Influence of Age, Gender and Education Level on Executive Functions and Functioning in People with Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.3. Statistical Analysis
3. Results
3.1. Comparative Analysis
3.2. Correlational Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Organización Mundial de la Salud (OMS). Who steps stroke manual. In Manual de la OMS Para la Vigilancia de Accidentes Cerebrovasculares; Organización Mundial de la Salud: Geneva, Switzerland, 2006; pp. 1–5. [Google Scholar]
- Yousufuddin, M.; Young, N. Aging and ischemic stroke. Aging 2019, 11, 2542–2544. [Google Scholar] [CrossRef]
- Sudlow, C.L.; Warlow, C.P. Comparable studies of the incidence of stroke and its pathological types: Results of an international collaboration. Stroke 1997, 228, 491–499. [Google Scholar] [CrossRef]
- Bonita, R. Epidemiology of stroke. Lancet 1992, 339, 342–344. [Google Scholar] [CrossRef]
- Ministerio de Sanidad, Consumo y Bienestar Social. Portal Estadístico. Área de Inteligencia de Gestión. Mortalidad por Causa de Muerte. España: Ministerio de Sanidad, Consumo y Bienestar Social. Available online: https://pestadistico.inteligenciadegestion.mscbs.es/publicoSNS/comun/ArbolNodos.aspx?idNodo=106 (accessed on 30 October 2018).
- Murphy, S.J.; Werring, D.J. Stroke: Causes and clinical features. Medicine 2020, 48, 561–566. [Google Scholar] [CrossRef]
- García-Molina, A.; Tirapu-Ustárroz, J.; Roig-Rovira, T. Validez ecológica en la exploración de las funciones ejecutivas. An. Psicol. 2007, 23, 289–299. [Google Scholar]
- Ihle-Hansen, H.; Thommessen, B.; Fagerland, M.W.; Wyller, T.B.; Engedal, K.; Oksengard, A.R.; Stenset, V.; Løken, K.; Fure, B. Impact of white matter lesions on cognition in stroke participants free from prestroke cognitive impairment: A oneyear followup study. Dement. Geriatr. Cogn. Disord. Extra 2012, 2, 38–47. [Google Scholar] [CrossRef]
- Fang, Y.; Mpofu, E.; Athanasou, J. Reducing depressive or anxiety symptoms in post-stroke participants: Pilot trial of a constructive integrative psychosocial intervention. Int. J. Health Sci. 2017, 11, 53–58. [Google Scholar]
- Ferguson, H.J.; Brunsdon, V.E.; Bradford, E.F. The developmental trajectories of executive function from adolescence to old age. Sci. Rep. 2021, 11, 1382. [Google Scholar] [CrossRef]
- Cristofori, I. Executive functions. In Handbook of Clinical Neurology. The Frontal Lobes, 3rd ed.; D’Esposito, M., Grafman, J.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 163, pp. 197–219. [Google Scholar]
- Dajani, D.R.; Uddin, L.Q. Demystifying cognitive flexibility: Implications for clinical and developmental neuroscience. Trends Neurosci. 2015, 38, 571–578. [Google Scholar] [CrossRef]
- Capilla, A.; Romero, D.; Maestú, F.; Campo, P.; Fernández, S.; González-Marqués, J.; Ortiz, T.; Fernández, A.; Fernández, S. Emergencia y desarrollo cerebral de las funciones ejecutivas. Actas Españolas Psiquiatr. 2004, 32, 377–386. [Google Scholar]
