The Impact of Pharmacotherapy for Heart Failure on Oxidative Stress—Role of New Drugs, Flozins
Abstract
:1. Introduction
2. Heart Metabolism in Different Conditions
3. Oxidative Stress
4. Oxidative Stress in Heart Failure—The Role of Mitochondria
5. Antioxidative Effects of Pharmacotherapy for Heart Failure
6. Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors
6.1. Flozins—What Came Before?
6.2. Sodium-Glucose Linked Transporter (SGLT)
6.3. Pharmacotherapy for Heart Failure
6.4. Clinical Consequences of Using SGLT2 Inhibitors
6.5. The Importance of Flozins in Oxidative Stress
6.5.1. Dapagliflozin
6.5.2. Canagliflozin
6.5.3. Empagliflozin
6.5.4. Ertugliflozin
6.5.5. Sotagliflozin
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tanai, E.; Frantz, S. Pathophysiology of Heart Failure. Compr. Physiol. 2015, 6, 187–214. [Google Scholar] [CrossRef]
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc. Res. 2023, 118, 3272–3287. [Google Scholar] [CrossRef]
- Snipelisky, D.; Chaudhry, S.P.; Stewart, G.C. The Many Faces of Heart Failure. Card. Electrophysiol. Clin. 2019, 11, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, H.; Kinugawa, S.; Matsushima, S. Oxidative stress and heart failure. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, 2181–2190. [Google Scholar] [CrossRef] [Green Version]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022, 79, e263–e421. [Google Scholar] [CrossRef] [PubMed]
- Gajarsa, J.J.; Kloner, R.A. Left ventricular remodeling in the post-infarction heart: A review of cellular, molecular mechanisms, and therapeutic modalities. Heart Fail. Rev. 2011, 16, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Takimoto, E.; Dimaano, V.L.; DeMazumder, D.; Kettlewell, S.; Smith, G.; Sidor, A.; Abraham, T.P.; O’Rourke, B. Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a guinea pig model of heart failure. Circ. Res. 2014, 115, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, M.; Hay, I.; Fetics, B.; Kass, D.A. Combined Ventricular Systolic and Arterial Stiffening in Patients With Heart Failure and Preserved Ejection Fraction Implications for Systolic and Diastolic Reserve Limitations. Circulation 2003, 107, 714–720. [Google Scholar] [CrossRef]
- Lv, J.; Li, Y.; Shi, S.; Xu, X.; Wu, H.; Zhang, B.; Song, Q. Skeletal muscle mitochondrial remodeling in heart failure: An update on mechanisms and therapeutic opportunities. Biomed. Pharmacother. 2022, 155, 113833. [Google Scholar] [CrossRef]
- Malik, A.; Brito, D.; Vaqar, S.; Chhabra, L. Congestive Heart Failure. StatPearls 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK430873/ (accessed on 2 August 2023).
- Murphy, S.P.; Ibrahim, N.E.; Januzzi, J.L. Heart Failure With Reduced Ejection Fraction: A Review. JAMA 2020, 324, 488–504. [Google Scholar] [CrossRef]
- Zannad, F.; Ferreira, J.P.; Pocock, S.J.; Anker, S.D.; Butler, J.; Filippatos, G.; Brueckmann, M.; Ofstad, A.P.; Pfarr, E.; Jamal, W.; et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: A meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet 2020, 396, 819–829. [Google Scholar] [CrossRef]
- Packer, M.; Butler, J.; Zannad, F.; Filippatos, G.; Ferreira, J.P.; Pocock, S.J.; Carson, P.; Anand, I.; Doehner, W.; Haass, M.; et al. Effect of Empagliflozin on Worsening Heart Failure Events in Patients With Heart Failure and Preserved Ejection Fraction: EMPEROR-Preserved Trial. Circulation 2021, 144, 1284–1294. [Google Scholar] [CrossRef] [PubMed]
- Wende, A.R.; Brahma, M.K.; McGinnis, G.R.; Young, M.E. Metabolic Origins of Heart Failure. JACC Basic Transl. Sci. 2017, 2, 297–310. [Google Scholar] [CrossRef] [PubMed]
- Honka, H.; Solis-Herrera, C.; Triplitt, C.; Norton, L.; Butler, J.; DeFronzo, R.A. Therapeutic Manipulation of Myocardial Metabolism: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 77, 2022–2039. [Google Scholar] [CrossRef]
- Hsu, C.N.; Hsuan, C.F.; Liao, D.; Chang, J.K.J.; Chang, A.J.W.; Hee, S.W.; Lee, H.L.; Teng, S.I.F. Anti-Diabetic Therapy and Heart Failure: Recent Advances in Clinical Evidence and Molecular Mechanism. Life 2023, 13, 1024. [Google Scholar] [CrossRef] [PubMed]
- Correale, M.; Tricarico, L.; Croella, F.; Alfieri, S.; Fioretti, F.; Brunetti, N.D.; Inciardi, R.M.; Nodari, S. Novelties in the pharmacological approaches for chronic heart failure: New drugs and cardiovascular targets. Front. Cardiovasc. Med. 2023, 10, 1157472. [Google Scholar] [CrossRef]
- Lopaschuk, G.D.; Karwi, Q.G.; Tian, R.; Wende, A.R.; Abel, E.D. Cardiac Energy Metabolism in Heart Failure. Circ. Res. 2021, 128, 1487–1513. [Google Scholar] [CrossRef]
- Gao, Y.; Feng, S.; Wen, Y.; Tang, T.-T.; Wang, B.; Liu, B.-C. Review Cardiorenal protection of SGLT2 inhibitors—Perspectives from metabolic reprogramming. eBioMedicine 2022, 83, 104215. [Google Scholar] [CrossRef]
- Zhou, B.; Tian, R. Mitochondrial dysfunction in pathophysiology of heart failure. J. Clin. Investig. 2018, 128, 3716–3726. [Google Scholar] [CrossRef] [Green Version]
- Davogustto, G.E.; Salazar, R.L.; Vasquez, H.G.; Karlstaedt, A.; Dillon, W.P.; Guthrie, P.H.; Martin, J.R.; Vitrac, H.; De La Guardia, G.; Vela, D.; et al. Metabolic remodeling precedes mTORC1-mediated cardiac hypertrophy. J. Mol. Cell. Cardiol. 2021, 158, 115–127. [Google Scholar] [CrossRef]
- Karlstaedt, A.; Khanna, R.; Thangam, M.; Taegtmeyer, H. Glucose 6-Phosphate Accumulates via Phosphoglucose Isomerase Inhibition in Heart Muscle. Circ. Res. 2020, 126, 60–74. [Google Scholar] [CrossRef] [PubMed]
- Bedi, K.C.; Snyder, N.W.; Brandimarto, J.; Aziz, M.; Mesaros, C.; Worth, A.J.; Wang, L.L.; Javaheri, A.; Blair, I.A.; Margulies, K.B.; et al. Evidence for Intramyocardial Disruption of Lipid Metabolism and Increased Myocardial Ketone Utilization in Advanced Human Heart Failure. Circulation 2016, 133, 706–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neinast, M.D.; Jang, C.; Hui, S.; Anthony, T.G.; Rabinowitz, J.D.; Correspondence, Z.A.; Murashige, D.S.; Chu, Q.; Morscher, R.J.; Li, X.; et al. Quantitative Analysis of the Whole-Body Metabolic Fate of Branched-Chain Amino Acids Cell Metabolism Quantitative Analysis of the Whole-Body Metabolic Fate of Branched-Chain Amino Acids. Cell Metab. 2019, 29, 417–429. [Google Scholar] [CrossRef] [Green Version]
- Daniele, G.; Xiong, J.; Solis-herrera, C.; Merovci, A.; Eldor, R.; Tripathy, D.; Defronzo, R.A.; Norton, L.; Abdul-ghani, M. Dapagliflozin Enhances Fat Oxidation and Ketone Production in Patients With Type 2 Diabetes. Diabetes Care 2016, 39, 2036–2041. [Google Scholar] [CrossRef] [Green Version]
- Ferrannini, E.; Baldi, S.; Frascerra, S.; Astiarraga, B.; Heise, T.; Bizzotto, R.; Mari, A.; Pieber, T.R.; Muscelli, E. Shift to Fatty Substrate Utilization in Response to Sodium—Glucose Cotransporter 2 Inhibition in Subjects Without Diabetes and Patients With Type 2 Diabetes. Diabetes 2016, 65, 1190–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Periasamy, S.; Hsu, D.Z.; Fu, Y.H.; Liu, M.Y. Sleep deprivation-induced multi-organ injury: Role of oxidative stress and inflammation. EXCLI J. 2015, 14, 672. [Google Scholar] [CrossRef]
- Klimczak-Tomaniak, D.; Haponiuk-Skwarlí Nska, J.; Kuch, M. Crosstalk between microRNA and Oxidative Stress in Heart Failure: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 15013. [Google Scholar] [CrossRef]
- Ghosh, A.; Shcherbik, N. Effects of Oxidative Stress on Protein Translation: Implications for Cardiovascular Diseases. Int. J. Mol. Sci. 2020, 21, 2661. [Google Scholar] [CrossRef] [Green Version]
