The 3′UTR VNTR SLC6A3 Genetic Variant and Major Depressive Disorder: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy and Selection Criteria
2.2. Study Selection and Data Extraction
2.3. Bias Risk of Each Study
3. Results
4. Discussion
4.1. SLC6A3 3′UTR VNTR (rs28363170) Variant and Its Genotypic Frequency in Major Depressive Disorder (MDD)
4.2. SLC6A3 3′UTR VNTR (rs28363170) Variant and Pharmacotherapy
4.3. Selected Articles’ Quality Assessment and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caldeira, L.S.; Lopes-Silva, J.B. Contribuições multidisciplinares para a intervenção do Transtorno Depressivo Maior: Uma revisão integrativa da literatura. Mosaico Estud. Psicol. 2019, 7, 23–44. [Google Scholar]
- Liu, Q.; He, H.; Yang, J.; Feng, X.; Zhao, F.; Lyu, J. Changes in the global burden of depression from 1990 to 2017: Findings from the Global Burden of Disease study. J. Psychiatr. Res. 2020, 126, 134–140. [Google Scholar] [CrossRef]
- Knight, M.J.; Baune, B.T. Cognitive dysfunction in major depressive disorder. Curr. Opin. Psychiatry 2018, 31, 26–31. [Google Scholar] [CrossRef]
- Wang, J.; Wu, X.; Lai, W.; Long, E.; Zhang, X.; Li, W.; Zhu, Y.; Chen, C.; Zhong, X.; Liu, Z.; et al. Prevalence of depression and depressive symptoms among outpatients: A systematic review and meta-analysis. BMJ Open 2017, 7, e017173. [Google Scholar] [CrossRef] [Green Version]
- Malhi, G.S.; Mann, J.J. Depression. Lancet 2018, 392, 2299–2312. [Google Scholar] [CrossRef]
- World Health Organization. Depression and Other Common Mental Disorders Global Health Estimates; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Santomauro, D.F.; Herrera, A.M.M.; Shadid, J.; Zheng, P.; Ashbaugh, C.; Pigott, D.M.; Abbafati, C.; Adolph, C.; Amlag, J.O.; Aravkin, A.Y.; et al. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 2021, 398, 1700–1712. [Google Scholar] [CrossRef]
- Peedicayil, J.; Kumar, A. Epigenetic Drugs for Mood Disorders. Prog. Mol. Biol. Transl. Sci. 2018, 157, 151–174. [Google Scholar]
- Liu, Y.; Zhao, J.; Guo, W. Emotional roles of mono-aminergic neurotransmitters in major depressive disorder and anxiety disorders. Front. Psychol. 2018, 9, 2201. [Google Scholar] [CrossRef] [Green Version]
- Bieliński, M.; Jaracz, M.; Lesiewska, N.; Tomaszewska, M.; Sikora, M.; Junik, R.; Kamińska, A.; Tretyn, A.; Borkowska, A. Association between COMT Val158Met and DAT1 Polymorphisms and Depressive Symptoms in the Obese Population. Neuropsychiatr. Dis. Treat. 2017, 13, 2221–2229. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85028322200&doi=10.2147%2FNDT.S138565&partnerID=40&md5=bc8a8874cd42cd62314846ece6baf5df (accessed on 23 March 2023). [CrossRef] [Green Version]
- Aziz Azzam, A.; Rasheed Bahgat, D.; Hosny Shahin, R.; Azme Nasralla, R. Association study between polymorphisms of dopamine transporter gene (SLC6A3), dopamine D1 receptor gene (DRD1), and autism. J. Med. Sci. Res. 2018, 1, 59. [Google Scholar] [CrossRef]
- Rafikova, E.; Shadrina, M.; Slominsky, P.; Guekht, A.; Ryskov, A.; Shibalev, D.; Vasilyev, V. SLC6A3 (DAT1) as a Novel Candidate Biomarker Gene for Suicidal Behavior. Genes 2021, 12, 861. [Google Scholar] [CrossRef] [PubMed]
