Impact of Endocrine Disrupting Pesticide Use on Obesity: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Human Studies
3.1.1. 2,4-Dichlorophenol and 2,5-Dichlorophenol
3.1.2. Neonicotinoids: Imidacloprid, Acetamiprid, and Clothianidin
3.1.3. Other Pesticides
3.2. Animal Studies
3.2.1. Organophosphates: Chlorpyrifos and Malathion
3.2.2. Pyrethroids: Bifenthrin, Permethrin, Lambda-Cyhalothrin, Deltamethrin, and Cypermethrin
3.2.3. Neonicotinoids: Imidacloprid and Thiamethoxam
3.2.4. Chlorothalonil
3.2.5. Vinclozolin
3.2.6. Difenoconazole
3.2.7. Propamocarb
3.2.8. Effect of Pesticide Mixtures
3.3. In Vitro Studies
3.3.1. Effect on Adipocytes
- β-Cypermethrin
- Chlorpyrifos
- Fipronil
- Imidacloprid
- Quizalofop-p-ethyl, glyphosate, 2,4-D, isoxaflutole, dicamba, quizalofop, and propaquizafop
- Fenoxycarb and Pyriproxyfen
3.3.2. Effect on Hepatocytes
- Cis-Hifenthrin
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hales, C.M.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Prevalence of Obesity and Severe Obesity Among Adults: United States, 2017–2018; NCHS Data Brief. No. 360; Centers for Disease Control and Prevention, National Center for Health Statistics: Atlanta, GA, USA, 2020; pp. 1–8. [PubMed]
- Hall, K.D.; Heymsfield, S.B.; Kemnitz, J.W.; Klein, S.; Schoeller, D.A.; Speakman, J.R. Energy balance and its components: Implications for body weight regulation. Am. J. Clin. Nutr. 2012, 95, 989–994. [Google Scholar] [CrossRef] [PubMed]
- Bosy-Westphal, A. Regulation of energy balance-classical concepts and novel insights. Eur. J. Clin. Nutr. 2017, 71, 293. [Google Scholar] [CrossRef] [PubMed]
- Veiga-Lopez, A.; Pu, Y.; Gingrich, J.; Padmanabhan, V. Obesogenic Endocrine Disrupting Chemicals: Identifying Knowledge Gaps. Trends Endocrinol. Metab. 2018, 29, 607–625. [Google Scholar] [CrossRef] [PubMed]
- Waalen, J. The genetics of human obesity. Transl. Res. 2014, 164, 293–301. [Google Scholar] [CrossRef]
- Heindel, J.J.; Blumberg, B. Environmental Obesogens: Mechanisms and Controversies. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 89–106. [Google Scholar] [CrossRef]
- Snedeker, S.M.; Hay, A.G. Do interactions between gut ecology and environmental chemicals contribute to obesity and diabetes? Environ. Health Perspect. 2012, 120, 332–339. [Google Scholar] [CrossRef]
- Martínez-Esquivel, A.; Trujillo-Silva, D.J.; Cilia-López, V.G. Impact of environmental pollution on the obesogenic environment. Nutr. Rev. 2022, 80, 1787–1799. [Google Scholar] [CrossRef]
- Sparks, T.C.; Lorsbach, B.A. Perspectives on the agrochemical industry and agrochemical discovery. Pest. Manag. Sci. 2017, 73, 672–677. [Google Scholar] [CrossRef]
- International Programme on Chemical Safety. Global Assessment on the State of the Science of Endocrine Disruptors [Internet]. Report No.: WHO/PCS/EDC/02.2. World Health Organization. Available online: https://apps.who.int/iris/handle/10665/67357 (accessed on 15 May 2024).
- Anne, B.; Raphael, R. Endocrine Disruptor Chemicals. In Endotext [Internet]; Feingold, K.R., Anawalt, B., Blackman, M.R., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: http://www.ncbi.nlm.nih.gov/books/NBK569327/ (accessed on 15 May 2024).
- Heindel, J.J.; Blumberg, B.; Cave, M.; Machtinger, R.; Mantovani, A.; Mendez, M.A.; Nadal, A.; Palanza, P.; Panzica, G.; Sargis, R.; et al. Metabolism disrupting chemicals and metabolic disorders. Reprod. Toxicol. 2017, 68, 3–33. [Google Scholar] [CrossRef]
- Dusanov, S.; Ruzzin, J.; Kiviranta, H.; Klemsdal, T.; Retterstøl, L.; Rantakokko, P.; Airaksinen, R.; Djurovic, S.; Tonstad, S. Associations between persistent organic pollutants and metabolic syndrome in morbidly obese individuals. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 735–742. [Google Scholar] [CrossRef]
- La Merrill, M.A.; Lind, P.M.; Salihovic, S.; van Bavel, B.; Lind, L. The association between p,p′-DDE levels and left ventricular mass is mainly mediated by obesity. Environ. Res. 2018, 160, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Dirinck, E.; Jorens, P.G.; Covaci, A.; Geens, T.; Roosens, L.; Neels, H.; Mertens, I.; van Gaal, L. Obesity and persistent organic pollutants: Possible obesogenic effect of organochlorine pesticides and polychlorinated biphenyls. Obesity 2011, 19, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Bachelet, D.; Truong, T.; Verner, M.-A.; Arveux, P.; Kerbrat, P.; Charlier, C.; Guihenneuc-Jouyaux, C.; Guénel, P. Determinants of serum concentrations of 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene and polychlorinated biphenyls among French women in the CECILE study. Environ. Res. 2011, 111, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Arrebola-Moreno, A.; Marfil-Alvarez, R.; Catena, A.; García-Retamero, R.; Arrebola, J.; Melgares-Moreno, R.; Ramirez-Hernández, J.; Kaski, J. Body mass index and myocardium at risk in patients with acute coronary syndrome. Rev. Clin. Esp. 2014, 214, 113–120. [Google Scholar] [CrossRef]