- Wojciechowska, C.; Jacheć, W.; Romuk, E.; Ciszek, A.; Bodnar, P.; Chwalba, T.; Waliczek, M.; Gąsior, M.; Rozentryt, P. Serum Sulfhydryl Groups, Malondialdehyde, Uric Acid, and Bilirubin as Predictors of Adverse Outcome in Heart Failure Patients due to Ischemic or Nonischemic Cardiomyopathy. Oxid. Med. Cell. Longev. 2021, 2021, 6693405. [Google Scholar] [CrossRef]
- Lefer, D.J.; Granger, D.N. Oxidative stress and cardiac disease. Am. J. Med. 2000, 109, 315–323. [Google Scholar] [CrossRef]
- Cervantes Gracia, K.; Llanas-Cornejo, D.; Husi, H.; Dasí, F. Clinical Medicine CVD and Oxidative Stress. J. Clin. Med. 2017, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Jia, G.; Hill, M.A.; Sowers, J.R. Diabetic cardiomyopathy: An update of mechanisms contributing to this clinical entity. Circ. Res. 2018, 122, 624–638. [Google Scholar] [CrossRef] [PubMed]
- Włodarski, A.; Strycharz, J.; Wróblewski, A.; Kasznicki, J.; Drzewoski, J.; Śliwińska, A. The Role of microRNAs in Metabolic Syndrome-Related Oxidative Stress. Int. J. Mol. Sci. 2020, 21, 6902. [Google Scholar] [CrossRef] [PubMed]
- Senoner, T.; Dichtl, W. Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target? Nutrients 2019, 11, 2090. [Google Scholar] [CrossRef] [Green Version]
- Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid. Med. Cell. Longev. 2016, 2016, 1245049. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Dec, K.; Kałduńska, J.; Kawczuga, D.; Kochman, J.; Janda, K. Reactive oxygen species—Sources, functions, oxidative damage. Pol. Merkur. Lekarski 2020, 48, 124–127. [Google Scholar]
- Li, J.M.; Shah, A.M. Mechanism of endothelial cell NADPH oxidase activation by angiotensin II: Role of the p47phox subunit. J. Biol. Chem. 2003, 278, 12094–12100. [Google Scholar] [CrossRef] [Green Version]
- Kondo, H.; Akoumianakis, I.; Badi, I.; Akawi, N.; Kotanidis, C.P.; Polkinghorne, M.; Stadiotti, I.; Sommariva, E.; Antonopoulos, A.S.; Carena, M.C.; et al. Effects of canagliflozin on human myocardial redox signalling: Clinical implications. Eur. Heart J. 2021, 42, 4947–4960. [Google Scholar] [CrossRef] [PubMed]
- Konior, A.; Schramm, A.; Czesnikiewicz-Guzik, M.; Guzik, T.J. NADPH Oxidases in Vascular Pathology. Antioxid. Redox Signal. 2014, 20, 2794–2814. [Google Scholar] [CrossRef] [Green Version]
- Kosiborod, M.; Cavender, M.A.; Fu, A.Z.; Wilding, J.P.; Khunti, K.; Holl, R.W.; Norhammar, A.; Birkeland, K.I.; Jørgensen, M.E.; Thuresson, M.; et al. Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: The CVD-REAL study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors). Circulation 2017, 136, 249–259. [Google Scholar] [CrossRef]
- Roe, N.D.; Ren, J. Nitric oxide synthase uncoupling: A therapeutic target in cardiovascular diseases. Vascul. Pharmacol. 2012, 57, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Holman, R.R.; Angelyn Bethel, M.; Mentz, R.J.; Thompson, V.P.; Lokhnygina, Y.; Buse, J.B.; Chan, J.C.; Choi, J.; Gustavson, S.M.; Iqbal, N.; et al. Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes HHS Public Access. N. Engl. J. Med. 2017, 377, 1228–1239. [Google Scholar] [CrossRef] [PubMed]
- Sinha, N.; Dabla, P. Oxidative Stress and Antioxidants in Hypertension–A Current Review. Curr. Hypertens. Rev. 2015, 11, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Batty, M.; Bennett, M.R.; Yu, E. The Role of Oxidative Stress in Atherosclerosis. Cells 2022, 11, 3843. [Google Scholar] [CrossRef] [PubMed]
- Ide, T.; Tsutsui, H.; Hayashidani, S.; Kang, D.; Suematsu, N.; Nakamura, K.I.; Utsumi, H.; Hamasaki, N.; Takeshita, A. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ. Res. 2001, 88, 529–535. [Google Scholar] [CrossRef]
- Marquez, J.; Lee, S.R.; Kim, N.; Han, J. Rescue of heart failure by mitochondrial recovery. Int. Neurourol. J. 2016, 20, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.; Honda, M.; Takabatake, T. Redox regulation of MAPK pathways and cardiac hypertrophy in adult rat cardiac myocyte. J. Am. Coll. Cardiol. 2001, 37, 676–685. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.; Fisher, M. Inconclusive effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. Pract. Diabetes 2017, 34, 302–303. [Google Scholar] [CrossRef]
- Wojciechowska, C.; Romuk, E.; Tomasik, A.; Skrzep-Poloczek, B.; Nowalany-Kozielska, E.; Birkner, E.; Jacheć, W. Oxidative Stress markers and C-reactive protein are related to severity of heart failure in patients with dilated cardiomyopathy. Mediators Inflamm. 2014, 2014, 147040. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Vélez, C.R.; García-Castiñeiras, S.; Mendoza-Ramos, E.; Hernández-López, E. Increased malondialdehyde in peripheral blood of patients with congestive heart failure. Am. Heart J. 1996, 131, 146–152. [Google Scholar] [CrossRef]
- McMurray, J.; McLay, J.; Chopra, M.; Bridges, A.; Belch, J.J.F. Evidence for enhanced free radical activity in chronic congestive heart failure secondary to coronary artery disease. Am. J. Cardiol. 1990, 65, 1261–1262. [Google Scholar] [CrossRef] [PubMed]
- Ge, Q.; Zhao, L.; Ren, X.M.; Ye, P.; Hu, Z.Y. Feature article: LCZ696, an angiotensin receptor-neprilysin inhibitor, ameliorates diabetic cardiomyopathy by inhibiting inflammation, oxidative stress and apoptosis. Exp. Biol. Med. 2019, 244, 1028–1039. [Google Scholar] [CrossRef]
- Zuo, G.; Ren, X.; Qian, X.; Ye, P.; Luo, J.; Gao, X.; Zhang, J.; Chen, S. Inhibition of JNK and p38 MAPK-mediated inflammation and apoptosis by ivabradine improves cardiac function in streptozotocin-induced diabetic cardiomyopathy. J. Cell. Physiol. 2019, 234, 1925–1936. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.S.; Dighe, P.A.; Mezera, V.; Monternier, P.A.; Brand, M.D. Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. J. Biol. Chem. 2017, 292, 16804–16809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaribeygi, H.; Maleki, M.; Butler, A.E.; Jamialahmadi, T.; Sahebkar, A. Sodium-Glucose Cotransporter 2 Inhibitors and Mitochondrial Functions: State of the Art. EXCLI J. 2023, 22, 53–66. [Google Scholar] [CrossRef]
- Ribas, V.; García-Ruiz, C.; Fernández-Checa, J.C. Glutathione and mitochondria. Front. Pharmacol. 2014, 5, 151. [Google Scholar] [CrossRef] [Green Version]
- Aguiar, C.J.; Rocha-Franco, J.A.; Sousa, P.A.; Santos, A.K.; Ladeira, M.; Rocha-Resende, C.; Ladeira, L.O.; Resende, R.R.; Botoni, F.A.; Melo, M.B.; et al. Succinate causes pathological cardiomyocyte hypertrophy through GPR91 activation. Cell Commun. Signal. 2014, 12, 78. [Google Scholar] [CrossRef] [Green Version]
- Raimundo, N. Mitochondrial pathology: Stress signals from the energy factory. Trends Mol. Med. 2014, 20, 282–292. [Google Scholar] [CrossRef]
- Rosca, M.G.; Hoppel, C.L. Mitochondrial dysfunction in heart failure. Heart Fail. Rev. 2012, 18, 607–622. [Google Scholar] [CrossRef] [Green Version]
- Tahrir, F.G.; Langford, D.; Amini, S.; Mohseni Ahooyi, T.; Khalili, K. Mitochondrial quality control in cardiac cells: Mechanisms and role in cardiac cell injury and disease. J. Cell. Physiol. 2019, 234, 8122–8133. [Google Scholar] [CrossRef]
- Paulus, W.J.; Tschöpe, C. A Novel Paradigm for Heart Failure With Preserved Ejection Fraction: Comorbidities Drive Myocardial Dysfunction and Remodeling Through Coronary Microvascular Endothelial Inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aimo, A.; Castiglione, V.; Borrelli, C.; Saccaro, L.F.; Franzini, M.; Masi, S.; Emdin, M.; Giannoni, A. Oxidative stress and inflammation in the evolution of heart failure: From pathophysiology to therapeutic strategies. Eur. J. Prev. Cardiol. 2020, 27, 494–510. [Google Scholar] [CrossRef] [PubMed]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardi, P.; Di Lisa, F. The mitochondrial permeability transition pore: Molecular nature and role as a target in cardioprotection. J. Mol. Cell. Cardiol. 2015, 78, 100–106. [Google Scholar] [CrossRef]
