.; Osadchiy, V.; Alaverdyan, A.; Vora, P.; Stains, J.; Naliboff, B.; Mayer, E.A.; Gupta, A. Alterations in Reward Network Functional Connectivity Are Associated with Increased Food Addiction in Obese Individuals. Sci. Rep. 2021, 11, 3386. [Google Scholar] [CrossRef] [PubMed]
- LaFata, E.M.; Allison, K.C.; Audrain-McGovern, J.; Forman, E.M. Ultra-Processed Food Addiction: A Research Update. Curr. Obes. Rep. 2024, 13, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Byrne, M.E.; Tanofsky-Kraff, M.; Lavender, J.M.; Parker, M.N.; Shank, L.M.; Swanson, T.N.; Ramirez, E.; LeMay-Russell, S.; Yang, S.B.; Brady, S.M.; et al. Bridging Executive Function and Disinhibited Eating Among Youth: A Network Analysis. Int. J. Eat. Disord. 2021, 54, 721–732. [Google Scholar] [CrossRef]
- Schmidt, R.; Wandrer, H.; Boutelle, K.N.; Kiess, W.; Hilbert, A. Associations Between Eating in the Absence of Hunger and Executive Functions in Adolescents with Binge-Eating Disorder: An Experimental Study. Appetite 2023, 186, 106573. [Google Scholar] [CrossRef] [PubMed]
- Shields, C.V.; Hultstrand, K.V.; West, C.E.; Gunstad, J.J.; Sato, A.F. Disinhibited Eating and Executive Functioning in Children and Adolescents: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 13384. [Google Scholar] [CrossRef] [PubMed]
- Franco-García, J.M.; Denche-Zamorano, Á.; Carlos-Vivas, J.; Castillo-Paredes, A.; Mendoza-Holgado, C.; Pérez-Gómez, J. Subjective Cognitive Impairment and Physical Activity: Investigating Risk Factors and Correlations among Older Adults in Spain. J. Funct. Morphol. Kinesiol. 2024, 9, 150. [Google Scholar] [CrossRef]
- Cerda-Vega, E.; Pérez-Romero, N.; Sierralta, S.A.; Hernández-Mendo, A.; Reigal, R.E.; Ramirez-Campillo, R.; Martínez-Salazar, C.; Campos-Jara, R.; Arellano-Roco, C.; Campos-Jara, C.; et al. Physical Exercise and Executive Function in the Pediatric Overweight and Obesity Population: A Systematic Review Protocol. Sports 2024, 12, 180. [Google Scholar] [CrossRef]
- Ruiz-Molina, Y.G.; Herrera-Ávila, J.; Espinosa-Juárez, J.V.; Esquinca-Avilés, H.A.; Tejas-Juárez, J.G.; Flores-Guillén, E.; Morales-Martínez, L.A.; Briones-Aranda, A.; Jiménez-Ceballos, B.; Sierra-Ramírez, J.A.; et al. Association of Overweight and Obesity with Impaired Executive Functioning in Mexican Adolescents: The Importance of Inhibitory Control. Healthcare 2024, 12, 1368. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, X.; Yang, H.; Mao, S. The Effect of Physical Activity on Cognitive Functions among Children with Obesity or Overweight: A Meta-Analysis. Altern. Ther. Health Med. 2024, AT10932, online ahead of print. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Urrútia, G.; Bonfill, X. PRISMA declaration: A proposal to improve the publication of systematic reviews and meta-analyses. Med. Clin. 2010, 135, 507–511. [Google Scholar] [CrossRef]
- Butryn, M.L.; Martinelli, M.K.; Remmert, J.E.; Roberts, S.R.; Zhang, F.; Forman, E.M.; Manasse, S.M. Executive Functioning as a Predictor of Weight Loss and Physical Activity Outcomes. Ann. Behav. Med. Publ. Soc. Behav. Med. 2019, 53, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Peven, J.C.; Jakicic, J.M.; Rogers, R.J.; Lesnovskaya, A.; Erickson, K.I.; Kang, C.; Zhou, X.; Porter, A.; Donofry, S.D.; Watt, J.C.; et al. The Effects of a 12-Month Weight Loss Intervention on Cognitive Outcomes in Adults with Overweight and Obesity. Nutrients 2020, 12, 2988. [Google Scholar] [CrossRef] [PubMed]
