Photodynamic Therapy Can Modulate the Nasopharyngeal Carcinoma Microenvironment Infected with the Epstein–Barr Virus: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Data Extraction and Study Question
2.3. Eligibility Criteria
2.4. Search Strategy
2.5. Risk of Bias Assessment
2.6. Meta-Analysis
3. Results
3.1. Search Results
3.2. Synthesis of Results
3.3. Risk of Bias Assessment
3.4. Meta-Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. A global cancer statistic, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [PubMed]
- Orlandi, E.; Iacovelli, N.A.; Tombolini, V.; Rancati, T.; Polimeni, A.; De Cecco, L.; Valdagni, R.; De Felice, F. Potential role of microbiome in oncogenesis, outcome prediction and therapeutic targeting for head and neck cancer. Oral Oncol. 2019, 99, 104453. [Google Scholar] [CrossRef]
- Chang, C.M.; Yu, K.J.; Mbulaiteye, S.M.; Hildesheim, A.; Bhatia, K. The extent of genetic diversity of Epstein-Barr virus and its geographic and disease patterns: A need for reappraisal. Virus Res. 2009, 143, 209–221. [Google Scholar] [CrossRef]
- Bakkalci, D.; Jia, Y.; Winter, J.R.; Lewis, J.E.; Taylor, G.S.; Stagg, H.R. Risk factors for Epstein Barr virus-associated cancers: A systematic review, critical appraisal, and mapping of the epidemiological evidence. J. Glob. Health 2020, 10, 010405. [Google Scholar] [CrossRef]
- Sham, J.; Choy, D.; Wei, W.; Ng, M.H.; Zong, Y.-S.; Lin, Z.-X.; Guo, Y.-Q.; Luo, Y. Detection of subclinical riasopharyngeal carcinoma by fibreoptic endoscopy and multiple biopsy. Lancet 1990, 335, 371–374. [Google Scholar] [CrossRef]
- Renaud, S.; Lefebvre, A.; Mordon, S.; Moralès, O.; Delhem, N. Novel Therapies Boosting T Cell Immunity in Epstein Barr Virus-Associated Nasopharyngeal Carcinoma. Int. J. Mol. Sci. 2020, 21, 4292. [Google Scholar] [CrossRef] [PubMed]
- Young, L.S.; Dawson, C.W. Epstein-Barr virus and nasopharyngeal carcinoma. Chin. J. Cancer 2014, 33, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Hutajulu, S.H.; Kurnianda, J.; Tan, B.I.; Middeldorp, J.M. Therapeutic implications of Epstein-Barr virus infection for the treatment of nasopharyngeal carcinoma. Ther. Clin. Risk Manag. 2014, 10, 721–736. [Google Scholar] [CrossRef]
- Banko, A.; Miljanovic, D.; Lazarevic, I.; Cirkovic, A. A Systematic Review of Epstein–Barr Virus Latent Membrane Protein 1 (LMP1) Gene Variants in Nasopharyngeal Carcinoma. Pathogens 2021, 10, 1057. [Google Scholar] [CrossRef] [PubMed]
- Edilova, M.I.; Abdul-Sater, A.A.; Watts, T.H. TRAF1 Signaling in Human Health and Disease. Front. Immunol. 2018, 9, 2969. [Google Scholar] [CrossRef]
- da Costa, V.G.; Marques-Silva, A.C.; Moreli, M.L. The Epstein-Barr virus latent membrane protein-1 (LMP1) 30-bp deletion and XhoI-polymorphism in nasopharyngeal carcinoma: A meta-analysis of observational studies. Syst. Rev. 2015, 4, 46. [Google Scholar] [CrossRef]