- Nakayama, H.; Chen, X.; Baines, C.P.; Klevitsky, R.; Zhang, X.; Zhang, H.; Jaleel, N.; Chua, B.H.L.; Hewett, T.E.; Robbins, J.; et al. Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J. Clin. Investig. 2007, 117, 2431–2444. [Google Scholar] [CrossRef]
- Li, X.; Flynn, E.R.; do Carmo, J.M.; Wang, Z.; da Silva, A.A.; Mouton, A.J.; Omoto, A.C.M.; Hall, M.E.; Hall, J.E. Direct Cardiac Actions of Sodium-Glucose Cotransporter 2 Inhibition Improve Mitochondrial Function and Attenuate Oxidative Stress in Pressure Overload-Induced Heart Failure. Front. Cardiovasc. Med. 2022, 9, 859253. [Google Scholar] [CrossRef]
- Karamanlidis, G.; Nascimben, L.; Couper, G.S.; Shekar, P.S.; Del Monte, F.; Tian, R. Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ. Res. 2010, 106, 1541–1548. [Google Scholar] [CrossRef]
- Territo, P.R.; Mootha, V.K.; French, S.A.; Balaban, R.S. Ca2+ activation of heart mitochondrial oxidative phosphorylation: Role of the F0/F1-ATPase. Am. J. Physiol.-Cell Physiol. 2000, 278, 423–435. [Google Scholar] [CrossRef]
- Lin, J.; Duan, J.; Wang, Q.; Xu, S.; Zhou, S.; Yao, K. Mitochondrial Dynamics and Mitophagy in Cardiometabolic Disease. Front. Cardiovasc. Med. 2022, 9, 917135. [Google Scholar] [CrossRef]
- Eaton, P.; Li, J.M.; Hearse, D.J.; Shattock, M.J. Formation of 4-hydroxy-2-nonenal-modified proteins in ischemic rat heart. Am. J. Physiol. 1999, 276, H935–H943. [Google Scholar] [CrossRef] [Green Version]
- Castro, P.F.; Greig, D.; Pérez, O.; Moraga, F.; Chiong, M.; Díaz-Araya, G.; Padilla, I.; Nazzal, C.; Jalil, J.E.; Vukasovic, J.L.; et al. Relation between oxidative stress, catecholamines, and impaired chronotropic response to exercise in patients with chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am. J. Cardiol. 2003, 92, 215–218. [Google Scholar] [CrossRef]
- Swedberg, K.; Idanpaan Heikila, U.; Remes, J. The CONSENSUS Trial Study Group Effets of Enalapril on mortality in severe congestive heart failure. J. Med. 1987, 316, 1429–1435. [Google Scholar]
- Swedberg, K.; Kjekshus, J.; Snapinn, S. Long-term survival in severe heart failure in patients treated with enalaprilTen year follow-up of CONSENSUS I. Eur. Heart J. 1999, 20, 136–139. [Google Scholar] [CrossRef]
- Borghi, C.; Ambrosioni, E. Effects of zofenopril on myocardial ischemia in post-myocardial infarction patients with preserved left ventricular function: The Survival of Myocardial Infarction Long-term Evaluation (SMILE)-ISCHEMIA study. Am. Heart J. 2007, 153, 445.e7–445.e14. [Google Scholar] [CrossRef]
- Semczuk-Kaczmarek, K.F.K.J. Stosowanie zofenoprilu u pacjentów po zawale serca. Nadciśnienie Tętnicze W Prakt. 2020, 6, 21–25. [Google Scholar]
- Filipiak, K.J. Badania SMILE: Dlaczego warto o nich dyskutować? Kardiol. Pol. 2013, 71, 201–204. [Google Scholar] [CrossRef]
- Subissi, A.; Evangelista, S.; Giachetti, A. Preclinical profile of zofenopril: An angiotensin converting enzyme inhibitor with peculiar cardioprotective properties. Cardiovasc. Drug Rev. 1999, 17, 115–133. [Google Scholar] [CrossRef]
- Donnarumma, E.; Ali, M.J.; Rushing, A.M.; Scarborough, A.L.; Bradley, J.M.; Organ, C.L.; Islam, K.N.; Polhemus, D.J.; Evangelista, S.; Cirino, G.; et al. Zofenopril protects against myocardial ischemia-reperfusion injury by increasing nitric oxide and hydrogen sulfide bioavailability. J. Am. Heart Assoc. 2016, 5, e003531. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Sendon, J.; Swedberg, K.; McMurray, J.; Tamargo, J.; Maggioni, A.P.; Dargie, H.; Tendera, M.; Waagstein, F.; Kjekshus, J.; Lechat, P.; et al. Expert consensus document on angiotensin converting enzyme inhibitors in cardiovascular disease: The Task Force on ACE-inhibitors of the European Society of Cardiology. Eur. Heart J. 2004, 25, 1454–1470. [Google Scholar]
- Napoli, C.; Sica, V.; De Nigris, F.; Pignalosa, O.; Condorelli, M.; Ignarro, L.J.; Liguori, A. Sulfhydryl angiotensin-converting enzyme inhibition induces sustained reduction of systemic oxidative stress and improves the nitric oxide pathway in patients with essential hypertension. Am. Heart J. 2004, 148, 172. [Google Scholar] [CrossRef]
- Wikstrand, J.; Wikstrand, J. MERIT-HF-Description of the Trial. Basic Res. Cardiol. 2000, 95, I90–I97. [Google Scholar] [CrossRef] [PubMed]
- CIBIs Investigators. A Randomized Trial of/-Blockade in Heart Failure The Cardiac Insufficiency Bisoprolol Study (CIBIS) CIBIS Investigators and Committees. Circulation 1994, 90, 1765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toyoda, S.; Haruyama, A.; Inami, S.; Arikawa, T.; Saito, F.; Watanabe, R.; Sakuma, M.; Abe, S.; Nakajima, T.; Tanaka, A.; et al. Effects of carvedilol vs bisoprolol on inflammation and oxidative stress in patients with chronic heart failure. J. Cardiol. 2020, 75, 140–147. [Google Scholar] [CrossRef]
- Kukin, M.L.; Kalman, J.; Charney, R.H.; Levy, D.K.; Buchholz-Varley, C.; Ocampo, O.N.; Eng, C. Prospective, randomized comparison of effect of long-term treatment with metoprolol or carvedilol on symptoms, exercise, ejection fraction, and oxidative stress in heart failure. Circulation 1999, 99, 2645–2651. [Google Scholar] [CrossRef] [Green Version]
- Nagatomo, Y.; Yoshikawa, T.; Kohno, T.; Yoshizawa, A.; Anzai, T.; Meguro, T.; Satoh, T.; Ogawa, S. Effects of beta-blocker therapy on high sensitivity c-reactive protein, oxidative stress, and cardiac function in patients with congestive heart failure. J. Card. Fail. 2007, 13, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Grandinetti, V.; Carlos, F.P.; Antonio, E.L.; de Oliveira, H.A.; dos Santos, L.F.N.; Yoshizaki, A.; Mansano, B.S.D.M.; Silva, F.A.; Porte, L.A.; Albuquerque-Pontes, G.M.; et al. Photobiomodulation therapy combined with carvedilol attenuates post-infarction heart failure by suppressing excessive inflammation and oxidative stress in rats. Sci. Rep. 2019, 9, 9425. [Google Scholar] [CrossRef] [Green Version]
- Brixius, K.; Song, Q.; Malick, A.; Boelck, B.; Addicks, K.; Bloch, W.; Mehlhorn, U.; Schwinger, R.H.G. ENOS is not activated by nebivolol in human failing myocardium. Life Sci. 2006, 79, 1234–1241. [Google Scholar] [CrossRef]
- Pitt, B.; Williams, G.; Remme, W.; Martinez, F.; Lopez-Sendon, J.; Zannad, F.; Neaton, J.; Roniker, B.; Hurley, S.; Burns, D.; et al. The EPHESUS Trial: Eplerenone in Patients with Heart Failure Due to Systolic Dysfunction Complicating Acute Myocardial Infarction; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; Volume 15. [Google Scholar]
- Ertram, B.; Itt, P.; Aiez, F.; Annad, Z.; Emme, I.J.R.; Obert, R.; Ody, C.; Lain, A.; Astaigne, C.; Lfonso, A.; et al. The Effect of Spironolactone on Morbidity and Mortality in Patients with Severe Heart Failure. N. Engl. J. Med. 1999, 341, 709–717. [Google Scholar]
- Johar, S.; Cave, A.C.; Narayanapanicker, A.; Grieve, D.J.; Shah, A.M.; Johar, S.; Cave, A.C.; Narayanapanicker, A.; Grieve, D.J.; Shah, A.M. Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J. 2006, 20, 1546–1548. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhang, J.; Lu, L.; Chen, S.S.; Quinn, M.T.; Weber, K.T. Aldosterone-induced inflammation in the rat heart: Role of oxidative stress. Am. J. Pathol. 2002, 161, 1773–1781. [Google Scholar] [CrossRef]