- Bako, A.T.; Potter, T.; Tannous, J.; Pan, A.P.; Johnson, C.; Baig, E.; Downer, B.; Vahidy, F.S. Sex differences in post-stroke cognitive decline: A population-based longitudinal study of nationally representative data. PLoS ONE 2022, 17, e0268249. [Google Scholar] [CrossRef]
- Jefferson, A.; Paul, R.; Ozonoff, A.; Cohen, R. Evaluating elements of executive functioning as predictors of instrumental activities of daily living (IADLs). Arch. Clin. Neuropsychol. 2006, 21, 311–320. [Google Scholar] [CrossRef]
- Gargano, J.W.; Reeves, M.J.; Coverdell, P. National Acute Stroke Registry Michigan Prototype Investigators. Sex differences in stroke recovery and stroke-specific quality of life: Results from a statewide stroke registry. Stroke 2007, 38, 2541–2548. [Google Scholar] [CrossRef] [PubMed]
- Kelly-Hayes, M.; Beiser, A.; Kase, C.S.; Scaramucci, A.; D’Agostino, R.B.; Wolf, P.A. The influence of gender and age on disability following ischemic stroke: The Framingham study. J. Stroke Cerebrovasc. Dis.Off. J. Natl. Stroke Assoc. 2003, 12, 119–126. [Google Scholar] [CrossRef]
- Reeves, M.J.; Bushnell, C.D.; Howard, G.; Gargano, J.W.; Duncan, P.W.; Lynch, G.; Khatiwoda, A.; Lisabeth, L. Sex differences in stroke: Epidemiology, clinical presentation, medical care, and outcomes. Lancet Neurol. 2008, 7, 915–926. [Google Scholar] [CrossRef]
- Harahap, H.S.; Indrayana, Y.; Putri, S.A. Relationship between level of education and post-stroke cognitive status in hospital-based ischemic stroke survivors. MNJ (Malang Neurol. J.) 2020, 7, 1–6. [Google Scholar] [CrossRef]
- Levine, D.A.; Galecki, A.T.; Langa, K.M.; Unverzagt, F.W.; Kabeto, M.U.; Giordani, B.; Wadley, V.G. Trajectory of Cognitive Decline After Incident Stroke. JAMA 2015, 314, 41–51. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Ann. Intern. Med. 2007, 147, 573–577. [Google Scholar] [CrossRef]
- Hall, K.M.; Hamilton, B.B.; Gordon, W.A.; Zasler, N.D. Characteristics and comparisons of functional assessment indices: Disability Rating Scale, Functional Independence Measure, and Functional Assessment Measure. J. Head Trauma Rehabil. 1993, 8, 60–74. [Google Scholar] [CrossRef]
- Lawton, M.P.; Brody, E.M. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef]
- Army Individual Test Battery: Manual of Directions and Scoring; War Department, Adjutant General’s Office: Fort Jackson, SC, USA, 1944.
- Alderman, N.; Burgess, P.; Emslie, H.; Evans, J.J.; Wilson, B. Behavioral Assessment of Dygenderecutive syndrome (BADS); Thames Valley Test: Suffolk, UK, 1966. [Google Scholar]
- Rankin, J. Cerebral vascular accidents in participants over the age of 60: II. Prognosis. Scott. Med. J. 1957, 2, 200–215. [Google Scholar] [CrossRef]
- Simon, H.A. The functional equivalence of problem solving skills. Cogn. Psychol. 1975, 7, 268–288. [Google Scholar] [CrossRef]
- Faria, C.D.; Teixeira-Salmela, L.F.; Ewerton, B.S.; Nadeau, S. Expanded Timed Up and Go Test with stroke: Reliability and comparisons with matched healthy controls. Arch. Phys. Med. Rehabil. 2012, 93, 1034–1038. [Google Scholar] [CrossRef] [PubMed]
- Kopp, B.; Rösser, N.; Wessel, K. Psychometric characteristics and practice effects of the Brunswick Trail Making Test. Percept. Mot. Ski. 2008, 107, 707–733. [Google Scholar] [CrossRef] [PubMed]