- Ahn, M.-J.; Chirovsky, D.; Kuyas, H.; Auclair, V.; Abounit, S.; Joo, S.; Shah, R.; Yang, M.-H. Global longitudinal assessment of treatment outcomes in recurrent/metastatic nasopharyngeal carcinoma: GLANCE-NPC study. Futur. Oncol. 2021, 17, 2015–2025. [Google Scholar] [CrossRef]
- Ou, D.; Blanchard, P.; El Khoury, C.; De Felice, F.; Even, C.; Levy, A.; Nguyen, F.; Janot, F.; Gorphe, P.; Deutsch, E.; et al. Induction chemotherapy with docetaxel, cisplatin and fluorouracil followed by concurrent chemoradiotherapy or chemoradiotherapy alone in locally advanced non-endemic nasopharyngeal carcinoma. Oral Oncol. 2016, 62, 114–121. [Google Scholar] [CrossRef]
- Zong, J.; Liu, Y.; Liang, Q.; Xu, H.; Chen, B.; Guo, Q.; Xu, Y.; Hu, C.; Pan, J.; Lin, S. Administration of oral maintenance chemotherapy for 1 year following definitive chemoradiotherapy may improve the survival of patients with stage N3 nasopharyngeal carcinoma. Oral Oncol. 2021, 118, 105313. [Google Scholar] [CrossRef] [PubMed]
- Stoker, S.D.; van Diessen, J.N.A.; de Boer, J.P.; Karakullukcu, B.; Leemans, C.R.; Tan, I.B. Current Treatment Options for Local Residual Nasopharyngeal Carcinoma. Curr. Treat. Options Oncol. 2013, 14, 475–491. [Google Scholar] [CrossRef]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 349, g7647. [Google Scholar] [CrossRef]
- NTP-OHAT. OHAT Risk of Bias Rating Tool for Human and Animal Studies; Office of Health Assessment and Translation: Rockville, MD, USA, 2015. [Google Scholar]
- NTP-OHAT. Handbook for Conducting a Literature-Based Health Assessment Using OHAT Approach for Systematic Review and Evidence Integration; National Toxicology Program–Office of Health Assessment and Translation: Rockville, MD, USA, 2019. [Google Scholar]
- Ferrisse, T.M.; de Oliveira, A.B.; Surur, A.K.; Buzo, H.S.; Brighenti, F.L.; Fontana, C.R. Photodynamic therapy associated with nanomedicine strategies for treatment of human squamous cell carcinoma: A systematic review and meta-analysis. Nanomedicine 2022, 40, 102505. [Google Scholar] [CrossRef]
- Du, H.; Bay, B.H.; Mahendran, R.; Olivo, M. Endogenous expression of interleukin-8 and interleukin-10 in nasopharyngeal carcinoma cells and the effect of photodynamic therapy. Int. J. Mol. Med. 2002, 10, 73–76. [Google Scholar] [CrossRef]
- Koon, H.K.; Lo, K.W.; Leung, K.N.; Lung, M.L.; Chang, C.C.; Wong, R.N.; Leung, W.N.; Mak, N.K. Photodynamic therapy-mediated modulation of inflammatory cytokine production by Epstein-Barr virus-infected nasopharyngeal carcinoma cells. Cell Mol. Immunol. 2010, 7, 323–326. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Chen, Z.; Liu, L.; Huang, Z.; Huang, Z.; Xie, S. Differences in sensitivity to HMME-mediated photodynamic therapy between EBV+ C666-1 and EBV- CNE2 cells. Photodiagnosis Photodyn. Ther. 2010, 7, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.W.; Chu, E.S.; Huang, Z.; Xu, C.S.; Ip, C.W.; Yow, C.M. FosPeg® PDT alters the EBV miRNAs and LMP1 protein expression in EBV positive nasopharyngeal carcinoma cells. J. Photochem. Photobiol. B 2013, 127, 114–122. [Google Scholar] [CrossRef]