- Kotlyar, E.; Vita, J.A.; Winter, M.R.; Awtry, E.H.; Siwik, D.A.; Keaney, J.F.; Sawyer, D.B.; Cupples, L.A.; Colucci, W.S.; Sam, F. The relationship between aldosterone, oxidative stress, and inflammation in chronic, stable human heart failure. J. Card. Fail. 2006, 12, 122–127. [Google Scholar] [CrossRef]
- Cicoira, M.; Zanolla, L.; Rossi, A.; Golia, G.; Franceschini, L.; Cabrini, G.; Bonizzato, A.; Graziani, M.; Anker, S.D.; Coats, A.J.S.; et al. Failure of Aldosterone Suppression Despite Angiotensin-Converting Enzyme (ACE) Inhibitor Administration in Chronic Heart Failure Is Associated With ACE DD Genotype. J. Am. Coll. Cardiol. 2001, 37, 1808–1812. [Google Scholar] [CrossRef] [PubMed]
- Swedberg, K.; Pfeffer, M.; Granger, C.; Held, P.; Mcmurray, J.; Ohlin, G.; Olofsson, B.; Östergren, J.; Yusuf, S. New Drugs Candesartan in Heart Failure Assessment of Reduction in Mortality and Morbidity (CHARM): Rationale and Design. J. Card. Fail. 1999, 5, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Ellis, G.R.; Nightingale, A.K.; Blackman, D.J.; Anderson, R.A.; Mumford, C.; Timmins, G.; Lang, D.; Jackson, S.K.; Penney, M.D.; Lewis, M.J.; et al. Addition of candesartan to angiotensin converting enzyme inhibitor therapy in patients with chronic heart failure does not reduce levels of oxidative stress. Eur. J. Heart Fail. 2002, 4, 193–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, M.; Lepage, S.; Lavoie, J.; De Denus, S.; Leblanc, M.H.; Gossard, D.; Whittom, L.; Racine, N.; Ducharme, A.; Dabouz, F.; et al. Effects of combined candesartan and ACE inhibitors on BNP, markers of inflammation and oxidative stress, and glucose regulation in patients with symptomatic heart failure. J. Card. Fail. 2007, 13, 86–94. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; et al. Dual angiotensin receptor and neprilysin inhibition as an alternative to angiotensin-converting enzyme inhibition in patients with chronic systolic heart failure: Rationale for and design of the Prospective comparison of ARNI with ACEI to Determine Impact on Global Mortality and morbidity in Heart Failure trial (PARADIGM-HF). Eur. J. Heart Fail. 2013, 15, 1062–1073. [Google Scholar] [CrossRef] [Green Version]
- Cassano, V.; Armentaro, G.; Magurno, M.; Aiello, V.; Borrello, F.; Maio, R.; Perticone, M.; Marra, A.M.; Cittadini, A.; Hribal, M.L.; et al. Short-term effect of sacubitril/valsartan on endothelial dysfunction and arterial stiffness in patients with chronic heart failure. Front. Pharmacol. 2022, 13, 1069828. [Google Scholar] [CrossRef]
- Jing, W.; Vaziri, N.D.; Nunes, A.; Suematsu, Y.; Farzaneh, T.; Khazaeli, M. Stress, inflammation, fibrosis and improves renal function beyond angiotensin receptor blockade in CKD. Am. J. Transl. Res. 2017, 9, 5473–5484. [Google Scholar]
- Shubrook, J.H.; Bokaie, B.B.; Adkins, S.E. Empagliflozin in the treatment of type 2 diabetes: Evidence to date. Drug Des. Devel. Ther. 2015, 9, 5793–5803. [Google Scholar] [CrossRef] [Green Version]
- Wróbel, M.; Rokicka, D.; Strojek, K. Flozins—In light of the latest recommendations. Endokrynol. Pol. 2021, 72, 589–591. [Google Scholar] [CrossRef]
- Forxiga|European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/forxiga (accessed on 7 December 2012).
- Cada, D.J.; Levien, T.L.; Baker, D.E. Dapagliflozin. Hosp. Pharm. 2014, 49, 647. [Google Scholar] [CrossRef] [Green Version]
- Invokana|European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/invokana (accessed on 29 November 2013).
- Jardiance|European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/jardiance (accessed on 16 June 2014).
- Steglatro|European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/steglatro (accessed on 5 April 2018).
- Zynquista|European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/zynquista (accessed on 16 May 2019).
- Kurczyński, D.; Hudzik, B.; Jagosz, M.; Zabierowski, J.; Nowak, J.; Tomasik, A.; Badziński, A.; Rozentryt, P.; Gąsior, M. Sodium-Glucose Cotransporter-2 Inhibitors-from the Treatment of Diabetes to Therapy of Chronic Heart Failure. J. Cardiovasc. Dev. Dis. 2022, 9, 225. [Google Scholar] [CrossRef]
- Yanai, H.; Hakoshima, M.; Adachi, H.; Katsuyama, H. Multi-Organ Protective Effects of Sodium Glucose Cotransporter 2 Inhibitors. Int. J. Mol. Sci. 2021, 22, 4416. [Google Scholar] [CrossRef] [PubMed]
- Yanai, H.; Hakoshima, M.; Adachi, H.; Kawaguchi, A.; Waragai, Y.; Harigae, T.; Masui, Y.; Kakuta, K.; Hamasaki, H.; Katsuyama, H.; et al. Effects of Six Kinds of Sodium-Glucose Cotransporter 2 Inhibitors on Metabolic Parameters, and Summarized Effect and Its Correlations With Baseline Data. J. Clin. Med. Res. 2017, 9, 605–612. [Google Scholar] [CrossRef] [Green Version]
- Fonseca-Correa, J.I.; Correa-Rotter, R. Sodium-Glucose Cotransporter 2 Inhibitors Mechanisms of Action: A Review. Front. Med. 2021, 8, 2588. [Google Scholar] [CrossRef]
- Cowie, M.R.; Fisher, M. SGLT2 inhibitors: Mechanisms of cardiovascular benefit beyond glycaemic control. Nat. Rev. Cardiol. 2020, 17, 761–772. [Google Scholar] [CrossRef]
- Pawlos, A.; Broncel, M.; Woźniak, E.; Gorzelak-Pabiś, P. Neuroprotective Effect of SGLT2 Inhibitors. Molecules 2021, 26, 7213. [Google Scholar] [CrossRef] [PubMed]
- Ehrenkranz, J.R.L.; Lewis, N.G.; Kahn, C.R.; Roth, J. Phlorizin: A review. Diabetes. Metab. Res. Rev. 2005, 21, 31–38. [Google Scholar] [CrossRef]
- Nash, T.P.; Benedict, S.R. On the Mechanism of Phlorhizin Diabetes; Elsevier: Amsterdam, The Netherlands, 1923; Volume 1, pp. 757–767. [Google Scholar]
- Wright, E.M.; Loo, D.D.F.L.; Hirayama, B.A. Biology of human sodium glucose transporters. Physiol. Rev. 2011, 91, 733–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gyimesi, G.; Pujol-Giménez, J.; Kanai, Y.; Hediger, M.A. Sodium-coupled glucose transport, the SLC5 family, and therapeutically relevant inhibitors: From molecular discovery to clinical application. Pflugers Arch. 2020, 472, 1177. [Google Scholar] [CrossRef]
- Chao, E.C. SGLT-2 Inhibitors: A New Mechanism for Glycemic Control. Clin. Diabetes 2014, 32, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, A.R.; Zhang, J.; Greenberg, J.; Lee, T.; Liu, J. Discovery of non-glucoside SGLT2 inhibitors. Bioorg. Med. Chem. Lett. 2011, 21, 2472–2475. [Google Scholar] [CrossRef] [PubMed]
- Wright, E.M. SGLT2 Inhibitors: Physiology and Pharmacology. Kidney360 2021, 2, 2027. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 17–18. [Google Scholar] [CrossRef] [Green Version]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lelonek, M. Clinician’s guide for dapagliflozin use in heart failure with reduced ejection fraction. Folia Cardiol. 2021, 16, 191–197. [Google Scholar] [CrossRef]
- Zelniker, T.A.; Wiviott, S.D.; Raz, I.; Im, K.; Goodrich, E.L.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Furtado, R.H.M.; et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019, 393, 31–39. [Google Scholar] [CrossRef]
- Tian, L.; Cai, Y.; Zheng, H.; Ai, S.; Zhou, M.; Luo, Q.; Tang, J.; Liu, W.; Wang, Y. Canagliflozin for Prevention of Cardiovascular and Renal Outcomes in type2 Diabetes: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Front. Pharmacol. 2021, 12, 691878. [Google Scholar] [CrossRef]
- U.S. FDA Approves INVOKANA. Available online: https://www.jnj.com/u-s-fda-approves-invokana-canagliflozin-to-treat-diabetic-kidney-disease-dkd-and-reduce-the-risk-of-hospitalization-for-heart-failure-in-patients-with-type-2-diabetes-t2d-and-dkd (accessed on 30 September 2019).