- Ferris, J.; Greeley, B.; Yeganeh, N.M.; Rinat, S.; Ramirez, J.; Black, S.; Boyd, L. Exploring biomarkers of processing speed and executive function: The role of the anterior thalamic radiations. NeuroImage Clin. 2022, 36, 103174. [Google Scholar] [CrossRef]
- Hashimoto, R.; Meguro, K.; Lee, E.; Kasai, M.; Ishii, H.; Yamaguchi, S. Effect of age and education on the Trail Making Test and determination of normative data for Japanese elderly people: The Tajiri Project. Psychiatry Clin. Neurosci. 2006, 60, 422–428. [Google Scholar] [CrossRef]
- Periáñez, J.A.; Ríos-Lago, M.; Rodríguez-Sánchez, J.M.; Adrover-Roig, D.; Sánchez-Cubillo, I.; Crespo-Farroco, B.; Quemada, J.I.; Barceló, F. Trail Making Test in traumatic brain injury, schizophrenia, and normal aging: Sample comparisons and normative data. Arch. Clin. Neuropsychol. 2007, 22, 433–447. [Google Scholar] [CrossRef]
- Heaton, R.K.; Ryan, L.; Grant, I. Demographic influences and use of demographically corrected norms in neuropsychological assessment. In Neuropsychological Assessment of Neuropsychiatric and Neuromedical Disorders; Grant, I., Adams, K.M., Eds.; Oxford University Press: London, UK, 2009; pp. 127–155. [Google Scholar]
- Suputtitada, A.; Aksaranugraha, S.; Granger, C.V.; Sankaew, M. Results of stroke rehabilitation in Thailand. Disabil. Rehabil. 2003, 25, 1140–1145. [Google Scholar] [CrossRef]
- Öneş, K.; Yilmaz, E.; Çentikaya, B.; Çağlar, N. Effects of age, gender, and cognitive, functional and motor status on functional outcomes of stroke rehabilitation. Neurorehabilitation 2009, 25, 241–249. [Google Scholar] [CrossRef]
- Bagg, S.; Pompo, A.P.; Hopman, W. Effect of age on functional outcomes after stroke rehabilitation. Stroke 2002, 33, 179A. [Google Scholar] [CrossRef]
- Putman, K.; De Wit, L.; Schoonacker, M.; Baert, I.; Beyens, H.; Brinkmann, N.; Dejaeger, E.; De Meyer, A.-M.; De Weerdt, W.; Feys, H.; et al. Effect of socioeconomic status on functional and motor recovery after stroke: A European multicentre study. J. Neurol. Neurosurg. Psychiatry 2007, 78, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Ardila, A.; Pineda, D.; Rosselli, M. Correlations between intelligence test scores and executive function measures. Arch. Clin. Neuropsychol. 2000, 15, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Zinn, S.; Bosworth, H.B.; Hoenig, H.M.; Swartzwelder, H.S. Executive function deficits in acute stroke. Arch. Phys. Med. Rehabil. 2007, 88, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Stern, Y. Cognitive Reserve: Implications for assessment and intervention. Folia Phoniatr. Logop. 2013, 65, 49–54. [Google Scholar] [CrossRef]
- Umarova, R.M. Adapting the concepts of brain and cognitive reserve to post-stroke cognitive deficits: Implications for understanding neglect. Cortex 2017, 97, 327–338. [Google Scholar] [CrossRef]
- Li, F.; Kong, X.; Zhu, H.; Xu, H.; Wu, B.; Cao, Y.; Li, J. The moderating effect of cognitive reserve on cognitive function in patients with Acute Ischemic Stroke. Front. Aging Neurosci. 2022, 14, 1011510. [Google Scholar] [CrossRef]