- Lee, D.H.; Lind, L.; Jacobs, D.R., Jr.; Salihovic, S.; van Bavel, B.; Lind, P.M. Associations of persistent organic pollutants with abdominal obesity in the elderly: The Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study. Environ. Int. 2012, 40, 170–178. [Google Scholar] [CrossRef]
- Lee, D.H.; Lind, P.M.; Jacobs, D.R., Jr.; Salihovic, S.; van Bavel, B.; Lind, L. Background exposure to persistent organic pollutants predicts stroke in the elderly. Environ. Int. 2012, 47, 115–120. [Google Scholar] [CrossRef]
- Raafat, N.; Abass, M.A.; Salem, H.M. Malathion exposure and insulin resistance among a group of farmers in Al-Sharkia governorate. Clin. Biochem. 2012, 45, 1591–1595. [Google Scholar] [CrossRef]
- Janesick, A.S.; Blumberg, B. Obesogens: An emerging threat to public health. Am. J. Obstet. Gynecol. 2016, 214, 559–565. [Google Scholar] [CrossRef]
- Joshi-Barve, S.; Kirpich, I.; Cave, M.C.; Marsano, L.S.; McClain, C.J. Alcoholic, Nonalcoholic, and Toxicant-Associated Steatohepatitis: Mechanistic Similarities and Differences. Cell Mol. Gastroenterol. Hepatol. 2015, 1, 356–367. [Google Scholar] [CrossRef]
- Mostafalou, S.; Abdollahi, M. Pesticides: An update of human exposure and toxicity. Arch. Toxicol. 2017, 91, 549–599. [Google Scholar] [CrossRef]
- Shelton, J.F.; Geraghty, E.M.; Tancredi, D.J.; Delwiche, L.D.; Schmidt, R.; Ritz, B.; Hansen, R.L.; Hertz-Picciotto, I. Neurodevelopmental disorders and prenatal residential proximity to agricultural pesticides: The CHARGE study. Environ. Health Perspect. 2014, 122, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Mellanen, P.; Petänen, T.; Lehtimäki, J.; Mäkelä, S.; Bylund, G.; Holmbom, B.; Mannila, E.; Oikari, A.; Santti, R. Wood-derived estrogens: Studies in vitro with breast cancer cell lines and in vivo in trout. Toxicol. Appl. Pharmacol. 1996, 136, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Harley, K.G.; Gunier, R.B.; Kogut, K.; Johnson, C.; Bradman, A.; Calafat, A.M.; Eskenazi, B. Prenatal and early childhood bisphenol A concentrations and behavior in school-aged children. Environ. Res. 2013, 126, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.M.; Spritzer, P.M.; Hohl, A.; Bachega, T.A. Effects of endocrine disruptors in the development of the female reproductive tract. Arq. Bras. Endocrinol. Metabol. 2014, 58, 153–161. [Google Scholar] [CrossRef]
- Pombo, M.; Castro-Feijóo, L. Endocrine disruptors. J. Pediatr. Endocrinol. Metab. 2005, 18 (Suppl. 1), 1145–1155. [Google Scholar] [CrossRef]
- Whitten, P.L.; Lewis, C.; Russell, E.; Naftolin, F. Phytoestrogen influences on the development of behavior and gonadotropin function. Proc. Soc. Exp. Biol. Med. 1995, 208, 82–86. [Google Scholar] [CrossRef]
- Nicolopoulou-Stamati, P.; Pitsos, M.A. The impact of endocrine disrupters on the female reproductive system. Hum. Reprod. Update 2001, 7, 323–330. [Google Scholar] [CrossRef]
- Kabir, E.R.; Rahman, M.S.; Rahman, I. A review on endocrine disruptors and their possible impacts on human health. Environ. Toxicol. Pharmacol. 2015, 40, 241–258. [Google Scholar] [CrossRef]
- Patrick, L. Thyroid disruption: Mechanism and clinical implications in human health. Altern. Med. Rev. 2009, 14, 326–346, Erratum in: Altern Med Rev. 2010, 15, 58. [Google Scholar] [PubMed]
- Lelli, S.M.; Ceballos, N.R.; Mazzetti, M.B.; Aldonatti, C.A.; San Martín de Viale, L.C. Hexachlorobenzene as hormonal disruptor—Studies about glucocorticoids: Their hepatic receptors, adrenal synthesis and plasma levels in relation to impaired gluconeogenesis. Biochem. Pharmacol. 2007, 73, 873–879. [Google Scholar] [CrossRef]
- Plaguicidas|EFSA [Internet]. Available online: https://www.efsa.europa.eu/es/topics/topic/pesticides (accessed on 16 May 2024).
- Search the TEDX List [Internet]. TEDX—The Endocrine Disruption Exchange. Available online: https://endocrinedisruption.org/interactive-tools/tedx-list-of-potential-endocrine-disruptors/search-the-tedx-list (accessed on 15 May 2024).
- European Commission. Commission Staff Working Document. Impact Assessment. Defining Criteria for Identifying Endocrine Disruptors in the Context of the Implementation of the Plant Protection Products Regulation and Biocidal Products Regulation. Main Report. Accompanying the Document Communication from the Commission to the European Parliament and the Council on Endocrine Disruptors and the Draft Commission Acts Setting out Scientific Criteria for Their Determination in the Context of the EU Legislation on Plant Protection Products and Biocidal Products. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:52016SC0211 (accessed on 16 May 2024).
- El Estado Mundial de la Agricultura y la Alimentación 2020 [Internet]. Available online: https://www.fao.org/3/cb1447es/online/cb1447es.html#chapter-2_2 (accessed on 15 May 2024).