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner–La Rocca, H.-P.; Choi, D.-J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef] [PubMed]
- Voors, A.A.; Angermann, C.E.; Teerlink, J.R.; Collins, S.P.; Kosiborod, M.; Biegus, J.; Ferreira, J.P.; Nassif, M.E.; Psotka, M.A.; Tromp, J.; et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: A multinational randomized trial. Nat. Med. 2022, 28, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Lelonek, M. Clinician’s guide for empagliflozin use in heart failure. Folia Cardiol. 2022, 17, 226–233. [Google Scholar] [CrossRef]
- Cannon, C.P.; Pratley, R.; Dagogo-Jack, S.; Mancuso, J.; Huyck, S.; Masiukiewicz, U.; Charbonnel, B.; Frederich, R.; Gallo, S.; Cosentino, F.; et al. Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 1425–1435. [Google Scholar] [CrossRef]
- Medscape Registration. Available online: https://www.medscape.com/viewarticle/890446?form=fpf (accessed on 8 October 2020).
- Markham, A.; Keam, S.J. Sotagliflozin: First Global Approval. Drugs 2019, 79, 1023–1029. [Google Scholar] [CrossRef]
- FDA Approves New Drug, Sotagliflozin, for Heart Failure. Available online: https://www.medscape.com/viewarticle/992518 (accessed on 6 June 2019).
- Bhatt, D.L.; Szarek, M.; Steg, P.G.; Cannon, C.P.; Leiter, L.A.; McGuire, D.K.; Lewis, J.B.; Riddle, M.C.; Voors, A.A.; Metra, M.; et al. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. N. Engl. J. Med. 2021, 384, 117–128. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Szarek, M.; Pitt, B.; Cannon, C.P.; Leiter, L.A.; McGuire, D.K.; Lewis, J.B.; Riddle, M.C.; Inzucchi, S.E.; Kosiborod, M.N.; et al. Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease. N. Engl. J. Med. 2021, 384, 129–139. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.-F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef]
- Solomon, S.D.; McMurray, J.J.V.; Claggett, B.; de Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2022, 387, 1089–1098. [Google Scholar] [CrossRef]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, J.R. Apple Trees to Sodium Glucose Co-Transporter Inhibitors: A Review of SGLT2 Inhibition. Clin. Diabetes 2010, 28, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Komoroski, B.; Vachharajani, N.; Feng, Y.; Li, L.; Kornhauser, D.; Pfister, M. Dapagliflozin, a novel, selective SGLT2 inhibitor, improved glycemic control over 2 weeks in patients with type 2 diabetes mellitus. Clin. Pharmacol. Ther. 2009, 85, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Vallon, V.; Verma, S. Effects of SGLT2 Inhibitors on Kidney and Cardiovascular Function. Annu. Rev. Physiol. 2021, 83, 503. [Google Scholar] [CrossRef] [PubMed]
- Yaribeygi, H.; Atkin, S.L.; Butler, A.E.; Sahebkar, A. Sodium–glucose cotransporter inhibitors and oxidative stress: An update. J. Cell. Physiol. 2019, 234, 3231–3237. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Perkins, B.A.; Fitchett, D.H.; Husain, M.; Cherney, D.Z.I. Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus. Circulation 2016, 7, 10–30. [Google Scholar] [CrossRef]
- Chen, S.; Coronel, R.; Hollmann, M.W.; Weber, N.C.; Zuurbier, C.J. Direct cardiac effects of SGLT2 inhibitors. Cardiovasc. Diabetol. 2022, 21, 45. [Google Scholar] [CrossRef]
- Trum, M.; Riechel, J.; Wagner, S. Cardioprotection by SGLT2 Inhibitors—Does It All Come Down to Na+? Int. J. Mol. Sci. 2021, 22, 7976. [Google Scholar] [CrossRef]
- Sano, M. A new class of drugs for heart failure: SGLT2 inhibitors reduce sympathetic overactivity. J. Cardiol. 2018, 71, 471–476. [Google Scholar] [CrossRef] [Green Version]
- McGill, J.B.; Subramanian, S. Safety of Sodium-Glucose Co-Transporter 2 Inhibitors. Am. J. Cardiol. 2019, 124, S45–S52. [Google Scholar] [CrossRef] [Green Version]
- Jardine, M.J.; Mahaffey, K.W.; Neal, B.; Agarwal, R.; Bakris, G.L.; Brenner, B.M.; Bull, S.; Cannon, C.P.; Charytan, D.M.; De Zeeuw, D.; et al. The Canagliflozin and Renal Endpoints in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) Study Rationale, Design, and Baseline Characteristics. Am. J. Nephrol. 2018, 46, 462. [Google Scholar] [CrossRef] [PubMed]
- Williamson, J.R.; Chang, K.; Frangos, M.; Hasan, K.S.; Ido, Y.; Kawamura, T.; Nyengaard, J.R.; Van Den Enden, M.; Kilo, C.; Tilton, R.G. Hyperglycemic Pseudohypoxia and Diabetic Complications. Diabetes 1993, 42, 801–813. [Google Scholar] [CrossRef] [PubMed]
- Gohari, S.; Reshadmanesh, T.; Khodabandehloo, H.; Karbalaee-Hasani, A.; Ahangar, H.; Arsang-Jang, S.; Ismail-Beigi, F.; Dadashi, M.; Ghanbari, S.; Taheri, H.; et al. The effect of EMPAgliflozin on markers of inflammation in patients with concomitant type 2 diabetes mellitus and Coronary ARtery Disease: The EMPA-CARD randomized controlled trial. Diabetol. Metab. Syndr. 2022, 14, 170. [Google Scholar] [CrossRef]
- Jhund, P.S.; Kondo, T.; Butt, J.H.; Docherty, K.F.; Claggett, B.L.; Desai, A.S.; Vaduganathan, M.; Gasparyan, S.B.; Bengtsson, O.; Lindholm, D.; et al. Dapagliflozin across the range of ejection fraction in patients with heart failure: A patient-level, pooled meta-analysis of DAPA-HF and DELIVER. Nat. Med. 2022, 28, 1956–1964. [Google Scholar] [CrossRef] [PubMed]
- Nassif, M.E.; Windsor, S.L.; Borlaug, B.A.; Kitzman, D.W.; Shah, S.J.; Tang, F.; Khariton, Y.; Malik, A.O.; Khumri, T.; Umpierrez, G.; et al. The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: A multicenter randomized trial. Nat. Med. 2021, 27, 1954–1960. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.-L.; Chu, P.-M.; Cheng, H.-C.; Huang, Y.-T.; Chou, W.-C.; Tsai, K.-L.; Chan, S.-H.; Hsieh, P.-L.; Chu, P.-M.; Cheng, H.-C.; et al. Citation: Dapagliflozin Mitigates Doxorubicin-Caused Myocardium Damage by Regulating AKT-Mediated Oxidative Stress, Cardiac Remodeling, and Inflammation. Int. J. Mol. Sci. 2022, 23, 10146. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, M.; Suo, M.; Liu, D.; Wang, X.; Liu, M.; Pan, J.; Jin, T.; An, F. Dapagliflozin alleviates cardiac fibrosis through suppressing EndMT and fibroblast activation via AMPKα/TGF-β/Smad signalling in type 2 diabetic rats. J. Cell. Mol. Med. 2021, 25, 7642–7659. [Google Scholar] [CrossRef]
- Manis, A.D.; Palygin, O.; Isaeva, E.; Levchenko, V.; LaViolette, P.S.; Pavlov, T.S.; Hodges, M.R.; Staruschenko, A. Kcnj16 knockout produces audiogenic seizures in the Dahl salt-sensitive rat. JCI Insightig. 2021, 6, e143251. [Google Scholar] [CrossRef]
- Urbanek, K.; Cappetta, D.; Bellocchio, G.; Coppola, M.A.; Imbrici, P.; Telesca, M.; Donniacuo, M.; Riemma, M.A.; Mele, E.; Cianflone, E.; et al. Dapagliflozin protects the kidney in a non-diabetic model of cardiorenal syndrome. Pharmacol. Res. 2023, 188, 106659. [Google Scholar] [CrossRef]
- Zaibi, N.; Li, P.; Xu, S.Z. Protective effects of dapagliflozin against oxidative stress-induced cell injury in human proximal tubular cells. PLoS ONE 2021, 16, e0247234. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Y.; Wang, Z.; Tan, M.; Lin, J.; Qian, X.; Li, H.; Jiang, T. Dapagliflozin alleviates myocardial ischemia/reperfusion injury by reducing ferroptosis via MAPK signaling inhibition. Front. Pharmacol. 2023, 14, 1078205. [Google Scholar] [CrossRef] [PubMed]
- Terami, N.; Ogawa, D.; Tachibana, H.; Hatanaka, T.; Wada, J.; Nakatsuka, A.; Eguchi, J.; Sato Horiguchi, C.; Nishii, N.; Yamada, H.; et al. Long-Term Treatment with the Sodium Glucose Cotransporter 2 Inhibitor, Dapagliflozin, Ameliorates Glucose Homeostasis and Diabetic Nephropathy in db/db Mice. PLoS ONE 2014, 9, e100777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, X.; Cai, Z.; Wang, H.; Han, D.; Cheng, Q.; Zhang, P.; Gao, F.; Yu, Y.; Song, Z.; Wu, Q.; et al. Loss of Cardiac Ferritin H Facilitates Cardiomyopathy via Slc7a11-Mediated Ferroptosis. Circ. Res. 2020, 127, 486–501. [Google Scholar] [CrossRef]