- Shin, M.; Sohn, M.K.; Lee, J.; Kim, D.Y.; Lee, S.-G.; Shin, Y.-I.; Oh, G.-J.; Lee, Y.-S.; Joo, M.C.; Han, E.Y.; et al. Effect of Cognitive Reserve on Risk of Cognitive Impairment and Recovery After Stroke: The KOSCO Study. Stroke 2020, 51, 99–107. [Google Scholar] [CrossRef]
- Ojala-Oksala, J.; Jokinen, H.; Kopsi, V.; Lehtonen, K.; Luukkonen, L.; Paukkunen, A.; Seeck, L.; Melkas, S.; Pohjasvaara, T.; Karhunen, P.; et al. Educational history is an independent predictor of cognitive deficits and long-term survival in postacute patients with mild to moderate ischemic stroke. Stroke 2012, 43, 2931–2935. [Google Scholar] [CrossRef]
- Miki, E.; Yamane, S.; Yamaoka, M.; Fujii, H.; Ueno, H.; Kawahara; Tanaka, K.; Tamashiro, H.; Inoue, E.; Okamoto, T.; et al. Validity and reliability of the Japanese version of the FIM + FAM in participants with cerebrovascular accident. Scand. J. Occup. Ther. 2016, 23, 398–404. [Google Scholar] [CrossRef]
- Barker-Collo, S.; Feigin, V.L.; Parag, V.; Lawes, C.M.M.; Senior, H. Auckland Stroke Outcomes Study Part 2: Cognition and functional outcomes 5 years poststroke. Neurology 2010, 75, 1608–1616. [Google Scholar] [CrossRef]
- Barker-Collo, S.; Starkey, N.; Lawes, C.M.; Feigin, V.; Senior, H.; Parag, V. Neuropsychological profiles of 5-year ischemic stroke survivors by Oxfordshire Stroke Classification and hemisphere of lesion. Stroke 2012, 43, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Verhoeven, C.L.; Schepers, V.P.; Post, M.W.; van Heugten, C.M. The predictive value of cognitive impairments measured at the start of clinical rehabilitation for health status1 year and 3 years poststroke. Int. J. Rehabil. Res. 2011, 34, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Leśniak, M.; Bak, T.; Czepiel, W.; Seniów, J.; Członkowska, A. Frequency and prognostic value of cognitive disorders in stroke participants. Dement. Geriatr. Cogn. Disord. 2008, 26, 356–363. [Google Scholar] [CrossRef]
- Riepe, M.W.; Riss, S.; Bittner, D.; Huber, R. Screening for cognitive impairment in participants with acute stroke. Dement. Geriatr. Cogn. Disord. 2004, 17, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Zinn, S.; Dudley, T.K.; Bosworth, H.B.; Hoenig, H.M.; Duncan, P.W.; Horner, R.D. The effect of poststroke cognitive impairment on rehabilitation process and functional outcome. Arch. Phys. Med. Rehabil. 2004, 85, 1084–1090. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.H.; Jang, J.W.; Park, S.Y.; Wang, M.J.; Lim, J.S.; Baek, M.J.; Kim, B.J.; Han, M.-K.; Bae, H.-J.; Ahn, S.; et al. Executive function as a strong predictor of recovery from disability in participants with acute stroke: A preliminary study. J. Stroke Cerebrovasc. Dis. 2015, 24, 554–561. [Google Scholar] [CrossRef]
- Katrak, P.H.; Black, D.; Peeva, V. Do stroke participants with intracerebral hemorrhage have a better functional outcome than participants with cerebral infarction? PM R 2009, 1, 427–433. [Google Scholar] [CrossRef]