- Opmeer, E.M.; Kortekaas, R.; Aleman, A. Depression and the role of genes involved in dopamine metabolism and signalling. Prog. Neurobiol. 2010, 92, 112–133. [Google Scholar] [CrossRef] [PubMed]
- Rafikova, E.I.; Shibalev, D.V.; Shadrina, M.I.; Slominsky, P.A.; Guekht, A.B.; Ryskov, A.P.; Vasilyev, V.A. Common and Specific Genetic Risk Factors for Three Disorders with Depressive Symptoms. Russ. J. Genet. 2022, 58, 65–72. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124346425&doi=10.1134%2FS1022795422010100&partnerID=40&md5=a2c51e31e765d96cb873fa84d5b1c806 (accessed on 10 March 2023). [CrossRef]
- Aldoghachi, A.F.; Cheah, P.S.; Ibrahim, N.; Lye, M.S.; Ling, K.H. Dopamine transporter 1 (Dat1) rs40184 single nucleotide polymorphism is not associated with the malaysian major depressive disorder subjects. Neurosci. Res. Notes 2019, 2, 5–13. [Google Scholar] [CrossRef]
- Yale Center for Medical Informatics. The ALlele FREquency Database. 1999. Available online: https://alfred.med.yale.edu/alfred/ALFREDtour-overview.asp (accessed on 2 December 2022).
- Janssens, A.C.J.W.; Ioannidis, J.P.A.; van Duijn, C.M.; Little, J.; Khoury, M.J. Strengthening the reporting of genetic risk prediction studies: The GRIPS statement. PLoS Med. 2011, 8, 6–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisch, A.; Postilnick, D.; Rockah, R.; Michaelovsky, E.; Postilnick, S.; Birman, E.; Laor, N.; Rauchverger, B.; Kreinin, A.; Poyurovsky, M.; et al. Association of Unipolar Major Depressive Disorder with Genes of the Serotonergic and Dopaminergic Pathways. Mol. Psychiatry 1999, 4, 389–392. Available online: https://pesquisa.bvsalud.org/portal/resource/pt/mdl-10483058 (accessed on 10 March 2023). [CrossRef] [Green Version]
- Kirchheiner, J.; Nickchen, K.; Sasse, J.; Bauer, M.; Roots, I.; Brockmöller, J. A 40-Basepair VNTR Polymorphism in the Dopamine Transporter (DAT1) Gene and the Rapid Response to Antidepressant Treatment. Pharmacogenom. J. 2007, 7, 48–55. Available online: https://pesquisa.bvsalud.org/portal/resource/pt/mdl-16702979 (accessed on 10 March 2023). [CrossRef] [Green Version]
- Lavretsky, H.; Siddarth, P.; Kumar, A.; Reynolds, C.F. The Effects of the Dopamine and Serotonin Transporter Polymorphisms on Clinical Features and Treatment Response in Geriatric Depression: A Pilot Study. Int. J. Geriatr. Psychiatry 2008, 23, 55–59. Available online: https://pesquisa.bvsalud.org/portal/resource/pt/mdl-17621383 (accessed on 10 March 2023). [CrossRef]
- Huang, C.C.; Lu, R.B.; Shih, M.C.; Yen, C.H.; Huang, S.Y. Association study of the dopamine transporter gene with personality traits and major depressive disorder in the Han Chinese population. Pharmacogenet. Genom. 2011, 21, 94–97. [Google Scholar] [CrossRef]
- Rafikova, E.I.; Shibalev, D.V.; Shadrina, M.I.; Slominsky, P.A.; Guekht, A.B.; Ryskov, A.P.; Vasilyev, V.A. Influence of Polymorphic Gene Variants of the Dopaminergic System on the Risk of Disorders with Depressive Symptoms. Russ. J. Genet. 2021, 57, 942–948. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113855686&doi=10.1134%2FS1022795421070115&partnerID=40&md5=61ac1ce2bdc16f4efad1e47566cdf632 (accessed on 10 March 2023). [CrossRef]