- Fang, X.; Ardehali, H.; Min, J.; Wang, F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat. Rev. Cardiol. 2023, 20, 7. [Google Scholar] [CrossRef]
- Du, S.; Shi, H.; Xiong, L.; Wang, P.; Shi, Y. Canagliflozin mitigates ferroptosis and improves myocardial oxidative stress in mice with diabetic cardiomyopathy. Front. Endocrinol. 2022, 13, 1011669. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Zhu, Y.; Zhang, M.; Fei, A.; Liang, J.; Zheng, J.; Zhang, Q.; Cheng, T.; Ge, X. Ferroptosis as a potential new therapeutic target for diabetes and its complications. Endocr. Connect. 2023, 12, e220419. [Google Scholar] [CrossRef]
- Ma, S.; He, L.; Zuo, Q.; Zhang, G.; Guo, Y. Canagliflozin Regulates Ferroptosis, Potentially via Activating AMPK/PGC-1α/Nrf2 Signaling in HFpEF Rats. Cardiovasc. Innov. Appl. 2023, 7, 13–22. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Liu, D.; Jiang, H.; Cai, C.; Li, G.; Yu, G. Canagliflozin Prevents Lipid Accumulation, Mitochondrial Dysfunction, and Gut Microbiota Dysbiosis in Mice With Diabetic Cardiovascular Disease. Front. Pharmacol. 2022, 13, 839640. [Google Scholar] [CrossRef]
- Sabe, S.A.; Xu, C.M.; Sabra, M.; Harris, D.D.; Malhotra, A.; Aboulgheit, A.; Stanley, M.; Abid, M.R.; Sellke, F.W. Canagliflozin Improves Myocardial Perfusion, Fibrosis, and Function in a Swine Model of Chronic Myocardial Ischemia. J. Am. Heart Assoc. 2023, 12, e028623. [Google Scholar] [CrossRef]
- Omar, M.; Jensen, J.; Ali, M.; Frederiksen, P.H.; Kistorp, C.; Videbaek, L.; Kjaer Poulsen, M.; Tuxen, C.D.; Möller, S.; Gustafsson, F.; et al. Associations of Empagliflozin With Left Ventricular Volumes, Mass, and Function in Patients With Heart Failure and Reduced Ejection Fraction A Substudy of the Empire HF Randomized Clinical Trial Supplemental content. JAMA Cardiol. 2021, 6, 836–840. [Google Scholar] [CrossRef]
- Bruckert, C.; Matsushita, K.; Mroueh, A.; Amissi, S.; Auger, C.; Houngue, U.; Remila, L.; Chaker, A.B.; Park, S.H.; Algara-Suarez, P.; et al. Empagliflozin prevents angiotensin II-induced hypertension related micro and macrovascular endothelial cell activation and diastolic dysfunction in rats despite persistent hypertension: Role of endothelial SGLT1 and 2. Vascul. Pharmacol. 2022, 146, 107095. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.H.; Chen, D.Q.; Wang, Y.N.; Feng, Y.L.; Cao, G.; Vaziri, N.D.; Zhao, Y.Y. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem. Biol. Interact. 2018, 292, 76–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, P.; Chattopadhyay, A. Nrf2-ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms. J. Cell. Physiol. 2020, 235, 3119–3130. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, J.; Xue, M.; Li, X.; Han, F.; Liu, X.; Xu, L.; Lu, Y.; Cheng, Y.; Li, T.; et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc. Diabetol. 2019, 18, 15. [Google Scholar] [CrossRef] [PubMed]
- Quagliariello, V.; De Laurentiis, M.; Rea, D.; Barbieri, A.; Monti, M.G.; Carbone, A.; Paccone, A.; Altucci, L.; Conte, M.; Canale, M.L.; et al. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc. Diabetol. 2021, 20, 150. [Google Scholar] [CrossRef]
- Das, N.A.; Carpenter, A.J.; Belenchia, A.; Aroor, A.R.; Noda, M.; Siebenlist, U.; Chandrasekar, B.; DeMarco, V.G. Empagliflozin reduces high glucose-induced oxidative stress and miR-21-dependent TRAF3IP2 induction and RECK suppression, and inhibits human renal proximal tubular epithelial cell migration and epithelial-tomesenchymal transition. Cell. Signal. 2020, 68, 109506. [Google Scholar] [CrossRef]
- Lee, N.; Heo, Y.J.; Choi, S.-E.; Jeon, J.Y.; Han, S.J.; Kim, D.J.; Kang, Y.; Lee, K.W.; Kim, H.J. Anti-inflammatory Effects of Empagliflozin and Gemigliptin on LPS-Stimulated Macrophage via the IKK/NF-κB, MKK7/JNK, and JAK2/STAT1 Signalling Pathways. J. Immunol. Res. 2021, 2021, 9944880. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J. Ferroptosis, a Rising Force against Renal Fibrosis. Oxid. Med. Cell. Longev. 2022, 2022, 7686956. [Google Scholar] [CrossRef]
- Mo, C.; Wang, L.; Zhang, J.; Numazawa, S.; Tang, H.; Tang, X.; Han, X.; Li, J.; Yang, M.; Wang, Z.; et al. The Crosstalk Between Nrf2 and AMPK Signal Pathways Is Important for the Anti-Inflammatory Effect of Berberine in LPS-Stimulated Macrophages and Endotoxin-Shocked Mice. Antioxid. Redox Signal. 2014, 20, 574. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.Y.; Yang, L.J.; Xiao, J.J.; Liu, Q.; Ni, L.H.; Hu, J.W.; Yu, H.; Wu, X.Y.; Zhang, B.F. Empagliflozin attenuates the renal tubular ferroptosis in diabetic kidney disease through AMPK/NRF2 pathway. Free Radic. Biol. Med. 2023, 195, 89–102. [Google Scholar] [CrossRef]
- Koizumi, T.; Watanabe, M.; Yokota, T.; Tsuda, M.; Handa, H.; Koya, J.; Nishino, K.; Tatsuta, D.; Natsui, H.; Kadosaka, T.; et al. Empagliflozin suppresses mitochondrial reactive oxygen species generation and mitigates the inducibility of atrial fibrillation in diabetic rats. Front. Cardiovasc. Med. 2023, 10, 1005408. [Google Scholar] [CrossRef]
- Wang, J.; Huang, X.; Liu, H.; Chen, Y.; Li, P.; Liu, L.; Li, J.; Ren, Y.; Huang, J.; Xiong, E.; et al. Empagliflozin Ameliorates Diabetic Cardiomyopathy via Attenuating Oxidative Stress and Improving Mitochondrial Function. Oxid. Med. Cell. Longev. 2022, 2022, 1122494. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, A.; Ahmad, S.F.; AL-Ayadhi, L.Y.; Attia, S.M.; Al-Harbi, N.O.; Alzahrani, K.S.; Bakheet, S.A. Differential regulation of Nrf2 is linked to elevated inflammation and nitrative stress in monocytes of children with autism. Psychoneuroendocrinology 2020, 113, 104554. [Google Scholar] [CrossRef] [PubMed]
- Kolijn, D.; Pabel, S.; Tian, Y.; Lódi, M.; Herwig, M.; Carrizzo, A.; Zhazykbayeva, S.; Kovács; Fülöp, G.; Falcão-Pires, I.; et al. Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Ga oxidation. Cardiovasc. Res. 2020, 117, 495–507. [Google Scholar] [CrossRef]
- Semo, D.; Obergassel, J.; Dorenkamp, M.; Hemling, P.; Strutz, J.; Hiden, U.; Müller, N.; Müller, U.A.; Zulfikar, S.A.; Godfrey, R.; et al. The Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitor Empagliflozin Reverses Hyperglycemia-Induced Monocyte and Endothelial Dysfunction Primarily through Glucose Transport-Independent but Redox-Dependent Mechanisms. J. Clin. Med. 2023, 12, 1356. [Google Scholar] [CrossRef] [PubMed]
- Iannantuoni, F.; de Marañon, A.M.; Diaz-Morales, N.; Falcon, R.; Bañuls, C.; Abad-Jimenez, Z.; Victor, V.M.; Hernandez-Mijares, A.; Rovira-Llopis, S. The SGLT2 Inhibitor Empagliflozin Ameliorates the Inflammatory Profile in Type 2 Diabetic Patients and Promotes an Antioxidant Response in Leukocytes. J. Clin. Med. 2019, 8, 1814. [Google Scholar] [CrossRef] [Green Version]
- Sverdlov, A.L.; Elezaby, A.; Qin, F.; Behring, J.B.; Luptak, I.; Calamaras, T.D.; Siwik, D.A.; Miller, E.J.; Liesa, M.; Shirihai, O.S.; et al. Mitochondrial Reactive Oxygen Species Mediate Cardiac Structural, Functional, and Mitochondrial Consequences of Diet-Induced Metabolic Heart Disease. J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis. 2016, 5, e002555. [Google Scholar] [CrossRef] [Green Version]