- Técnicas de Quimigación. Aplicación de Productos Fitosanitarios Mediante Riego por Goteo en Hortícolas Bajo Invernadero|SERVIFAPA—Plataforma de Asesoramiento y Transferencia del Conocimiento Agrario y Pesquero en Andalucía. Available online: https://www.juntadeandalucia.es/agriculturaypesca/ifapa/servifapa/registro-servifapa/e1b52be2-15f2-489a-bdcc-6b244fd94154 (accessed on 17 May 2024).
- Ministerio para la Transición Ecológica y el Reto Demográfico. Ríos Hormonados [Internet]; Centro Nacional de Educación Ambiental: Madrid, Spain, 2018. Available online: https://www.miteco.gob.es/es/ceneam/recursos/pag-web/rios-hormonados.aspx (accessed on 16 May 2024).
- Bornman, M.S.; Aneck-Hahn, N.H.; de Jager, C.; Wagenaar, G.M.; Bouwman, H.; Barnhoorn, I.E.; Patrick, S.M.; Vandenberg, L.N.; Kortenkamp, A.; Blumberg, B.; et al. Endocrine Disruptors and Health Effects in Africa: A Call for Action. Environ. Health Perspect. 2017, 125, 085005. [Google Scholar] [CrossRef] [PubMed]
- Meléndez, I.F.S.; Almazán, R.C.; Alba, J.A.D.; García, H.M.D.; Larragoitia, J.C. Calidad del agua de riego en suelos agrícolas y cultivos del valle de san luis Potosí, México. Rev. Int. Contam. Ambiental. 2011, 27, 103–113. [Google Scholar]
- OMS Residuos de Plaguicidas en los Alimentos [Internet]. Available online: https://www.who.int/es/news-room/fact-sheets/detail/pesticide-residues-in-food (accessed on 15 May 2024).
- Endocrine Disrupting Pesticides in Food [Internet]. PAN Europe. Available online: https://www.pan-europe.info/resources/reports/2017/10/endocrine-disrupting-pesticides-food (accessed on 15 May 2024).
- Ecologistas en Acción. Informe “Directo a tus Hormonas: Guía de Alimentos Disruptores”. Available online: https://www.ecologistasenaccion.org/169891/informe-directo-a-tus-hormonas-guia-de-alimentos-disruptores/ (accessed on 16 May 2024).
- Ecologistas en Acción. Informe “Residuos de Plaguicidas en Alimentos”. Available online: https://www.ecologistasenaccion.org/207149/informe-residuos-de-plaguicidas-en-alimentos/ (accessed on 17 May 2024).
- Buser, M.C.; Murray, H.E.; Scinicariello, F. Association of urinary phenols with increased body weight measures and obesity in children and adolescents. J. Pediatr. 2014, 165, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhu, J.; Nguyen, A. Urinary concentrations of dichlorophenol pesticides and obesity among adult participants in the U.S. National Health and Nutrition Examination Survey (NHANES) 2005–2008. Int. J. Hyg. Environ. Health 2014, 217, 294–299. [Google Scholar] [CrossRef]
- Twum, C.; Wei, Y. The association between urinary concentrations of dichlorophenol pesticides and obesity in children. Rev. Environ. Health 2011, 26, 215–219. [Google Scholar] [CrossRef]
- Godbole, A.M.; Moonie, S.; Coughenour, C.; Zhang, C.; Chen, A.; Vuong, A.M. Exploratory analysis of the associations between neonicotinoids and measures of adiposity among US adults: NHANES 2015–2016. Chemosphere 2022, 300, 134450. [Google Scholar] [CrossRef]
- Noppakun, K.; Juntarawijit, C. Association between pesticide exposure and obesity: A cross-sectional study of 20,295 farmers in Thailand. F1000Research 2021, 10, 445. [Google Scholar] [CrossRef]
- Tsakiridis, E.E.; Morrow, M.R.; Desjardins, E.M.; Wang, D.; Llanos, A.; Wang, B.; Wade, M.G.; Morrison, K.M.; Holloway, A.C.; Steinberg, G.R. Effects of the pesticide deltamethrin on high fat diet-induced obesity and insulin resistance in male mice. Food Chem. Toxicol. 2023, 176, 113763. [Google Scholar] [CrossRef]
- Meng, Z.; Yan, S.; Sun, W.; Yan, J.; Teng, M.; Jia, M.; Tian, S.; Zhou, Z.; Zhu, W. Chlorothalonil induces obesity in mice by regulating host gut microbiota and bile acids metabolism via FXR pathways. J. Hazard. Mater. 2023, 452, 131310. [Google Scholar] [CrossRef]
- Wang, B.; Tsakiridis, E.E.; Zhang, S.; Llanos, A.; Desjardins, E.M.; Yabut, J.M.; Green, A.E.; Day, E.A.; Smith, B.K.; Lally, J.S.V.; et al. The pesticide chlorpyrifos promotes obesity by inhibiting diet-induced thermogenesis in brown adipose tissue. Nat. Commun. 2021, 12, 5163. [Google Scholar] [CrossRef]