- Sayuri, D.; Alves, P.; Gerosa-Neto, J.; Rodriguez, P.; Pierin, F.; Edwards, K.; Santos, F. Acute Increases in Brain-Derived Neurotrophic Factor Following High or Moderate-Intensity Exercise Is Accompanied with Better Cognition Performance in Obese Adults. Sci. Rep. 2020, 10, 13493. [Google Scholar] [CrossRef]
- Xu, X.; Deng, Z.-Y.; Huang, Q.; Zhang, W.-X.; Qi, C.; Huang, J.-A. Prefrontal Cortex-Mediated Executive Function as Assessed by Stroop Task Performance Associates with Weight Loss Among Overweight and Obese Adolescents and Young Adults. Behav. Brain Res. 2017, 321, 240–248. [Google Scholar] [CrossRef]
- Quintero, A.P.; Bonilla-Vargas, K.J.; Correa-Bautista, J.E.; Domínguez-Sanchéz, M.A.; Triana-Reina, H.R.; Velasco-Orjuela, G.P.; García-Hermoso, A.; Villa-González, E.; Esteban-Cornejo, I.; Correa-Rodríguez, M.; et al. Acute Effect of Three Different Exercise Training Modalities on Executive Function in Overweight Inactive Men: A Secondary Analysis of the BrainFit Study. Physiol. Behav. 2018, 197, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Ruegsegger, G.N.; Ekholm, E.R.; Monroe, C.E.; Rappaport, C.I.; Huppert, R.D.; Anton, C.R.; Ferguson, M.J. Glucose Tolerance Status Associates with Improvements in Cognitive Function Following High-Intensity Exercise in Adults with Obesity. Physiol. Behav. 2023, 272, 114389. [Google Scholar] [CrossRef]
- Wheeler, M.J.; Green, D.J.; Ellis, K.A.; Cerin, E.; Heinonen, I.; Naylor, L.H.; Larsen, R.; Wennberg, P.; Boraxbekk, C.-J.; Lewis, J.; et al. Distinct Effects of Acute Exercise and Breaks in Sitting on Working Memory and Executive Function in Older Adults: A Three-Arm, Randomised Cross-Over Trial to Evaluate the Effects of Exercise with and Without Breaks in Sitting on Cognition. Br. J. Sports Med. 2019, 54, 776–781. [Google Scholar] [CrossRef]
- Chandrasekaran, P.; Weiskirchen, R. The Role of Obesity in Type 2 Diabetes Mellitus-An Overview. Int. J. Mol. Sci. 2024, 25, 1882. [Google Scholar] [CrossRef] [PubMed]
- Calzada-Rodríguez, J.I.; Denche-Zamorano, Á.M.; Pérez-Gómez, J.; Mendoza-Muñoz, M.; Carlos-Vivas, J.; Barrios-Fernandez, S.; Adsuar, J.C. Health-Related Quality of Life and Frequency of Physical Activity in Spanish Students Aged 8–14. Int. J. Environ. Res. Public Health 2021, 18, 9418. [Google Scholar] [CrossRef]
- Visier-Alfonso, M.; Álvarez-Bueno, C.; Sánchez-López, M.; Cavero-Redondo, I.; Martínez-Hortelano, J.; Nieto-López, M.; Martínez-Vizcaíno, V. Fitness and Executive Function as Mediators Between Physical Activity and Academic Achieve ment. J. Sports Sci. 2021, 39, 1576–1584. [Google Scholar] [CrossRef] [PubMed]
- Patraca-Camacho, L.; Cibrián-Llanderal, T.; Acosta-Mesa, H.-G.; Rodríguez-Landa, J.F.; Romo-González, T.; Rosas-Nexticapa, M.; Herrera-Meza, S. Assessment of Executive Functions and Physical Activity in Girls and Boys with Normal Weight, Overweight and Obesity. Pediatr. Obes. 2022, 17, e12930. [Google Scholar] [CrossRef]
- Johnson, N.A.; Sultana, R.N.; Brown, W.J.; Bauman, A.E.; Gill, T. Physical Activity in the Management of Obesity in Adults: A Position Statement from Exercise and Sport Science Australia. J. Sci. Med. Sport 2021, 24, 1245–1254. [Google Scholar] [CrossRef]