- Croteau, D.; Luptak, I.; Chambers, J.M.; Hobai, I.; Panagia, M.; Pimentel, D.R.; Siwik, D.A.; Qin, F.; Colucci, W.S. Effects of Sodium-Glucose Linked Transporter 2 Inhibition with Ertugliflozin on Mitochondrial Function, Energetics, and Metabolic Gene Expression in the Presence and Absence of Diabetes Mellitus in Mice. J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis. 2021, 10, 19995. [Google Scholar] [CrossRef]
- Croteau, D.; Baka, T.; Young, S.; He, H.; Chambers, J.M.; Qin, F.; Panagia, M.; Pimentel, D.R.; Balschi, J.A.; Colucci, W.S.; et al. SGLT2 inhibitor ertugliflozin decreases elevated intracellular sodium, and improves energetics and contractile function in diabetic cardiomyopathy. Biomed. Pharmacother. 2023, 160, 114310. [Google Scholar] [CrossRef]
- Lambert, R.; Srodulskic, S.; Peng, X.; Margulies, K.B.; Despa, F.; Despa, S. Intracellular Na+ concentration ([Na+]i) is elevated in diabetic hearts due to enhanced Na+-glucose cotransport. J. Am. Heart Assoc. 2015, 4, e002183. [Google Scholar] [CrossRef] [Green Version]
- Sciarretta, S.; Forte, M.; Frati, G.; Sadoshima, J. The complex network of mTOR signalling in the heart. Cardiovasc. Res. 2022, 118, 424–439. [Google Scholar] [CrossRef]
- Moellmann, J.; Mann, P.A.; Kappel, B.A.; Kahles, F.; Klinkhammer, B.M.; Boor, P.; Kramann, R.; Ghesquiere, B.; Lebherz, C.; Marx, N.; et al. The sodium-glucose co-transporter-2 inhibitor ertugliflozin modifies the signature of cardiac substrate metabolism and reduces cardiac mTOR signalling, endoplasmic reticulum stress and apoptosis. Diabetes Obes. Metab. 2022, 24, 2263–2272. [Google Scholar] [CrossRef] [PubMed]
- Abd Uljaleel, A.Q.; Hassan, E.S. Protective Effect of Ertugliflozin against Acute Lung Injury Caused by Endotoxemia Model in Mice. Iran. J. War Public Health 2023, 15, 67–75. [Google Scholar] [CrossRef]
- Saxena, S.; Meher, K.; Rotella, M.; Vangala, S.; Chandran, S.; Malhotra, B.N.; Palakodeti, R.; Sreedhara, B.; Voleti, R.; Saxena, U. Identification of SGLT2 inhibitor Ertugliflozin as a treatment for COVID-19 using computational and experimental paradigm. bioRxiv 2021. [Google Scholar] [CrossRef]
- Bode, D.; Semmler, L.; Wakula, P.; Hegemann, N.; Primessnig, U.; Beindorff, N.; Powell, D.; Dahmen, R.; Ruetten, H.; Oeing, C.; et al. Dual SGLT-1 and SGLT-2 inhibition improves left atrial dysfunction in HFpEF. Cardiovasc. Diabetol. 2021, 20, 7. [Google Scholar] [CrossRef] [PubMed]
- Sherratt, S.; Libby, P.; Bhatt, D.L.; Mason, P. Abstract 13422: Sotagliflozin, a Dual SGLT-1/2 Inhibitor, Modulated Expression of Endothelial Proteins That Inhibit Reactive Oxygen Species During Inflammation Compared With Empagliflozin. Circulation 2022, 146, A13422. [Google Scholar] [CrossRef]
ACEIs—Angiotensin-Converting Enzyme Inhibitors (1987) Consensus [73,74] Enalapryl | |||
Author/Research | Type of study/Molecule | Clinical Effect | Antioxidative Effect |
SMILE [75] | Clinical trial Zofenopril vs. Ramipril vs. Perindopril | The results of the study cast doubt on the existence of a class effect, indicating the superiority of zofenopril over other ACE inhibitors. In both short- and long-term observation, the use of zofenopril in patients with myocardial infarction was associated with decreased left atrial dimensions, end-diastolic dimensions of the left and right ventricles, left ventricular wall thickness, an increase in ejection fraction, and fractional shortening of the left ventricle [76]. | The presence of a sulfhydryl group provides an additional free radical scavenger. The pleiotropic effect of zofenopril was also associated with beneficial effects on endothelial function, anti-inflammatory effects, anti-atherosclerotic effects, locally increased nitric oxide production, and inhibition of metabolic and hemodynamic effects in myocardial ischemia [75,77]. |
Subbisi A. [78] | Experimental trial/Zofenopril | In vivo animal study confirmed the ability of zofenopril to prevent ischemic myocardial damage as well as reduce post-ischemic cardiac remodeling by suppressing the increase in both ventricular mass and volume. | |
Overall, in this group of drugs, exemplified by zofenopril, the dual benefit is due to both ACE inhibition and increased bioavailability of H2S, leading to a cascade of processes that promote the release of NO, prostacyclin, and endothelium-derived hyperpolarizing factor (EDHF), as well as activation of eNOS, leading to increased NO levels [79]. Such NO exposure may have a cardioprotective effect on myocardial infarction exposure, sparing the ischemic surface. Moreover, patients with arterial hypertension showed increased susceptibility of low-density lipoproteins (LDLs) to oxidation and greater systemic oxidative stress. With zofenopril, the antioxidant effect was very pronounced and measures of LDL peroxidation were significantly reduced [80,81]. | |||
Beta blockers (1999) MERIT-HF [82]—Metoprolol, CIBIS-II [83]—Bisoprolol | |||
Author/Research | Type of Study/Molecule | Clinical Effect | Antioxidative Effect |
Toyoda et al. [84] | Clinical trial/Carvedilol vs Bisoprolol | The reduction in CRP levels was stronger in patients receiving bisoprolol. | The reduction in d-ROM levels was stronger in patients receiving carvedilol. The reduction in d-ROM levels was correlated with the reduction in NT-proBNP levels. |
Kukin et al. [85] | Clinical trial/Carvedilol vs Metoprolol | Beneficial effects and lower TBARS levels, an indirect marker of free radical activity, in plasma of patients treated with metoprolol or carvedilol for 6 months. | |
Nagatomo et al. 2007 [86] | Clinical trial/Carvedilol vs Metoprolol | CRP concentration was decreased significantly in patients with higher baseline CRP levels. | Plasma lipid peroxide (LPO) concentrations were decreased in patients treated with carvedilol in contrast to metoprolol. The reduction in LPO levels was correlated with the decrease in CRP levels. |
[72] | Clinical trial/Carvedilol | Lack of chronotropic response to exercise in heart failure patients. | An improvement in oxidative stress. The plasma MDA concentration decreased but antioxidant enzyme (SOD, CAT, GPx) activities were unchanged. |
Grandinetti et al. [87] | Experimental study- post infarcted rats/Carvedilol | Relief of the development of heart failure by decreasing inflammation. | Oxidative stress was assessed by the level of the lipoperoxidation end product, 4-hydroxynonenal. Myocardial antioxidant activity appeared to be mediated by catalase. |
Brixius et al. [88] | Experimental study on isolated rat cardiomyocytes, human myocardial tissue/Nebivolol | In failing cardiac tissue, eNOS activation was depressed by nebivolol. Reduction in the inhibitory effect of NO on myocardial contractility and the formation of oxidative stress. | |
MRAs—Mineralocorticoid Receptor Antagonists (1999) EPHESUS [89]—Eplerenon. RALES [90]—Sprinolakton. | |||
Author/Research | Type of study/Molecule | Clinical Effect | Antioxidative effect |
Johar et al. [91] | Experimental study on isolated rat cardiomyocytes/ Spironolactone | Spironolactone significantly inhibited the Ang II-induced increase in NADPH oxidase activity and interstitial fibrosis. | |
Sun et al. [92] | Experimental study on isolated rat cardiomyocytes/ MRA | Aldosterone induced significant oxidative stress in the rat heart and immunohistochemically assessed NOX2 expression was increased, but interactions between AngII and aldosterone were not addressed in the study. | |