- Salvadori, E.; Papi, G.; Insalata, G.; Rinnoci, V.; Donnini, I.; Martini, M.; Falsini, C.; Hakiki, B.; Romoli, A.; Barbato, C.; et al. Comparison between ischemic and hemorrhagic strokes in functional outcome at discharge from an intensive rehabilitation hospital. Diagnostics 2020, 11, 38. [Google Scholar] [CrossRef]
Variable | Stroke Participants (n = 29) | Controls (n = 29) | ||
---|---|---|---|---|
Hemorrhagic (n = 18) | Ischemic (n = 11) | |||
Gender | 12 women, 6 men | 2 women, 9 men | 14 women, 15 men | |
Age | 42.44 ± 13.47 | 46.73 ± 6.28 | 44.07 ± 11.34 | |
Years Since Stroke (months) | 11.56 ± 9.02 | 21.82 ± 17.42 | - | |
Education Level | No studies | 1 | 0 | 1 |
General education | 2 | 4 | 6 | |
High school | 5 | 4 | 9 | |
Advanced vocational training | 2 | 1 | 4 | |
University degree | 8 | 2 | 9 |
Scale | Control IR, M (SD) | Stroke IR, M (SD) | p | Ischemic a IR, M (SD) | p | Hemorrhagic b IR, M (SD) | p | Hemorrhagic vs. Ischemic p |
---|---|---|---|---|---|---|---|---|
mRS | --- | 3.27 (4) | --- | 3.25 (3) | --- | 3.28 (4) | --- | 0.945 |
FIM+FAM | 210 (0) | 150.72 (54) | <0.001 | 161.91 (35) | <0.001 | 143.89 (69) | <0.001 | 0.361 |
Lawton | 8 (0) | 2.93 (3) | <0.001 | 2.55 (1) | <0.001 | 3.17 (4) | <0.001 | 0.889 |
Zoo Map Test | 13 (3) | 6.1 (10) | <0.001 | 5 (11) | <0.001 | 6.78 (9) | <0.001 | 0.998 |
TMT A time | 32.59 (17) | 95.07 (68) | <0.001 | 73.45 (53) | <0.001 | 108.28 (90) | <0.001 | 0.668 |
TMT B time | 72.97 (47) | 143.38 (94) | <0.001 | 158.18 (81) | <0.001 | 134.33 (104) | <0.001 | 0.494 |
Hanoi 3 time b | 40.64 (40) | 71.11 (54.88) | 0.006 | 51.07 (43) | 0.165 | 80.47 (55.5) | 0.017 | 0.461 |
Hanoi 4 time b | 78.91 (59.75) | 138.75 (97.38) | 0.001 | 128.36 (104) | 0.072 | 143.6 (98.5) | 0.008 | 0.932 |
Ischemic Correlation | Gender | Age | Level of Education | Years Since Diagnosis | mRS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ρ | CI | p | ρ | CI | p | ρ | CI | p | ρ | CI | p | ρ | CI | p | |
FIM+FAM | 0 | −0.559 to 0.599 | 1 | −0.082 | −0.649 to 0.545 | 0.811 | −0.11 | −0.666 to −0.524 | 0.748 | 0.683 | 0.141 to 0.91 | 0.02 | −0.744 | −0.929 to −0.26 | 0.009 |
Lawton | 0.039 | −0.574 to 0.624 | 0.91 | −0.472 | −0.835 to 0.178 | 0.143 | 0.386 | −0.278 to 0.8 | 0.241 | 0.333 | −0.333 to 0.778 | 0.333 | −0.479 | −0.838 to 0.169 | 0.136 |
Zoo Map Test | 0.149 | −0.495 to 0.687 | 0.662 | −0.364 | −0.791 to 0.302 | 0.27 | −0.196 | −0.703 to 0.458 | 0.564 | −0.178 | −0.703 to 0.472 | 0.601 | −0.588 | −0.878 to 0.018 | 0.057 |
TMT A time | −0.298 | −0.762 to 0.368 | 0.373 | 0.852 | 0.516 to 0.961 | 0.001 | −0.272 | −0.749 to 0.392 | 0.418 | 0.374 | −0.291 to 0.795 | 0.258 | 0.372 | −0.293 to 0.795 | 0.26 |
TMT B time | −0.596 | −0.881 to 0.006 | 0.053 | 0.574 | −0.039 to 0.873 | 0.065 | −0.33 | −0.776 to 0.336 | 0.322 | 0.164 | −0.483 to 0.695 | 0.63 | 0.362 | −0.303 to 0.79 | 0.274 |
Hanoi 3 time | 0 | −0.753 to 0.753 | 1 | −0.036 | −0.768 to 0.737 | 0.939 | −0.538 | −0.919 to 0.362 | 0.213 | −0.198 | −0.828 to 0.652 | 0.67 | 0.558 | −0.336 to 0.923 | 0.193 |