- Sabag, A.; Ahmadi, M.N.; Francois, M.E.; Postnova, S.; Cistulli, P.A.; Fontana, L.; Stamatakis, E. Timing of Moderate to Vigorous Physical Activity, Mortality, Cardiovascular Disease, and Microvascular Disease in Adults with Obesity. Diabetes Care 2024, 47, 890–897. [Google Scholar] [CrossRef]
- Faúndez-Casanova, C.; Letelier, B.; Muñoz, M.; Pino, C.; Plaza, P.; Silva, L.; Castillo-Retamal, F. Conducta sedentaria, nivel de actividad física y desarrollo de las funciones ejecutivas en estudiantes durante COVID-19 en Chile: Un estudio piloto (Sedentary behavior, physical activity level and executive function development in students during COVID-19 in Chile: A pilot estudy). Retos 2023, 47, 221–227. [Google Scholar] [CrossRef]
- Soldevila-Domenech, N.; Forcano, L.; Vintró-Alcaraz, C.; Cuenca-Royo, A.; Pintó, X.; Jiménez-Murcia, S.; García-Gavilán, J.F.; Nishi, S.K.; Babio, N.; Gomis-González, M.; et al. Interplay Between Cognition and Weight Reduction in Individuals Following a Mediterranean Diet: Three-Year Follow-Up of the PREDIMED-Plus Trial. Clin. Nutr. 2021, 40, 5221–5237. [Google Scholar] [CrossRef]
- Castillo, M. Relación de la Actividad Física con las Funciones Ejecutivas de Adultos Mayores del Cantón Ambato; Pontificia Universidad Catolica de Ecuador: Quito, Ecuador, 2024. [Google Scholar]
- Martín-Martínez, I.; Chirosa-Ríos, L.J.; Reigal-Garrido, R.E.; Hernández-Mendo, A.; Juárez-Ruiz-de-Mier, R.; Guisado-Barrilao, R. Efectos de la Actividad Física Sobre las Funciones Ejecutivas en una Muestra de Adolescentes. An. Psicol. 2015, 31, 962–971. [Google Scholar] [CrossRef]
- Eichen, D.M.; Pasquale, E.K.; Twamley, E.W.; Boutelle, K.N. Targeting Executive Function for Weight Loss in Adults with Overweight or Obesity. Physiol. Behav. 2021, 240, 113540. [Google Scholar] [CrossRef]
- Xu, X.; Xu, Y.; Shi, R. Association Between Obesity, Physical Activity, and Cognitive Decline in Chinese Middle and Old-Aged Adults: A Mediation Analysis. BMC Geriatr. 2024, 24, 54. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chen, Y.; Chen, N. Body Mass Index and Trajectories of the Cognition Among Chinese Middle And old-Aged Adults. BMC Geriatr. 2022, 22, 613. [Google Scholar] [CrossRef]
Study | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Q11 | Q12 | Q13 | Q14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Butryn, 2019 [34] | ||||||||||||||
Peven, 2020 [35] | ||||||||||||||
Quintero, 2018 [38] | ||||||||||||||
Ruegsegger, 2023 [39] | ||||||||||||||
Sayuri, 2020 [36] | ||||||||||||||
Wheeler, 2019 [40] | ||||||||||||||
Xu, 2017 [37] |
Study | Population | Exercise | Executive Function Evaluation | Main Results |
---|---|---|---|---|
Butryn, 2019 [34] | 320 male and female adults. 18–70 years old. Baseline mean BMI 35.1 kg/m2 | 6-month 16-session intervention gradually increases days and minutes of moderate-to-vigorous PA. Ultimate goal: 250 min of moderate-to-vigorous PA per week. Measured with ActiGraph GT3X accelerometer | Tower task component of Delis–Kaplan Executive Function System (D-KEFS): planning, inhibitory control, and flexibility. | Baseline moderate-to-vigorous PA negatively associated with D-KEFS time per move. D-KEFS rule violations significantly predicted moderate-to-vigorous PA at 6 months: without rule violations = 169.8 min/week, with rule violations = 127.2 min/week. |