Kotlyar et al. [93] | Clinical trial | Effects of aldoserone on left ventricular hypertrophy and dilatation. | Among stable heart failure patients, after adjustment for age, gender, race, diabetes, smoking, heart rate, left ventricular mass, and body mass index, aldosterone concentration was correlated with 8-iso-PGF2α, ICAM-1, and TIMP-1 levels as markers of systemic oxidative stress, inflammation, and matrix turnover, respectively. |
The use of MRAs may inhibit these chemical processes in the cardiovascular system. In fact, heart failure patients have been found to have higher circulating aldosterone levels in blood by up to 20%. This raises the possibility RAAS inhibitors may reduce the harmful effects of aldosterone [94]. | |||
ARBs—Angiotensin receptor blockers (2003) CHARM [95] Candesartan | |||
Author/Research | Type of study/Molecule | Clinical Effect | Antioxidative Effect |
Ellis [96] | Clinical trial/Candesartan | The addition of candesartan to ACE inhibitor therapy did not improve exercise capacity. | No changes in lipid-derived free radical levels, TBARS levels, or neutrophil O2-generating capacity. |
White [97] | Clinical trial/candesartan | Decrease in NT-proBNP and hsCRP levels. | No influence on oxidative stress. |
ARNI—angiotensin receptor-nephrilysin inhibitor (2014) RARADIGM [98]—LCZ696 | |||
Author/Research | Type of study/Molecule | Clinical Effect | Antioxidative Effect |
Cassano et al. [99] | Clinical trial/ARNI (sacubitril + valsartan) | Improvements in endothelial function and arterial stiffness were reported. | Reduction in levels of oxidative stress biomarkers such as 8-isoprostane and NOX2. |
Jing et al. [100] | Experimental study/ARNI (sacubitril + valsartan) | Improvement of renal function in chronic kidney disease rats. | Beneficial antioxidative and antifibrotic effects independent from AT1 receptor valsartan blockade. Inhibition of NAD(P)H oxidase, COX2, and decreased production of reactive oxygen species. |
Trial Information | DECLARE-TIMI 58 (NCT01730534) | DAPA-HF (NCT03036124) | DAPA-CKD (NCT03036150) | DELIVER (NCT03619213) |
---|---|---|---|---|
Number of participants | 17,160 | 4744 | 4304 | 6263 |
Median follow-up | 4.2 years | 18.2 months | 2.4 years | 2.3 years |
Dosing (once daily) | 10 mg | 10 mg/5 mg | 10 mg | 10 mg |
Mean patient age | 64 | 66 | 62 | 72 |
Percentage female [%] | 37.0 | 23.4 | 33 | 44 |
Mean BMI [kg/m2] | 32.1 | 28.2 | 29.5 | 30 |
Mean eGFR [mL/min/1.73 m2] | 85.2 | 65.8 | 43.1 | 61 |
Mean HbA1c [%] | 8.3 | – | – | – |
DM [%] | 100 | 42 | 68 | 45 |
HF [%] | 10 | 100 | 11 | 100 |
Inclusion criteria |
|
|
|
|
Principal findings | Failed to reduce MACEs (HR: 0.93; Cl 0.84–1.03), CV-related deaths and hospitalizations for HF were reduced (HR: 0.83; Cl 0.73–0.95) | Reduced first worsening HF events (HR: 0.70; Cl 0.59–0.83) and deaths from CV causes (HR: 0.82; Cl 0.69–0.98) | Decline in eGFR ≥ 50%, end-stage kidney disease, deaths from renal causes, or CV-related deaths (HR: 0.61; Cl 0.51–0.72) Deaths from CV causes (HR: 0.81; Cl 0.58–1.12) | Reduced worsening HF, hospitalizations for HF, and urgent visits for HF (HR: 0.79; Cl 0.69–0.91) or CV-related deaths (HR: 0.88; Cl 0.74–1.05) |
Secondary outcomes |
|
|
|
|
Reference | [123] | [125] | [140] | [141] |
Trial Information | CANVAS (NCT01032629) | CREDENCE (NCT02065791) |
---|---|---|
Number of participants | 10,142 | 4401 |
Median follow-up | 3.6 years | 2.6 years |
Dosing (once daily) | 100 mg/300 mg | 100 mg |
Mean patient age | 63 | 63 |
Percentage female [%] | 36 | 34 |
Mean BMI [kg/m2] | 32 | 31 |
Mean eGFR [mL/min/1.73 m2] | 76.5 | 56.2 |
Mean HbA1c [%] | 8.2 | 8.3 |
DM [%] | 100 | 100 |
HF [%] | 14 | 15 |
Inclusion criteria |
|
|
Principal findings | Reduced MACEs (HR: 0.86; Cl 0.75–0.97) and deaths from CV causes or hospitalizations for HF (HR: 0.78; Cl 0.67–0.91) | ESRD, doubling of serum creatinine level, renal- or CV-related deaths (composite) (HR: 0.70; Cl 0.59–0.82), reduced CV-related deaths (HR: 0.78; Cl 0.61–1.00) |
Secondary outcomes |
|
|
Reference | [124] | [142] |
Trial Information | EMPA-REG OUTCOME (NCT01131676) | EMPEROR-Reduced (NCT03057977) | EMPEROR-Preserved (NCT03057951) | EMPULSE (NCT04157751) |
---|---|---|---|---|
Number of participants | 7020 | 3730 | 5988 | 530 |
Median follow-up | 3.1 years | 16 months | 2.2 years | 90 days |
Dosing (once daily) | 10 mg/25 mg | 10 mg | 10 mg | 10 mg |
Mean patient age | 63 | 67 | 72 | 71 |
Percentage female [%] | 29 | 24 | 45 | 34 |
Mean BMI [kg/m2] | 30.6 | 28 | 30 | 29 |
Mean eGFR [mL/min/1.73 m2] | 74 | 62 | 60.6 | 52 |
Mean HbA1c [%] | 8.1 | – | – | – |
DM [%] | 100 | 50 | 49 | 47 |
HF [%] | 10 | 100 | 100 | 100 |
Inclusion criteria |
|
|
|
|
Principal findings | Reduced MACEs (HR: 0.86; Cl 0.74–0.99) | Reduced CV-related deaths or hospitalizations for worsening HF (HR: 0.75; Cl 0.65–0.86) | Reduced CV-related deaths or hospitalizations for HF (HR: 0.79; Cl 0.69–0.90) | Composite of deaths, number of heart failure events, time to first heart failure event, and change in KCCQ-TSS (win ratio = 1.36; Cl 1.09–1.68) |
Secondary outcomes |
|
|
| CV-related deaths or HFEs until end-of-trial visit, n (%) events per 100 patient years (HR: 0.69; Cl 0.45–1.08) |
Reference | [122] | [130] | [131] | [132] |
Trial Information | VERTIS CV (NCT01986881) |
---|---|
Number of participants | 8246 |
Median follow-up | 3.5 years |
Dosing (once daily) | 5 mg/15 mg |
Mean patient age | 64 |
Percentage female [%] | 30 |
Mean BMI [kg/m2] | 32 |
Mean eGFR [mL/min/1.73 m2] | 76 |
Mean HbA1c [%] | 8.2 |
DM [%] | 100 |
HF [%] | 24 |
Inclusion criteria |
|
Principal findings | Failed to reduce MACEs (HR: 0.97; Cl 0.85–1.11) |
Secondary outcomes |
|
Reference | [134] |
Trial Information | SCORED (NCT03315143) | SOLOIST-WHF (NCT03521934) |
---|---|---|
Number of participants | 10,584 | 1222 |
Median follow-up | 1.3 | 0.75 |
Dosing (once daily) | 200 mg/400 mg | 200 mg/400 mg |
Mean patient age | 69 | 70 |
Percentage female [%] | 45 | 34 |
Mean BMI [kg/m2] | 31.9 | 30.4 |
Mean eGFR [mL/min/1.73 m2] | 44.4 | 50 |
Mean HbA1c [%] | 8.3 | 7.1 |
DM [%] | 100 | 100 |
HF [%] | 31 | 100 |
Inclusion criteria |
|
|
Principal findings | Reduced deaths from CV causes and hospitalizations and urgent visits for HF (HR: 0.74; Cl 0.63–0.88) | Reduced deaths from CV causes and hospitalizations and urgent visits for HF (HR: 0.67; Cl 0.52–0.85) |
Secondary outcomes |
|
|
Reference | [139] | [138] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bodnar, P.; Mazurkiewicz, M.; Chwalba, T.; Romuk, E.; Ciszek-Chwalba, A.; Jacheć, W.; Wojciechowska, C. The Impact of Pharmacotherapy for Heart Failure on Oxidative Stress—Role of New Drugs, Flozins. Biomedicines 2023, 11, 2236. https://doi.org/10.3390/biomedicines11082236
Bodnar P, Mazurkiewicz M, Chwalba T, Romuk E, Ciszek-Chwalba A, Jacheć W, Wojciechowska C. The Impact of Pharmacotherapy for Heart Failure on Oxidative Stress—Role of New Drugs, Flozins. Biomedicines. 2023; 11(8):2236. https://doi.org/10.3390/biomedicines11082236
Chicago/Turabian StyleBodnar, Patryk, Michalina Mazurkiewicz, Tomasz Chwalba, Ewa Romuk, Anna Ciszek-Chwalba, Wojciech Jacheć, and Celina Wojciechowska. 2023. "The Impact of Pharmacotherapy for Heart Failure on Oxidative Stress—Role of New Drugs, Flozins" Biomedicines 11, no. 8: 2236. https://doi.org/10.3390/biomedicines11082236
APA StyleBodnar, P., Mazurkiewicz, M., Chwalba, T., Romuk, E., Ciszek-Chwalba, A., Jacheć, W., & Wojciechowska, C. (2023). The Impact of Pharmacotherapy for Heart Failure on Oxidative Stress—Role of New Drugs, Flozins. Biomedicines, 11(8), 2236. https://doi.org/10.3390/biomedicines11082236