- Hellwig, S.; Frings, L.; Masuch, A.; Vach, W.; Domschke, K.; Normann, C.; Meyer, P.T. Antidepressant treatment effects on dopamine transporter availability in patients with major depression: A prospective 123I-FP-CIT SPECT imaging genetic study. J. Neural. Transm. 2018, 125, 995–1005. [Google Scholar] [CrossRef]
- Sambataro, F.; Podell, J.E.; Murty, V.P.; Das, S.; Kolachana, B.; Goldberg, T.E.; Weinberger, D.R.; Mattay, V.S. A variable number of tandem repeats in the 3′-untranslated region of the dopamine transporter modulates striatal function during working memory updating across the adult age span. Eur. J. Neurosci. 2015, 42, 1912–1918. [Google Scholar] [CrossRef] [PubMed]
- Grace, A.A. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat. Rev. Neurosci. 2016, 17, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Felten, A.; Montag, C.; Markett, S.; Walter, N.T.; Reuter, M. Genetically determined dopamine availability predicts disposition for depression. Brain Behav. 2011, 1, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Pizzagalli, D.A.; Berretta, S.; Wooten, D.; Goer, F.; Pilobello, K.T.; Kumar, P.; Murray, L.; Beltzer, M.; Boyer-Boiteau, A.; Alpert, N.; et al. Assessment of Striatal Dopamine Transporter Binding in Individuals with Major Depressive Disorder: In Vivo Positron Emission Tomography and Postmortem Evidence. JAMA Psychiatry 2019, 76, 854–861. [Google Scholar] [CrossRef]
- López-León, S.; Janssens, A.C.J.W.; Gonzalez-Zuloeta Ladd, A.M.; Del-Favero, J.; Claes, S.J.; Oostra, B.A.; Van Duijn, C.M. Meta-Analyses of Genetic Studies on Major Depressive Disorder. Mol. Psychiatry 2008, 13, 772–785. Available online: https://pesquisa.bvsalud.org/portal/resource/pt/mdl-17938638 (accessed on 23 March 2023). [CrossRef] [PubMed] [Green Version]
- Roca, M.; Del Amo, A.R.L.; Riera-Serra, P.; Pérez-Ara, M.; Castro, A.; Roman Juan, J.; García-Toro, M.; García-Pazo, P.; Gili, M. Suicidal risk and executive functions in major depressive disorder: A study protocol. BMC Psychiatry 2019, 19, 253. [Google Scholar] [CrossRef] [Green Version]
- Pettorruso, M.; d’Andrea, G.; Martinotti, G.; Cocciolillo, F.; Miuli, A.; Di Muzio, I.; Collevecchio, R.; Verrastro, V.; De-Giorgio, F.; Janiri, L.; et al. Hopelessness, Dissociative Symptoms, and Suicide Risk in Major Depressive Disorder: Clinical and Biological Correlates. Brain Sci. 2020, 10, 519. [Google Scholar] [CrossRef]
- Lin, J.; Su, Y.; Lv, X.; Liu, Q.; Wang, G.; Wei, J.; Zhu, G.; Chen, Q.; Tian, H.; Zhang, K.; et al. Perceived stressfulness mediates the effects of subjective social support and negative coping style on suicide risk in Chinese patients with major depressive disorder. J. Affect. Disord. 2020, 265, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Wang, S.B.; Li, Y.; Xu, D.D.; Ungvari, G.S.; Ng, C.H.; Chow, I.H.; Xiang, Y.T. Prevalence of suicidal behaviors in patients with major depressive disorder in China: A comprehensive meta-analysis. J. Affect. Disord. 2018, 225, 32–39. [Google Scholar] [CrossRef]