- Peng, Y.; He, G.; Tang, D.; Xiong, L.; Wen, Y.; Miao, X.; Hong, Z.; Yao, H.; Chen, C.; Yan, S.; et al. Lovastatin Inhibits Cancer Stem Cells and Sensitizes to Chemo- and Photodynamic Therapy in Nasopharyngeal Carcinoma. J. Cancer 2017, 8, 1655–1664. [Google Scholar] [CrossRef]
- Wu, R.W.K.; Chu, E.S.M.; Yuen, J.W.M.; Huang, Z. Comparative study of FosPeg® photodynamic effect on nasopharyngeal carcinoma cells in 2D and 3D models. J. Photochem. Photobiol. B 2020, 210, 111987. [Google Scholar] [CrossRef]
- Wu, R.W.K.; Chu, E.S.M.; Yow, C.M.N. Evaluation of the effect of 5-aminolevulinic acid hexyl ester (H-ALA) PDT on EBV LMP1 protein expression in human nasopharyngeal cells. Photodiagnosis Photodyn. Ther. 2020, 30, 101801. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Chang, Y.-L.; To, K.-F.; Mai, H.-Q.; Feng, Y.-F.; Chang, E.T.; Wang, C.-P.; Kam, M.K.M.; Cheah, S.-L.; Lee, M.; et al. A new prognostic histopathologic classification of nasopharyngeal carcinoma. Chin. J. Cancer 2016, 35, 41. [Google Scholar] [CrossRef]
- Chen, Y.P.; Chan, A.T.C.; Le, Q.T.; Blanchard, P.; Sun, Y.; Ma, J. Nasopharyngeal carcinoma. Lancet 2019, 394, 64–80. [Google Scholar] [CrossRef]
- Tsao, S.W.; Yip, Y.L.; Tsang, C.M.; Pang, P.S.; Lau, V.M.; Zhang, G.; Lo, K.W. Etiological factors of nasopharyngeal carcinoma. Oral Oncol. 2014, 50, 330–338. [Google Scholar] [CrossRef]
- Bossi, P.; Chan, A.; Licitra, L.; Trama, A.; Orlandi, E.; Hui, E.; Halámková, J.; Mattheis, S.; Baujat, B.; Hardillo, J.; et al. Nasopharyngeal carcinoma: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment, and follow-up†. Ann. Oncol. 2021, 32, 452–465. [Google Scholar] [CrossRef] [PubMed]
- Mayor, S. Side-effects of cancer drugs are under-reported in trials. Lancet Oncol. 2015, 16, e107. [Google Scholar] [CrossRef] [PubMed]
- Fontana, L.C.; Pinto, J.G.; Vitorio, G.D.S.; Ferreira, I.; Pacheco-Soares, C.; Mamone, L.A.; Strixino, J.F. Photodynamic effect of protoporphyrin IX in gliosarcoma 9l/lacZ cell line. Photodiagnosis Photodyn. Ther. 2022, 37, 102669. [Google Scholar] [CrossRef]
- Mkhobongo, B.; Chandran, R.; Abrahamse, H. The Role of Melanoma Cell-Derived Exosomes (MTEX) and Photodynamic Therapy (PDT) within a Tumor Microenvironment. Int. J. Mol. Sci. 2021, 22, 9726. [Google Scholar] [CrossRef]
- Vallecorsa, P.; Di Venosa, G.; Gola, G.; Sáenz, D.; Mamone, L.; MacRobert, A.J.; Ramírez, J.; Casas, A. Photodynamic therapy of cutaneous T-cell lymphoma cell lines mediated by 5-aminolevulinic acid and derivatives. J. Photochem. Photobiol. B 2021, 221, 112244. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, M.; He, S.; Luo, Y.; Zhao, Y.; Cheng, J.; Gong, Y.; Xie, J.; Wang, Y.; Hu, B.; et al. Necroptosis regulates tumor repopulation after radiotherapy via RIP1/RIP3/MLKL/JNK/IL8 pathway. J. Exp. Clin. Cancer Res. 2019, 38, 461. [Google Scholar] [CrossRef] [PubMed]
