The Role of the Bile Microbiome in Common Bile Duct Stone Development
Abstract
:1. Introduction
2. Methods
2.1. Analysis of the Bile Microbiomes of CBD Stone and Non-CBD Stone Patients
2.2. Acquisition of Human Bile Fluid Samples
2.3. DNA Extraction from Bile Samples
2.4. Polymerase Chain Reaction (PCR) Amplification of the Bacterial 16S rRNA Gene V3–V4 Region
2.5. Analysis of 16S rRNA Sequencing Data in Bile Fluid Samples
2.6. Metabolomic Analysis by Nuclear Magnetic Resonance (NMR) Spectroscopy
2.7. Functional Gene Enrichment Analysis
2.8. In Vivo Experiments
2.9. Statement on Ethics
3. Results
3.1. Characteristics of the Study Subjects
3.2. Alpha and Beta Diversities
3.3. Taxonomic Analysis of Bile Microbiomes
3.4. Metabolic Profile Analysis of Bile Fluid
3.5. Preclinical Experiment
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Williams, E.; Beckingham, I.; El Sayed, G.; Gurusamy, K.; Sturgess, R.; Webster, G.; Young, T. Updated guideline on the management of common bile duct stones (CBDS). Gut 2017, 66, 765–782. [Google Scholar] [CrossRef] [PubMed]
- Copelan, A.; Kapoor, B.S. Choledocholithiasis: Diagnosis and management. Tech. Vasc. Interv. Radiol. 2015, 18, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Csendes, A.; Burdiles, P.; Maluenda, F.; Diaz, J.C.; Csendes, P.; Mitru, N. Simultaneous bacteriologic assessment of bile from gallbladder and common bile duct in control subjects and patients with gallstones and common duct stones. Arch. Surg. 1996, 131, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Maki, T. Pathogenesis of calcium bilirubinate gallstone: Role of E. coli, beta-glucuronidase and coagulation by inorganic ions, polyelectrolytes and agitation. Ann. Surg. 1966, 164, 90–100. [Google Scholar] [CrossRef]
- Grigor’eva, I.N.; Romanova, T.I. Gallstone Disease and Microbiome. Microorganisms 2020, 8, 835. [Google Scholar] [CrossRef]
- Ye, F.; Shen, H.; Li, Z.; Meng, F.; Li, L.; Yang, J.; Chen, Y.; Bo, X.; Zhang, X.; Ni, M. Influence of the Biliary System on Biliary Bacteria Revealed by Bacterial Communities of the Human Biliary and Upper Digestive Tracts. PLoS ONE 2016, 11, e0150519. [Google Scholar] [CrossRef]
- Lee, J.; Park, J.-S.; Bae, J.; Lee, S.; Hwang, Y. Bile Microbiome in Patients with Recurrent Common Bile Duct Stones and Correlation with the Duodenal Microbiome. Life 2022, 12, 1540. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, S.; Jin, C.; Lin, Z.; Deng, T.; Xie, X.; Deng, L.; Li, X.; Ma, J.; Ding, X. A predictive model based on the gut microbiota improves the diagnostic effect in patients with cholangiocarcinoma. Front. Cell. Infect. Microbiol. 2021, 11, 751795. [Google Scholar] [CrossRef]
- Mori, H.; Morine, Y.; Mawatari, K.; Chiba, A.; Yamada, S.; Saito, Y.; Ishibashi, H.; Takahashi, A.; Shimada, M. Bile metabolites and risk of carcinogenesis in patients with pancreaticobiliary maljunction: A pilot study. Anticancer Res. 2021, 41, 327–334. [Google Scholar] [CrossRef]
- Lee, H.; Lee, H.K.; Min, S.K.; Lee, W.H. 16S rDNA microbiome composition pattern analysis as a diagnostic biomarker for biliary tract cancer. World J. Surg. Oncol. 2020, 18, 19. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, M.; Qin, C.; Hong, J. Role of the biliary microbiome in gallstone disease. Expert Rev. Gastroenterol. Hepatol. 2018, 12, 1193–1205. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Han, M.; Heinrich, B.; Fu, Q.; Zhang, Q.; Sandhu, M.; Agdashian, D.; Terabe, M.; Berzofsky, J.A.; Fako, V. Gut microbiome–mediated bile acid metabolism regulates liver cancer via NKT cells. Science 2018, 360, eaan5931. [Google Scholar] [CrossRef] [PubMed]
- Ridlon, J.M.; Kang, D.J.; Hylemon, P.B.; Bajaj, J.S. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol. 2014, 30, 332. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.L.; Takeda, K.; Sundrud, M.S. Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunol. 2019, 12, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Fremont-Rahl, J.J.; Ge, Z.; Umana, C.; Whary, M.T.; Taylor, N.S.; Muthupalani, S.; Carey, M.C.; Fox, J.G.; Maurer, K.J. An analysis of the role of the indigenous microbiota in cholesterol gallstone pathogenesis. PLoS ONE 2013, 8, e70657. [Google Scholar] [CrossRef]
- Kunjachan, S.; Kotb, S.; Pola, R.; Pechar, M.; Kumar, R.; Singh, B.; Gremse, F.; Taleeli, R.; Trichard, F.; Motto-Ros, V.; et al. Selective Priming of Tumor Blood Vessels by Radiation Therapy Enhances Nanodrug Delivery. Sci. Rep. 2019, 9, 15844. [Google Scholar] [CrossRef]