- Ben Maamar, M.; King, S.E.; Nilsson, E.; Beck, D.; Skinner, M.K. Epigenetic transgenerational inheritance of parent-of-origin allelic transmission of outcross pathology and sperm epimutations. Dev. Biol. 2020, 458, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Qi, W.; Xiao, X.; Yang, S.-H.; Kim, D.; Yoon, K.S.; Clark, J.M.; Park, Y. Imidacloprid Promotes High Fat Diet-Induced Adiposity in Female C57BL/6J Mice and Enhances Adipogenesis in 3T3-L1 Adipocytes via the AMPKα-Mediated Pathway. J. Agric. Food Chem. 2017, 65, 6572–6581. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Wang, X.; Yao, X.; Xi, F.; He, Y.; Xu, Y.; Ma, L.; Chen, X.; Zhao, C.; Du, R.; et al. Bifenthrin Induces Fat Deposition by Improving Fatty Acid Uptake and Inhibiting Lipolysis in Mice. J. Agric. Food Chem. 2019, 67, 14048–14055. [Google Scholar] [CrossRef]
- Yang, D.; Sun, X.; Wei, X.; Zhang, B.; Fan, X.; Du, H.; Zhu, R.; Oh, Y.; Gu, N. Lambda-cyhalothrin induces lipid accumulation in mouse liver is associated with AMPK inactivation. Food Chem. Toxicol. 2023, 172, 113563. [Google Scholar] [CrossRef]
- Lassiter, T.L.; Brimijoin, S. Rats gain excess weight after developmental exposure to the organophosphorothionate pesticide, chlorpyrifos. Neurotoxicol Teratol. 2008, 30, 125–130. [Google Scholar] [CrossRef]
- Simoni-Berra, M.A.; Yáñez-Santos, J.A.; Girón-Ortiz, J.A.; Huerta-Lara, M.; Cedillo-Ramírez, M.L. Effect of probiotics on glucose levels and weight gain in mice exposed to low doses of malathion. Gac. Med. Mex. 2023, 159, 44–48. [Google Scholar] [CrossRef]
- Meggs, W.J.; Brewer, K.L. Weight gain associated with chronic exposure to chlorpyrifos in rats. J. Med. Toxicol. 2007, 3, 89–93. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, G.; Bao, Z.; Jin, Y.; Wang, J.; Chen, J.; Qian, M. Stereoselective effects of fungicide difenoconazole and its four stereoisomers on gut barrier, microbiota, and glucolipid metabolism in male mice. Sci. Total Environ. 2022, 805, 150454. [Google Scholar] [CrossRef]
- Svingen, T.; Ramhøj, L.; Mandrup, K.; Christiansen, S.; Axelstad, M.; Vinggaard, A.M.; Hass, U. Effects on metabolic parameters in young rats born with low birth weight after exposure to a mixture of pesticides. Sci. Rep. 2018, 8, 305. [Google Scholar] [CrossRef]
- Xiao, X.; Sun, Q.; Kim, Y.; Yang, S.-H.; Qi, W.; Kim, D.; Yoon, K.S.; Clark, J.M.; Park, Y. Exposure to permethrin promotes high fat diet-induced weight gain and insulin resistance in male C57BL/6J mice. Food Chem. Toxicol. 2018, 111, 405–416. [Google Scholar] [CrossRef]
- Fang, B.; Li, J.W.; Zhang, M.; Ren, F.Z.; Pang, G.F. Chronic chlorpyrifos exposure elicits diet-specific effects on metabolism and the gut microbiome in rats. Food Chem. Toxicol. 2018, 111, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Peris-Sampedro, F.; Cabré, M.; Basaure, P.; Reverte, I.; Domingo, J.L.; Teresa Colomina, M. Adulthood dietary exposure to a common pesticide leads to an obese-like phenotype and a diabetic profile in apoE3 mice. Environ. Res. 2015, 142, 169–176. [Google Scholar] [CrossRef]
- Djekkoun, N.; Depeint, F.; Guibourdenche, M.; Sabbouri, H.E.K.E.; Corona, A.; Rhazi, L.; Gay-Queheillard, J.; Rouabah, L.; Hamdad, F.; Bach, V.; et al. Chronic Perigestational Exposure to Chlorpyrifos Induces Perturbations in Gut Bacteria and Glucose and Lipid Markers in Female Rats and Their Offspring. Toxics 2022, 10, 138. [Google Scholar] [CrossRef]
- Guibourdenche, M.; Sabbouri, H.E.K.E.; Bonnet, F.; Djekkoun, N.; Khorsi-Cauet, H.; Corona, A.; Guibourdenche, J.; Bach, V.; Anton, P.M.; Gay-Quéheillard, J. Perinatal exposure to chlorpyrifos and/or a high-fat diet is associated with liver damage in male rat offspring. Cells Dev. 2021, 166, 203678. [Google Scholar] [CrossRef]
- Liang, Y.; Zhan, J.; Liu, D.; Luo, M.; Han, J.; Liu, X.; Liu, C.; Cheng, Z.; Zhou, Z.; Wang, P. Organophosphorus pesticide chlorpyrifos intake promotes obesity and insulin resistance through impacting gut and gut microbiota. Microbiome 2019, 7, 19. [Google Scholar] [CrossRef]
- Guardia-Escote, L.; Blanco, J.; Basaure, P.; Biosca-Brull, J.; Verkaik-Schakel, R.N.; Cabré, M.; Peris-Sampedro, F.; Pérez-Fernández, C.; Sánchez-Santed, F.; Plösch, T.; et al. Sex and Exposure to Postnatal Chlorpyrifos Influence the Epigenetics of Feeding-Related Genes in a Transgenic APOE Mouse Model: Long-Term Implications on Body Weight after a High-Fat Diet. Int. J. Environ. Res. Public Health 2020, 18, 184. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, X.; Yue, L.; Hu, H.; Wei, X.; Guo, Q.; Zhang, B.; Fan, X.; Xin, Y.; Oh, Y.; et al. Thiamethoxam induces nonalcoholic fatty liver disease in mice via methionine metabolism disturb via nicotinamide N-methyltransferase overexpression. Chemosphere 2021, 273, 129727. [Google Scholar] [CrossRef]