Hanoi 4 time | −0.408 | −0.888 to 0.498 | 0.363 | 0.429 | −0.479 to 0.893 | 0.337 | −0.299 | −0.859 to 0.586 | 0.515 | 0.234 | −0.63 to 0.839 | 0.613 | 0.558 | −0.336 to 0.923 | 0.193 |
Hemorrhagic correlation | Gender | Age | Level of Education | Years Since Diagnosis | mRS | ||||||||||
ρ | CI | p | ρ | CI | p | ρ | CI | p | ρ | CI | p | ρ | CI | p | |
FIM+FAM | −0.25 | −0.642 to 0.246 | 0.317 | −0.187 | −0.601 to 0.307 | 0.457 | −0.222 | −0.624 to 0.273 | 0.376 | 0.054 | −0.414 to −0.508 | 0.831 | −0.942 | −0.979 to −0.848 | <0.001 |
Lawton | −0.244 | −0.638 to 0.252 | 0.329 | −0.163 | −0.585 to 0.329 | 0.518 | −0.168 | −0.589 to 0.324 | 0.505 | 0.014 | −0.456 to 0.478 | 0.955 | −0.929 | −0.974 to −0.816 | <0.001 |
Zoo Map Test | −0.171 | −0.591 to −322 | 0.497 | −0.258 | −0.647 to 0.237 | 0.302 | 0.295 | −0.199 to 0.669 | 0.234 | −0.102 | −0.543 to 0.383 | 0.686 | −0.686 | −0.873 to −0.322 | 0.002 |
TMT A time | 0.363 | −0.125 to 0.709 | 0.363 | 0.254 | −0.242 to 0.644 | 0.309 | 0.098 | −0.387 to 0.54 | 0.698 | −0.015 | −0.479 to 0.456 | 0.954 | 0.804 | 0.539 to 0.924 | <0.001 |
TMT B time | 0.182 | −0.311 to 0.598 | 0.182 | 0.147 | −0.343 to 0.574 | 0.561 | 0.272 | −0.223 to 0.656 | 0.274 | 0.027 | −0.445 to 0.488 | 0.915 | 0.535 | 0.091 to 0.802 | 0.022 |
Hanoi 3 time | 0.229 | 0.321 to 0.663 | 0.411 | 0.05 | −0.474 to 0.548 | 0.859 | 0.265 | −0.286 to 0.684 | 0.265 | 0.165 | −0.379 to 0.624 | 0.556 | 0.769 | 0.424 to 0.919 | 0.001 |
Hanoi 4 time | −0.295 | −0.701 to 0.256 | 0.286 | 0.182 | −0.364 to 0.635 | 0.515 | −0.074 | −0.565 to 0.456 | 0.794 | −0.246 | −0.673 to 0.305 | 0.377 | 0.187 | −0.359 to 0.638 | 0.504 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Herrera-Baeza, P.; Cano-de-la-Cuerda, R.; Serrada-Tejeda, S.; Fernández-Vázquez, D.; Navarro-López, V.; González-Alted, C.; Miangolarra-Page, J.C. Influence of Age, Gender and Education Level on Executive Functions and Functioning in People with Stroke. Biomedicines 2023, 11, 1603. https://doi.org/10.3390/biomedicines11061603
Sánchez-Herrera-Baeza P, Cano-de-la-Cuerda R, Serrada-Tejeda S, Fernández-Vázquez D, Navarro-López V, González-Alted C, Miangolarra-Page JC. Influence of Age, Gender and Education Level on Executive Functions and Functioning in People with Stroke. Biomedicines. 2023; 11(6):1603. https://doi.org/10.3390/biomedicines11061603
Chicago/Turabian StyleSánchez-Herrera-Baeza, Patricia, Roberto Cano-de-la-Cuerda, Sergio Serrada-Tejeda, Diego Fernández-Vázquez, Víctor Navarro-López, Carlos González-Alted, and Juan Carlos Miangolarra-Page. 2023. "Influence of Age, Gender and Education Level on Executive Functions and Functioning in People with Stroke" Biomedicines 11, no. 6: 1603. https://doi.org/10.3390/biomedicines11061603
APA StyleSánchez-Herrera-Baeza, P., Cano-de-la-Cuerda, R., Serrada-Tejeda, S., Fernández-Vázquez, D., Navarro-López, V., González-Alted, C., & Miangolarra-Page, J. C. (2023). Influence of Age, Gender and Education Level on Executive Functions and Functioning in People with Stroke. Biomedicines, 11(6), 1603. https://doi.org/10.3390/biomedicines11061603