- Chatkin, J.M. A influência da genética na dependência tabágica e o papel da farmacogenética no tratamento do tabagismo. J. Bras. Pneumol. 2006, 32, 573–579. Available online: http://www.scielo.br/pdf/jbpneu/v32n6/a16v32n6 (accessed on 25 March 2023). [CrossRef] [PubMed] [Green Version]
- Yin, L.; Zhang, Y.Y.; Zhang, X.; Yu, T.; He, G.; Sun, X.L. TPH, SLC6A2, SLC6A3, DRD2 and DRD4 Polymorphisms and Neuroendocrine Factors Predict SSRIs Treatment Outcome in the Chinese Population with Major Depression. Pharmacopsychiatry 2015, 48, 95–103. [Google Scholar] [CrossRef] [PubMed]
Author | Title | Objective | Year | Country | Sample (N) | Results | p-Value | Genotypic Frequency |
---|---|---|---|---|---|---|---|---|
Frisch et al. [18] | “Association of unipolar major depressive disorder with genes of the serotonergic and dopaminergic pathways” | Analyze serotonergic and dopaminergic gene polymorphisms, including the Dopamine transporter 1 (DAT1). | 1999 | Israel | The population was divided according to ethnicity: MDD = 102 Ashkenazi n = 63 (61.8%) Non-Ashkenazi n = 39 (28.2%) Control = 172 Ashkenazi n = 112 (65.1%) Non-Ashkenazi n = 60 (34.8%) | No statistical differences existed between MDD patients and healthy controls in regard to the researched polymorphisms, including the SLC6A3 3′UTR VNTR gene variant (p > 0.003). | p > 0.003 | MDD—Ashkenazi LL (10R/10R) = 23.8% (n = 15) LS (10R/9R) = 60.3% (n = 38) SS (9R/9R) = 12.7% (n = 8) Other genotypes 2 = 3.2% (n = 2) Control—Ashkenazi 1 LL (10R/10R) = 39.3% (n = 44) LS (10R/9R) = 42.9% (n = 48) SS (9R/9R) = 11.6% (n = 13) Other genotypes 2 = 5.4% (n = 6) MDD—non-Ashkenazi LL (10R/10R) = 30.8% (n = 12) LS (10R/9R) = 43.6% (n = 17) SS (9R/9R) = 12.8% (n = 5) Other genotypes 2 = 12.8% (n = 5) Control—non-Ashkenazi 1 LL (10R/10R) = 45.0% (n = 27) LS (10R/9R) = 28.3% (n = 17) SS (9R/9R) = 18.3% (n = 11) Other genotypes 2 = 6.7% (n = 4) |
Kirchheine et al. 3 [19] | “A 40-basepair VNTR polymorphism in the dopamine transporter (DAT1) gene and the rapid response to antidepressant treatment” | This prospective cohort study aimed to analyze DAT1 40 bp VNTR genetic variant’s influence on the antidepressant response. | 2007 | Germany | n = 190 F = 123 (64.7%) M = 67 (35.3%) | The SLC6A3 3′UTR VNTR polymorphism influenced the rapid response to antidepressant therapy. Compared to the LL (10R/10R) carriers, the LS (10R/9R) carriers had a 1.6 odds ratio (OR), and the SS (9R/9R) carriers had a 6.0 OR for no or poor response (p = 0.016). | DAT1 VNTR polymorphism correlated with rapid response to antidepressant therapy (p = 0.016). | LL (10R/10R) = 54% (n = 103) LS (10R/9R) = 37% (n = 70) SS (9R/9R) = 43% (n = 16) |
Lavretsky et al. [20] | “The effects of the dopamine and serotonin transporter polymorphisms on clinical features and treatment response in geriatric depression: A pilot study” | Analyze the clinical association between the dopamine and serotonin transporter polymorphism, including the SLC6A3 3′UTR VNTR (rs28363170) genetic variant, in late-life depression and preferential treatment response to the methylphenidate–citalopram treatment combination. | 2008 | USA | MDD n = 15 F = 9 (60%) M = 6 (40%) | Individuals with the LL (10R/10R) genotype may be associated with a late-life depression endophenotype, with executive dysfunction that preferentially responds to methylphenidate combined with a selective serotonin reuptake inhibitor (SSRI) to improve mood and cognition. | LL (10R/10R) genotype x decline in depression-severity-based HDRS score reduction (p = 0.01). | MDD LL (10R/10R) = 33.3% (n = 5) Other genotypes = 66.7% (n = 10) |