- Sun, Q.; Xiao, X.; Kim, Y.; Kim, D.; Yoon, K.S.; Clark, J.M.; Park, Y. Imidacloprid Promotes High Fat Diet-Induced Adiposity and Insulin Resistance in Male C57BL/6J Mice. J. Agric. Food Chem. 2016, 64, 9293–9306. [Google Scholar] [CrossRef]
- Wu, S.; Jin, C.; Wang, Y.; Fu, Z.; Jin, Y. Exposure to the fungicide propamocarb causes gut microbiota dysbiosis and metabolic disorder in mice. Environ. Pollut. 2018, 237, 775–783. [Google Scholar] [CrossRef]
- Jin, Y.; Lin, X.; Miao, W.; Wu, T.; Shen, H.; Chen, S.; Li, Y.; Pan, Q.; Fu, Z. Chronic exposure of mice to environmental endocrine-disrupting chemicals disturbs their energy metabolism. Toxicol. Lett. 2014, 225, 392–400. [Google Scholar] [CrossRef]
- Smith, L.; Klément, W.; Dopavogui, L.; de Bock, F.; Lasserre, F.; Barretto, S.; Lukowicz, C.; Fougerat, A.; Polizzi, A.; Schaal, B.; et al. Perinatal exposure to a dietary pesticide cocktail does not increase susceptibility to high-fat diet-induced metabolic perturbations at adulthood but modifies urinary and fecal metabolic fingerprints in C57Bl6/J mice. Environ. Int. 2020, 144, 106010. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Wang, X.; Jin, X.; Xue, Z.; Zhu, J.; Wang, C.; Jin, Y.; Fu, Z. β-Cypermethrin promotes the adipogenesis of 3T3-L1 cells via inducing autophagy and shaping an adipogenesis-friendly microenvironment. Acta Biochim. Biophys. Sin. 2020, 52, 821–831. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Qi, W.; Yang, J.J.; Yoon, K.S.; Clark, J.M.; Park, Y. Fipronil promotes adipogenesis via AMPKα-mediated pathway in 3T3-L1 adipocytes. Food Chem. Toxicol. 2016, 92, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Kim, Y.; Kim, J.; Yoon, K.S.; Clark, J.; Lee, J.; Park, Y. Imidacloprid, a neonicotinoid insecticide, potentiates adipogenesis in 3T3-L1 adipocytes. J. Agric. Food Chem. 2013, 61, 255–259. [Google Scholar] [CrossRef]
- Biserni, M.; Mesnage, R.; Ferro, R.; Wozniak, E.; Xenakis, T.; Mein, C.A.; Antoniou, M.N. Quizalofop-p-Ethyl Induces Adipogenesis in 3T3-L1 Adipocytes. Toxicol. Sci. 2019, 170, 452–461. [Google Scholar] [CrossRef]
- Lim, S.; Choi, H.; Park, S.S.; Kim, M.; Kim, E. Fenoxycarb promotes adipogenesis in 3T3-L1 preadipocytes. Entomol. Res. 2016, 46, 80–84. [Google Scholar] [CrossRef]
- Xiang, D.; Chu, T.; Li, M.; Wang, Q.; Zhu, G. Effects of pyrethroid pesticide cis-bifenthrin on lipogenesis in hepatic cell line. Chemosphere 2018, 201, 840–849. [Google Scholar] [CrossRef]
- Blanco, J.; Guardia-Escote, L.; Mulero, M.; Basaure, P.; Biosca-Brull, J.; Cabré, M.; Colomina, M.T.; Domingo, J.L.; Sánchez, D.J. Obesogenic effects of chlorpyrifos and its metabolites during the differentiation of 3T3-L1 preadipocytes. Food Chem. Toxicol. 2020, 137, 111171. [Google Scholar] [CrossRef]
- Prentice, P.; Viner, R.M. Pubertal timing and adult obesity and cardiometabolic risk in women and men: A systematic review and meta-analysis. Int. J. Obes. 2013, 37, 1036–1043. [Google Scholar] [CrossRef]
- Gore, A.C.; La Merrill, M.A.; Patisaul, H.B.; Sargis, R. Endocrine Disrupting Chemicals: Threats to Human Health. The Endocrine Society and IPEN. February 2024. Available online: https://ipen.org/sites/default/files/documents/edc_report-2024-final-compressed.pdf (accessed on 17 May 2024).
- Environmental Protection Agency (EPA). Endocrine Disruptor Screening Program. Available online: https://www.epa.gov/endocrine-disruption (accessed on 6 September 2024).
- The National Institutes of Health (NIH). The Health Effects of Endocrine-Disrupting Chemicals. Available online: https://irp.nih.gov/catalyst/32/4/the-health-effects-of-endocrine-disrupting-chemicals (accessed on 6 September 2024).
- European Chemical Agency (ECHA) and European Food Safety Authority (EFSA) with the technical support of the Joint Research Centre (JRC); Andersson, N.; Arena, M.; Auteri, D.; Barmaz, S.; Grignard, E.; Kienzler, A.; Lepper, P.; Lostia, A.M.; Munn, S.; et al. Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. EFSA J. 2018, 16, e05311. [Google Scholar] [CrossRef]
- World Health Organization. Reducing Health Risks from Endocrine-Disrupting Chemicals. Available online: https://www.who.int/europe/health-topics/chemical-safety/reducing-health-risks-from-endocrine-disrupting-chemicals#tab=tab_1 (accessed on 7 September 2024).
- Pesticide Fasts. Endocrine-Related Diseases & Pesticides. Available online: https://pesticidefacts.org/topics/pesticide-testing-and-regulation/endocrine-related-diseases-pesticides (accessed on 7 September 2024).