- Wang, Q.; Hao, C.; Yao, W.; Zhu, D.; Lu, H.; Li, L.; Ma, B.; Sun, B.; Xue, D.; Zhang, W. Intestinal flora imbalance affects bile acid metabolism and is associated with gallstone formation. BMC Gastroenterol. 2020, 20, 59. [Google Scholar] [CrossRef] [PubMed]
- Banales, J.M.; Marin, J.J.; Lamarca, A.; Rodrigues, P.M.; Khan, S.A.; Roberts, L.R.; Cardinale, V.; Carpino, G.; Andersen, J.B.; Braconi, C. Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 557–588. [Google Scholar] [CrossRef]
- DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 2006, 72, 5069–5072. [Google Scholar] [CrossRef]
- Kim, B.; Park, J.-S.; Bae, J.; Hwang, N. Bile microbiota in patients with pigment common bile duct stones. J. Korean Med. Sci. 2021, 36, e94. [Google Scholar] [CrossRef]
- Sarantinopoulos, P.; Kalantzopoulos, G.; Tsakalidou, E. Citrate metabolism by Enterococcus faecalis FAIR-E 229. Appl. Environ. Microbiol. 2001, 67, 5482–5487. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, M.; Hartke, A.; Huycke, M. The physiology and metabolism of enterococci. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection [Internet]; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- Lyu, Z.; Yu, T.; Zhang, L.; Xu, X.; Zhang, Y.; Li, J.; Li, Z.; Zhang, W.; Hou, S. Analysis of the relationship between bile duct and duodenal microbiota reveals that potential dysbacteriosis is the main cause of primary common bile duct stones. Synth. Syst. Biotechnol. 2021, 6, 414–428. [Google Scholar] [CrossRef] [PubMed]
- Bolte, L.A.; Vila, A.V.; Imhann, F.; Collij, V.; Gacesa, R.; Peters, V.; Wijmenga, C.; Kurilshikov, A.; Campmans-Kuijpers, M.J.; Fu, J. Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut 2021, 70, 1287–1298. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Jiang, Z.; Wang, C.; Li, N.; Bo, L.; Zha, Y.; Bian, J.; Zhang, Y.; Deng, X. Acetate attenuates inflammasome activation through GPR43-mediated Ca2+-dependent NLRP3 ubiquitination. Exp. Mol. Med. 2019, 51, 1–13. [Google Scholar]
- Pietzke, M.; Meiser, J.; Vazquez, A. Formate metabolism in health and disease. Mol. Metab. 2020, 33, 23–37. [Google Scholar] [CrossRef]
- Hughes, P.E.; Caenepeel, S.; Wu, L.C. Targeted therapy and checkpoint immunotherapy combinations for the treatment of cancer. Trends Immunol. 2016, 37, 462–476. [Google Scholar] [CrossRef]
- Muñoz, L.E.; Boeltz, S.; Bilyy, R.; Schauer, C.; Mahajan, A.; Widulin, N.; Grüneboom, A.; Herrmann, I.; Boada, E.; Rauh, M. Neutrophil extracellular traps initiate gallstone formation. Immunity 2019, 51, 443–450.e444. [Google Scholar] [CrossRef]
Variables | Total (n = 25) | CBD Stones (n = 17) | non-CBD Stones (n = 8) | * p-Value |
---|---|---|---|---|
Age (years) § | 72 (42–89) | 72 (43–89) | 71 (42–81) | 0.54 |
Sex, male, n (%) | 13 (52.0) | 8 (47.1) | 5 (62.5) | 0.49 |
Hypertension, n (%) | 14 (56.0) | 8 (47.1) | 6 (75.0) | 0.20 |
DM, n (%) | 7 (28.0) | 5 (29.4) | 2 (25.0) | 0.83 |
Dyslipidemia, n (%) | 10 (40.0) | 7 (41.2) | 3 (37.5) | 0.87 |
WBC (/ul) § | 8976 (3710–21,650) | 8577 (3710–18,480) | 9824 (5410–21,650) | 0.56 |
CRP, mg/dL § | 4.8 (0.1–22.4) | 6.5 (0.1–22.4) | 1.2 (0.1–5.0) | 0.06 |
T.bil, mg/dL § | 4.8 (0.1–22.4) | 2.2 (0.3–8.7) | 3.9 (0.2–23.9) | 0.45 |
AST, IU/L § | 2.7 (0.2–23.9) | 180.4 (12.0–920.0) | 51.5 (19.0–130.0) | 0.16 |
ALT, IU/L § | 139.1 (12.0–920.0) | 145.9 (8.0–510.0) | 36.6 (10.0–89.0) | 0.07 |
ALP, IU/L § | 110.9 (8.0–510.0) | 183.4 (41.0–646.0) | 93.3 (45.0–153.0) | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Jeong, H.J.; Kim, H.; Park, J.-S. The Role of the Bile Microbiome in Common Bile Duct Stone Development. Biomedicines 2023, 11, 2124. https://doi.org/10.3390/biomedicines11082124
Lee J, Jeong HJ, Kim H, Park J-S. The Role of the Bile Microbiome in Common Bile Duct Stone Development. Biomedicines. 2023; 11(8):2124. https://doi.org/10.3390/biomedicines11082124
Chicago/Turabian StyleLee, Jungnam, Hye Jung Jeong, Hanul Kim, and Jin-Seok Park. 2023. "The Role of the Bile Microbiome in Common Bile Duct Stone Development" Biomedicines 11, no. 8: 2124. https://doi.org/10.3390/biomedicines11082124
APA StyleLee, J., Jeong, H. J., Kim, H., & Park, J.-S. (2023). The Role of the Bile Microbiome in Common Bile Duct Stone Development. Biomedicines, 11(8), 2124. https://doi.org/10.3390/biomedicines11082124