LL (10R/10R) genotype x methylphenidate combined with citalopram = greater reduction in depression severity throughout treatment (p = 0.049). | ||||||||
Huang et al. [21] | “Association study of the dopamine transporter gene with personality traits and major depressive disorder in the Han Chinese population” | Analyze 17 polymorphisms of the dopamine transporter gene (DAT1) to verify their association with MDD and whether they influence personality traits in MDD patients. | 2011 | China | MDD n = 582 F = 334 (57.4%) M = 248 (42.6%) Control n = 435 F = 210 (48.3%) M = 225 (51.7%) | No associations were found between the SLC6A3 (DAT1) 3′UTR VNTR variant’s allelic frequency and MDD (control vs. case group) (p = 0.986). | SLC6A3 (DAT1) 3′UTR VNTR variant’s genotypic distributions and allele frequencies did not vary between MDD patients and healthy controls in a Han Chinese population (p = 0.986). | MDD LL (10R/10R) = 80.8% (n = 470) LS (10R/9R) = 12.4% (n = 72) SS (9R/9R) = 0.3% (n = 2) Other genotypes = 6.5% (n = 38) Control LL (10R/10R) = 80.5% (n = 350) LS (10R/9R) = 12.9% (n = 56) SS (9R/9R) = 0.5% (n = 2) Other genotypes = 6.2% (n = 27) |
Rafikova et al. [22] | “Influence of Polymorphic Gene Variants of the Dopaminergic System on the Risk of Disorders with Depressive Symptoms” | Identify genetic risk factors for depressive episodes, recurrent depression, and mixed anxiety–depressive disorder. The studied genetic polymorphisms were for SLC6A3 (DAT1) 40 bp VNTR, DRD2 rs1800497, DRD4 120 bp VNTR e 48 bp VNTR, and COMT rs4680. | 2021 | Russia | 1st Group— Patients with depressive episodes n = 108 F = 63 (58.3%) M = 45 (41.7%) | SLC6A3 (DAT1) 3′UTR VNTR’s allelic distribution was statistically significant in the mixed-anxiety-and-depressive-disorder group. The short allele (8R or 9R) was found more in the control group (p = 0.005) and was also statistically significant in genotypic distribution (p = 0.025). | Genotypic distribution and the depressive episode (p = 0.355). | Depressive episode LL = 56.5% (n = 61) LS = 38% (n = 41) SS = 5.6% (n = 6) |
2nd Group—Patients with recurrent depression n = 149 F = 101 (67.8%) M = 49 (32.2%) | Genotypic distribution and the risk of depressive episode and recurrent depression (p = 0.199). | Recurrent depression LL = 57.0% (n = 85) LS = 39.6% (n = 59) SS = 3.4% (n = 5) | ||||||
3rd Group—Mixed anxiety and depressive disorder n = 100 F = 52 (52%) M = 48 (48%) | Genotypic distribution and mixed anxiety and depressive disorder (p = 0.025). | Mixed anxiety and depressive disorder LL = 52.0% (n = 52) LS = 39% (n = 39) SS = 9% (n = 9) | ||||||
Control Group n = 163 F = 101 (62%) M = 62 (38%) | Control LL = 69.3% (n = 113) LS = 28.2% (n = 46) SS = 2.5% (n = 4) | |||||||