Author, Year, Country | Type of Study | Age/Sex/Sample | Agent/Source of Exposure | Assessment Parameters | Main Results | Quality Score |
---|---|---|---|---|---|---|
Buser MC et al. [46], 2014, USA | Cross-sectional study | 6–19 years/ both/n = 1298 | 2,5-dichlorophenol, 2,4-dichlorophenol/ environmental | zBMI, waist circumference and obesity | Positive association between 2,5-D, 2,4-D with BMI, Hip Circumference, and obesity in children and adolescents. | Moderate (III) |
Wei Y et al. [47], 2014, USA | Cross-sectional study | 20–85 years/ Both/n = 2963 | 2,5-dichlorophenol, 2,4-dichlorophenol/ environmental | Urinary pesticide concentrations, BMI | Urinary concentrations of 2,5-D were associated with obesity, but there was no significant association with 2,4-D. | Moderate (III) |
Twum C et al. [48], 2011, USA | Cross-sectional study | 6–19 years/ Both/n = 6770 | 2,5-dichlorophenol, 2,4-dichlorophenol/ environmental | BMI | The prevalence of obesity was significantly associated with 2,5-D, but no such association was demonstrated with 2,4-D. | Moderate (III) |
Godbole AM et al. [49], 2022, USA | Cross-sectional study | >19 years/ Both/n = 1675 | Imidacloprid, acetamiprid, clothianidin/ environmental | BMI, % body fat | Acetamiprid was associated with decreased IMG, % fat, Waist Hip Index, and BMI. Imidacloprid was associated with increased rates of overweight/obesity. | Moderate (III) |
Noppakun K et al. [50] 2021 Thailand | Cross-sectional study | ≥20 years/ Both/n = 20,295 | Insecticides, herbicides, fungicides, rodenticides, molluscicides/environmental | BMI, waist circumference | Of the 35 pesticides studied, 22 were associated with increased prevalence of obesity. | Moderate (III) |
Author, Year, Country | Species/ Age/Sex/ Sample | Compound/Dose/ Route of Administration/ Duration | Treatment | Control | Parameters of Evaluation | Main Results |
---|---|---|---|---|---|---|
Tsakiridis E et al. [51], 2023, Canada | Mice C57BL/6J/ 8 weeks/males/ N = 40 | Deltamethrin/ 0; 0.10; 1.0 and 10 mg/kg/ orally/7 days | High- or normal-fat diet with Deltamethrin dose | Same diet without exposure to deltamethrin | Weight, fat mass, lean mass, glucose tolerance, and insulin tolerance | Deltamethrin inhibited UCP1 expression, but did not alter markers of thermogenesis or increase development of obesity and insulin resistance. |
Meng Z et al. [52], 2023, China | Mice C57BL/6 and ICR/ 5 weeks/males/ N = 40 | Chlorothalonil/ 0.2 mg/L/ oral route/12 weeks. | Ad lib feeding and hydration with chlorothalonil dissolved in water | The water was only deionized | TG, LDL, HDL, AST, ALT, glucose, metagenomic DNA from gut microbiota | Chlorothalonil may alter bile acid metabolism and lead to glycolipid metabolic disorders in the liver. |
Wang B et al. [53], 2021, Canada | Mice C57BL/6J/ 7 weeks/males/ N = 10 | Chlorpyrifos/ 0.5 mg/kg/ oral route/11 weeks. | High- and normal-fat diet and ad lib hydration with chlorpyrifos | Same diet with no exposure to chlorpyrifos | Weight, body composition, glucose and insulin tolerance, food thermogenesis, mitochondrion | Chlorpyrifos affects mitochondrial function and food thermogenesis promoting increased obesity. |
Ben Maamar M et al. [54], 2020, USA | Rats Sprague Dawley/ 70–90 days/both | Vinclozolin/ F0 exposed at 100 mg/kg/day/ intraperitoneal route/6 days | Intraperitoneal injection during pregnancy | DMSO injection during pregnancy | BMI, abdominal adiposity, adipocyte size | There was a higher incidence of pathologies in F4, including obesity. |
Sun Q et al. [55], 2017, USA | Mice C57BL/6J/ 5 weeks/females/ N = 4–7 | Imidacloprid/ 0, 0.06, 0.6, and 6 mg/kg/day/ oral route/12 weeks. | High- or low-fat diet and hydration ad lib with imidacloprid | Same diet with no exposure to imidacloprid | Weight, insulin, glucose tolerance | Mice treated with imidacloprid significantly increased weight, adiposity, and insulin levels. |
Wei C et al. [56], 2019, China | Mice C57BL/6/ 2 months/females/ N = 20 | Bifenthrin/ 0.6 mg/kg/ oral route/6 weeks. | Fed corn oil with dissolved bifenthrin and standard ad lib diet | Fed on pure corn oil and standard diet ad libitum | Weight, fat mass, adipocyte size, protein expression | Bifenthrin treatment significantly increased body weight and fat mass. |
Yang, D. et al. [57], 2023, China | Mice ICR/ 4–6 weeks/males/ N = 30 | Lambda-cyhalothrin/ 0.4 and 2 mg/kg/ oral route/22 weeks. | Diet with low and high doses of lambda-cyhalothrin | Same diet without exposure to lambda-cyhalothrin | Indicators of lipid metabolism, lipid profile, weight | Results suggest that TBI may induce obesity, dyslipidemia, and hepatic steatosis. |
Lassiter TL et al. [58], 2008, USA | Rats Long-Evans/ 20–100 days/both/ N = 20 | Chlorpyrifos/ 1, 2.5, 4 mL/kg/ perinatal/gestation route | F0 fed with rat feed and water ad lib and chlorpyrifos dissolved in oil | Same diet with pure corn oil | Weight, height, volume, BMI, weight/volume ratio, leptin | Exposure to CPF caused weight gain in males. |