Peven, 2020 [35] | 116 male and female adults 18 to 55 years old. Mean BMI 32.44 kg/m2 | 12-month intervention:
| Working memory (N-Back task). Cognitive flexibility (Task Switch). Inhibitory control (Stroop Color–Word Task). Reward sensitivity (Iowa Gambling Task). | Diet + high exercise:
|
Quintero, 2018 [38] | 36 male overweight inactive adults. 18–30 years old. Mean BMI per group:
| Four randomized trials: HIIT, PRT, HIIT + PRT, and control. | Cognitive inhibition (Stroop test). Attention capacity (d2 test). | HIIT ↑ cognitive inhibition, concentration level, items processed, and consistency domain. HIIT and PRT + HIIT ↑ cognitive inhibition and attention capacity than PRT alone. Compared to control group:
|
Ruegsegger, 2023 [39] | 33 male and female non-glucose tolerant adults. 18–65 years. Mean BMI per group:
| Single high-intensity 16-min aerobic exercise session. | Attention. Executive function. Inhibition control (Stroop test). Information processing speed (Stroop test and Trail Making Test). Working memory (Digit Span Test). | Exercise ↑ cognitive function and ↑ performance in:
|
Sayuri, 2020 [36] | 20 male sedentary young adults. 18 to 36 years. Mean BMI 34.4 kg/m2 | 6-week intervention. Moderate-intensity continuous training (MICT), high-intensity intermittent training (HIIT), and control. | Coding subtests from BETA-III non-verbal intelligence test. Stoop Color and Word Test. | ↑ EF from pre- to post-intervention in MICT and HIIT. |
Wheeler, 2019 [40] | 65 male and female older adults. 55 to 80 years old Mean BMI 31.1 kg/m2 | Three conditions:
| Cogstate computerized test battery including:
|
|
Xu, 2017 [37] | 18 overweight/obese male and female young adults. 18 to 25 years. Mean BMI 36.16 kg/m2. | 4-week intervention program including aerobic and anaerobic exercise every day. | Executive function (Stroop Task). |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chávez-Hernández, M.E.; De La Torre, L.; Rodríguez-Serrano, L.M.; Wöbbeking-Sánchez, M. The Effect of Physical Activity Interventions on Executive Function in Overweight and Obese Adults: A Systematic Review. Biomedicines 2024, 12, 2724. https://doi.org/10.3390/biomedicines12122724
Chávez-Hernández ME, De La Torre L, Rodríguez-Serrano LM, Wöbbeking-Sánchez M. The Effect of Physical Activity Interventions on Executive Function in Overweight and Obese Adults: A Systematic Review. Biomedicines. 2024; 12(12):2724. https://doi.org/10.3390/biomedicines12122724
Chicago/Turabian StyleChávez-Hernández, María Elena, Lizbeth De La Torre, Luis Miguel Rodríguez-Serrano, and Marina Wöbbeking-Sánchez. 2024. "The Effect of Physical Activity Interventions on Executive Function in Overweight and Obese Adults: A Systematic Review" Biomedicines 12, no. 12: 2724. https://doi.org/10.3390/biomedicines12122724
APA StyleChávez-Hernández, M. E., De La Torre, L., Rodríguez-Serrano, L. M., & Wöbbeking-Sánchez, M. (2024). The Effect of Physical Activity Interventions on Executive Function in Overweight and Obese Adults: A Systematic Review. Biomedicines, 12(12), 2724. https://doi.org/10.3390/biomedicines12122724