Rafikova et al. [14] | “Common and Specific Genetic Risk Factors for Three Disorders with Depressive Symptoms” | Identify genetic risk factors for depressive episodes, recurrent depression, and mixed anxiety–depressive disorder. The studied genetic polymorphisms were for SLC6A3/DAT1 (locus 40 bp VNTR), DRD2 (locus rs1800497), DRD4 (loci 120 bp VNTR and 48 bp VNTR), COMT (locus rs4680), SLC6A4/5HTT (loci 5-HTTLPR + rs25531 and Stin2), HTR1A (locus rs6295), HTR2A (locus rs6311), HTR1B (locus rs6296), and OXTR (locus rs53576). | 2022 | Russia | 1st Group— Patients with Depressive episode n = 106 F = 62 (58.5%) M = 44 (41.5%) | SLC6A3 (DAT1) 3′UTR VNTR polymorphism was associated with all depressive episode disorders (p = 0.032), recurrent depression (p = 0.005), and mixed anxiety and depressive disorder (p = 0.005). The SS genotype seems to be a risk factor for mixed anxiety and depressive disorder (OR = 3.93) but not for depression severity. | SLC6A3 (DAT1) 3′UTR VNTR’s LL (10R/10R) genotype correlated with the risk of a depressive episode (p = 0.032). | Depressive episode ICD F32.1 LL = 55.7% (n = 59) LS = 38.6% (n = 41) SS = 5.7% (n = 6) |
2nd Group— Patients with Recurrent depression n = 149 F = 101 (67.8%) M = 48 (32.2%) | SLC6A3 (DAT1) 3′UTR VNTR’s LL (10R/10R) genotype correlated with the risk of recurrent depression (p = 0.025). | Recurrent depression LL = 57.0% (n = 85) LS = 39.6% (n = 59) SS = 3.4% (n = 5) | ||||||
3rd Group—Patients with mixed anxiety and depressive disorder n = 97 F = 49 (50.5%) M = 48 (49.5%) | SLC6A3 (DAT1) 3′UTR VNTR’s LL (10R/10R) genotype correlated with the risk of mixed anxiety and depressive disorder (p = 0.005). | Mixed anxiety and depressive disorder LL = 50.5% (n = 49) LS = 40.2% (n = 39) SS = 9.3% (n = 9) | ||||||
Control Group n = 163 F = 101 (62%) M = 62 (38%) | Control LL = 69.3% (n = 113) LS = 28.2% (n = 46) SS = 2.5% (n = 4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gontijo, B.R.; Possatti, I.; Fratelli, C.F.; Pereira, A.S.R.; Bonasser, L.S.S.; de Souza Silva, C.M.; Rodrigues da Silva, I.C. The 3′UTR VNTR SLC6A3 Genetic Variant and Major Depressive Disorder: A Systematic Review. Biomedicines 2023, 11, 2270. https://doi.org/10.3390/biomedicines11082270
Gontijo BR, Possatti I, Fratelli CF, Pereira ASR, Bonasser LSS, de Souza Silva CM, Rodrigues da Silva IC. The 3′UTR VNTR SLC6A3 Genetic Variant and Major Depressive Disorder: A Systematic Review. Biomedicines. 2023; 11(8):2270. https://doi.org/10.3390/biomedicines11082270
Chicago/Turabian StyleGontijo, Bruna Rodrigues, Isabella Possatti, Caroline Ferreira Fratelli, Alexandre Sampaio Rodrigues Pereira, Larissa Sousa Silva Bonasser, Calliandra Maria de Souza Silva, and Izabel Cristina Rodrigues da Silva. 2023. "The 3′UTR VNTR SLC6A3 Genetic Variant and Major Depressive Disorder: A Systematic Review" Biomedicines 11, no. 8: 2270. https://doi.org/10.3390/biomedicines11082270
APA StyleGontijo, B. R., Possatti, I., Fratelli, C. F., Pereira, A. S. R., Bonasser, L. S. S., de Souza Silva, C. M., & Rodrigues da Silva, I. C. (2023). The 3′UTR VNTR SLC6A3 Genetic Variant and Major Depressive Disorder: A Systematic Review. Biomedicines, 11(8), 2270. https://doi.org/10.3390/biomedicines11082270