Simoni-Berra MA et al. [59], 2023, Mexico | Mice BALB/c/ 4 weeks/males/ N = 20 | Malathion/ 10 ppm/ oral route/180 days | Ad lib fed with malathion or malathion + probiotics | Same diet without exposure to malathion | Weight, glucose | Low doses of malathion induced an increase in weight and glucose levels. |
Meggs WJ et al. [60], 2007, USA | Rats Long-Evans/ 6 months/females/ N = 20 | Chlorpyrifos/ 5 mg/kg/day/ subcutaneous route/ 4 months | Daily injection of chlorpyrifos dissolved in DSMO | Pure DSMO injection | Body and organ weight | CPF-treated mice showed significant weight and fat gain. |
Zhang H et al. [61], 2022, China | Mice C57BL/6/ 6 weeks/males/ N = 88 | Difenoconazole/ 30 and 100 mg/kg/day/ oral route/28 day | Ad lib feeding with difenoconazole dissolved in corn oil | Same diet with pure corn oil | Lipid profile, intestinal permeability, microbiota, hepatic TG levels | Exposure to difenoconazole was associated with increased lipid accumulation in the liver, affected intestinal permeability, and microbiota. |
Svingen T et al. [62], 2018, Denmark | Rats Wistar/ 5–6 months/both/ N= 70 | Cyromazine, MCPB, pirimicarb, chemoclamine, thiram, ziram/ doses 5, 16 and 37.5%/ intrauterine route/ Pregnancy | F0 with ad lib feeding and pesticides dissolved in corn oil | Same diet with pure corn oil | Glucose tolerance, insulin, weight | Exposure to high doses was associated with gene alteration in adipose tissue. In males, some degree of weight regain was shown. |
Xiao X et al. [63], 2018, USA | Mice C57BL/6J/ 3 weeks/males/ N = 4–8 | Permethrin/ 50 μg/kg/d/day/ oral route/12 wk. | High-fat and low-fat diet with dissolved permethrin | Same diet without exposure to permethrin | Glucose, insulin, leptin, TG, cholesterol, weight, fat mass | Permethrin treatment significantly increased body weight and fat mass. |
Fang B et al. [64], 2018, China | Rats/ 8 weeks/both/ N = 36 | Chlorpyrifos/ 0.3 and 3 mg/kg/day/ oral route/9 weeks | High-fat and low-fat diet with different doses of chlorpyrifos | Same diet with pure DMSO | Weight, glucose, lipids, cytokines, and intestinal microbiome | Chronic exposure to chlorpyrifos was associated with the abundance of opportunistic pathogens and bacteria associated with obese and diabetic phenotypes. |
Peris-Sampedro F et al. [65], 2015, Spain | Mice C57BL/6N and TR/ 7 months/males/ N = 40 | Chlorpyrifos/ 2 mg/kg/day/ oral route/8 weeks. | Mouse feed ad lib supplemented with chlorpyrifos | Same diet without exposure to chlorpyrifos | Weight, diet, lipids, glucose, total cholesterol | There was a relationship between CPF and obesity in apoE3 mice, although this group is already vulnerable to developing obesity when treated with CPF. |
Djekkoun N et al. [66], 2022, France | Rats Wistar/ 2 months/females/ N = 16 | Chlorpyrifos/ 10 mg/kg/ oral route/5 days | Standard ad libitum diet in F0 with chlorpyrifos | Same diet without exposure to chlorpyrifos | Glycemia, lipid profile, microbiota | Exposure to chlorpyrifos with a high-fat diet induced dysmetabolism and an imbalance of gut microbiota. |
GuibourdenchEM et al. [67], 2021, France | Rats Wistar/ 7 months/both/ N = 67 | Chlorpyrifos/ 1 mg/kg/day/ oral route/16 weeks. | Administration of chlorpyrifos dissolved in oil and feeding ad lib | Administration of pure oil and same feeding | Weight, lipid profile, glucose, mRNA of proteins related to lipid and glucose metabolism | Maternal exposure to CPF + high-fat diet was associated with metabolic changes in the offspring and altered lipid and glucose metabolism. |
Liang Y et al. [68], 2019, China | Mice C57BL/6 and CD1/ 3 weeks/males/ N = 40 | Chlorpyrifos/ 5 mg/kg/day/ oral route/12 weeks. | High-fat and normal-fat diet with chlorpyrifos dissolved in corn oil | Same diet with pure corn oil | Glucose, insulin, lipopolysaccharides, weight, microbiota | Chlorpyrifos caused a breakdown of the intestinal barrier, increased lipid entry, a mild inflammatory state, and increased tendency to gain fat. |
Guardia-Escote L et al. [69], 2020, Spain | Mice C57BL/6/ both/ N = 133 | Chlorpyrifos/ 1 mg/kg/ oral route/5 days | Oral administration of chlorpyrifos with micropipette + high-fat diet | Same diet with placebo | DNA methylation, leptin, growth factor, weight | Postnatal exposure to CPF caused metabolic alterations in adulthood. |
Yang D et al. [70], 2021, USA | Mice ICR/ 6–8 weeks/males/ N = 30 | Thiamethoxam/ 4 and 20 mg/kg/ oral route/12 weeks | Ad lib oral feeding with oral administration of TMX | Same diet with phosphate-buffered saline in DSMO 1% | Lipid profile, glucose, tissue index | TMX exposure caused dyslipidemia and fatty liver disease. |
Sun Q et al. [71], 2016, USA | Mice C57BL/6J/ 5 semester/males/ N = 30 | Imidacloprid/ 0.07, 0.7, and 7 mg/kg/day/ oral route/12 weeks | High-fat and low-fat diet plus imidacloprid administration | Same diet without exposure to imidacloprid | Weight, glucose, insulin, leptin, lipid profile | Imidacloprid was associated with weight gain and adiposity. |