- Beltrán Hernández, I.; Yu, Y.; Ossendorp, F.; Korbelik, M.; Oliveira, S. Preclinical and Clinical Evidence of Immune Responses Triggered in Oncologic Photodynamic Therapy: Clinical Recommendations. J. Clin. Med. 2020, 9, 333. [Google Scholar] [CrossRef] [PubMed]
- Huis In ’t Veld, R.V.; Heuts, J.; Ma, S.; Cruz, L.J.; Ossendorp, F.A.; Jager, M.J. Current Challenges and Opportunities of Photodynamic Therapy against Cancer. Pharmaceutics 2023, 15, 330. [Google Scholar] [CrossRef]
- Teijeira, A.; Garasa, S.; Ochoa, M.C.; Villalba, M.; Olivera, I.; Cirella, A.; Eguren-Santamaria, I.; Berraondo, P.; Schalper, K.A.; de Andrea, C.E.; et al. IL8, Neutrophils, and NETs in a Collusion against Cancer Immunity and Immunotherapy. Clin. Cancer Res. 2021, 27, 2383–2393. [Google Scholar] [CrossRef]
- Allen, D.Z.; Aljabban, J.; Silverman, D.; McDermott, S.; Wanner, R.A.; Rohr, M.; Hadley, D.; Panahiazar, M. Meta-Analysis illustrates possible role of lipopolysaccharide (LPS)-induced tissue injury in nasopharyngeal carcinoma (NPC) pathogenesis. PLoS ONE 2021, 16, e0258187. [Google Scholar] [CrossRef]
- Yang, Y.; Liao, Q.; Wei, F.; Li, X.; Zhang, W.; Fan, S.; Shi, L.; Li, X.; Gong, Z.; Ma, J.; et al. LPLUNC1 inhibits nasopharyngeal carcinoma cell growth via down-regulation of the MAP kinase and cyclin D1/E2F pathways. PLoS ONE 2013, 8, e62869. [Google Scholar] [CrossRef]
- Di Paolo, N.C.; Shayakhmetov, D.M. Interleukin 1α and the inflammatory process. Nat. Immunol. 2016, 17, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Perri, F.; Della Vittoria Scarpati, G.; Giuliano, M.; D’Aniello, C.; Gnoni, A.; Cavaliere, C.; Licchetta, A.; Pisconti, S. Epstein-Barr virus infection and nasopharyngeal carcinoma: The other side of the coin. Anticancer Drugs 2015, 26, 1017–1025. [Google Scholar] [CrossRef]
- Perri, F.; Sabbatino, F.; Ottaiano, A.; Fusco, R.; Caraglia, M.; Cascella, M.; Longo, F.; Rega, R.A.; Salzano, G.; Pontone, M.; et al. Impact of Epstein Barr Virus Infection on Treatment Opportunities in Patients with Nasopharyngeal Cancer. Cancers 2023, 15, 1626. [Google Scholar] [CrossRef] [PubMed]
- Dawson, C.W.; Rickinson, A.B.; Young, L.S. Epstein-Barr virus latent membrane protein inhibits human epithelial cell differentiation. Nature 1990, 344, 777–780. [Google Scholar] [CrossRef] [PubMed]
- Fhraeus, R.; Rymo, L.; Rhim, J.S.; Klein, G. Morphological transformation of human keratinocytes expressing the LMP gene of Epstein-Barr virus. Nature 1990, 345, 447–449. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.E.; Earp, H.S.; Raab-Traub, N. The Epstein-Barr virus latent membrane protein 1 induces expression of the epidermal growth factor receptor. J. Virol. 1995, 69, 4390–4398. [Google Scholar] [CrossRef]
- Kieff, E.; Rickinson, A.B. Epstein-Barr virus and its replication. In Field’s Virology; Knipe, D.M., Howley, P.M., Eds.; Lippincott/Williams & Wilkins: Philadelphia, PA, USA, 2001; Volume 2, pp. 2511–2573. [Google Scholar]