Wu S et al. [72], 2018, China | Mice ICR/ 5 weeks/males/ N = 32 | Propamocarb/ 0.5, 5, and 50 mg/kg/day/ oral route/4 weeks | Ad lib feeding with propamocarb dissolved in water | Same diet, but with deionized water. | Genes related to lipid metabolism, weight, hepatic TGs | Propamocarb exposure altered transcription of hepatic genes responsible for lipid regulation. |
Jin Y et al. [73], 2014 China | Mice C57BL/6J/ 3 weeks/males/ N = 45 | Cypermethrin/ 50 μg/kg/ oral route/20 weeks | High-energy diet with cypermethrin administration | Basal diet or high-energy diet without cypermethrin | Weight, lipid profile, hepatic TGs | There were no significant changes in weight. Hepatic lipid accumulation and TG content were significantly increased in the CYP-HFD group. |
Smith, L. et al. [74], 2020, France | Mice C57BL/6J 8 weeks/both/ N = 30 | Boscalid, captan, chlorpyrifos, thiacloprid, and ziram/ 0.25 mg/kg/day intrauterine/ gestational route | F0 ad lib feeding + administration of pesticide mixture | Same diet without pesticide exposure | Weight, blood glucose, adipose tissue, cholesterol, insulin, urinary, and fecal metabolomes | Perinatal pesticide exposure did not affect body weight or energy homeostasis in 6- and 14-week-old mice. |
Author, Year, Country | Compound/ Concentration/Time | Type of Tissue | Control | Main Results | Conclusions | Quality Index |
---|---|---|---|---|---|---|
He B et al. [75], 2020 China | β-cypermethrin/ 25, 50, and 100 μM/ 2, 4 and 8 days | 3T3-L1 adipocytes | Treated with DMEM/10% FBS | Treatment with β-cypermethrin increased ROS levels, autophagy, and adipogenesis. | β-cypermethrin promotes adipogenesis. | 16-CSR |
Sun Q et al. [76], 2016, USA | Fipronil/ 0.1, 1, and 10 μM/ 8 days | 3T3-L1 adipocytes | Treated with DMSO | Fipronil was associated with fat accumulation in 3T3-L1 adipocytes and lipogenesis. | Fipronil alters adipogenesis and increases lipid accumulation. | 15-CSR |
Park Y et al. [77], 2013, USA | Imidacloprid/ 10 and 20 μM/ 8 days | 3T3-L1 adipocytes | Treated with DMSO | Imidacloprid treatment enhanced adipocyte lipid accumulation and lipogenesis regulators. | Imidacloprid could alter adipogenesis and increase fat accumulation. | 15-CSR |
Biserni M et al. [78], 2019, United Kingdom | Quizalofop-p-ethyl, glyphosate, 2,4-D, isoxaflutole, dicamba, quizalofop, propaquizafop/ 0.1, 1, 10, and 100 μM/ 8 days | 3T3-L1 adipocytes | Treated with Dexamethasone | Only QpE showed a statistically significant TG accumulation. In the case of Isoxaflutole and dicamba, the effect was smaller. | The lipid-accumulating capacity of QpE suggests a possible obesogenic capacity. | 18-CSR |
LIM S et al. [79], 2016, Korea | Fenoxycarb, pyriproxyfen/ 5, 10, 25, 50, and 100 μM/ | 3T3-L1 adipocytes | Treated with DMEM/10% FBS | Fenoxycarb stimulated PPARγ and FATP1 activity and expression in 3T3-L1 adipocytes. Pyriproxyfen increased lipid deposition to a lesser extent. | Fenoxycarb may promote lipid accumulation in adipocytes. | 15-CSR |
Xiang D et al. [80], 2018, China | Cis-bifenthrin/ 0.001, 0.01, 0.1, and 1 μM/ 24 h. | Hepatocytes | Treated with DMSO | HepG2 cells incubated with bifenthrin showed a significant accumulation of TG. | Pyrethroid-induced toxicity could alter lipid metabolism. | 16-CSR |
Blanco J et al. [81], 2020, Spain | Chlorpyrifos/ 25, 50, 100, and 200 μM/ 24 h. | 3T3-L1 adipocytes | Treated with DMSO | Chlorpyrifos promotes adipogenesis by increasing the number of 3T3-L1 preadipocytes and improving their lipid storage capacity. | Chlorpyrifos may contribute to increased incidence of obesity. | 17-CSR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Bermejo, M.; Barrezueta-Aguilar, C.; Pérez-Murillo, J.; Ventura, I.; Legidos-García, M.E.; Tomás-Aguirre, F.; Tejeda-Adell, M.; Martínez-Peris, M.; Marí-Beltrán, B.; Murillo-Llorente, M.T. Impact of Endocrine Disrupting Pesticide Use on Obesity: A Systematic Review. Biomedicines 2024, 12, 2677. https://doi.org/10.3390/biomedicines12122677
Pérez-Bermejo M, Barrezueta-Aguilar C, Pérez-Murillo J, Ventura I, Legidos-García ME, Tomás-Aguirre F, Tejeda-Adell M, Martínez-Peris M, Marí-Beltrán B, Murillo-Llorente MT. Impact of Endocrine Disrupting Pesticide Use on Obesity: A Systematic Review. Biomedicines. 2024; 12(12):2677. https://doi.org/10.3390/biomedicines12122677
Chicago/Turabian StylePérez-Bermejo, Marcelino, Cristian Barrezueta-Aguilar, Javier Pérez-Murillo, Ignacio Ventura, María Ester Legidos-García, Francisco Tomás-Aguirre, Manuel Tejeda-Adell, Miriam Martínez-Peris, Belén Marí-Beltrán, and María Teresa Murillo-Llorente. 2024. "Impact of Endocrine Disrupting Pesticide Use on Obesity: A Systematic Review" Biomedicines 12, no. 12: 2677. https://doi.org/10.3390/biomedicines12122677
APA StylePérez-Bermejo, M., Barrezueta-Aguilar, C., Pérez-Murillo, J., Ventura, I., Legidos-García, M. E., Tomás-Aguirre, F., Tejeda-Adell, M., Martínez-Peris, M., Marí-Beltrán, B., & Murillo-Llorente, M. T. (2024). Impact of Endocrine Disrupting Pesticide Use on Obesity: A Systematic Review. Biomedicines, 12(12), 2677. https://doi.org/10.3390/biomedicines12122677