- Lo, A.K.; Dawson, C.W.; Lung, H.L.; Wong, K.L.; Young, L.S. The Role of EBV-Encoded LMP1 in the NPC Tumor Microenvironment: From Function to Therapy. Front. Oncol. 2021, 11, 640207. [Google Scholar] [CrossRef]
- Pietruszewska, W.; Bojanowska-Poźniak, K.; Kobos, J. Matrix metalloproteinases MMP1, MMP2, MMP9 and their tissue inhibitors TIMP1, TIMP2, TIMP3 in head and neck cancer: An immunohistochemical study. Otolaryngol. Pol. 2016, 70, 32–43. [Google Scholar] [CrossRef]
- Jiang, H.; Li, H. Prognostic values of tumoral MMP2 and MMP9 overexpression in breast cancer: A systematic review and meta-analysis. BMC Cancer 2021, 21, 149. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, H.; Wang, W.; Zhang, M. A size-tunable nanoplatform: Enhanced MMP2-activated chemo-photodynamic immunotherapy based on biodegradable mesoporous silica nanoparticles. Biomater. Sci. 2021, 9, 917–929. [Google Scholar] [CrossRef]
- Giatromanolaki, A.; Koukourakis, M.I.; Georgiou, I.; Kouroupi, M.; Sivridis, E. LC3A, LC3B and Beclin-1 Expression in Gastric Cancer. Anticancer Res. 2018, 38, 6827–6833. [Google Scholar] [CrossRef]
- Xiong, L.; Liu, Z.; Ouyang, G.; Lin, L.; Huang, H.; Kang, H.; Chen, W.; Miao, X.; Wen, Y. Autophagy inhibition enhances photocytotoxicity of Photosan-II in human colorectal cancer cells. Oncotarget 2017, 8, 6419–6432. [Google Scholar] [CrossRef]
- Ji, H.T.; Chien, L.T.; Lin, Y.H.; Chien, H.F.; Chen, C.T. 5-ALA mediated photodynamic therapy induces autophagic cell death via AMP-activated protein kinase. Mol. Cancer 2010, 9, 91. [Google Scholar] [CrossRef]
- Martins, W.K.; Belotto, R.; Silva, M.N.; Grasso, D.; Suriani, M.D.; Lavor, T.S.; Itri, R.; Baptista, M.S.; Tsubone, T.M. Autophagy Regulation and Photodynamic Therapy: Insights to Improve Outcomes of Cancer Treatment. Front. Oncol. 2021, 10, 610472. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ji, Z.; Zhang, J.; Yang, S. Photodynamic therapy enhances skin cancer chemotherapy effects through autophagy regulation. Photodiagn Photodyn. Ther. 2019, 28, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Vasiliou, V.; Vasiliou, K.; Nebert, D.W. Human ATP-binding cassette (ABC) transporter family. Hum. Genom. 2009, 3, 281–290. [Google Scholar] [CrossRef]
- Choi, Y.H.; Yu, A.M. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr. Pharm. Des. 2014, 20, 793–807. [Google Scholar] [CrossRef]
- Saltaji, H.; Armijo-Olivo, S.; Cummings, G.G.; Amin, M.; Da Costa, B.R.; Flores-Mir, C. Influence of blinding on treatment effect size estimate in randomized controlled trials of oral health interventions. BMC Med. Res. Methodol. 2018, 18, 42. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.Y.; Tang, W.P.; Zeng, Y.; Tang, W.P.; Zhao, M.L.; Deng, H.H.; Li, Q. An epithelial cell line established from poorly differentiated nasopharyngeal carcinoma. Ai Zheng 1983, 2, 70–72. [Google Scholar]
- Cheung, S.T.; Huang, D.P.; Hui, A.B.; Lo, K.W.; Ko, C.W.; Tsang, Y.S.; Wong, N.; Whitney, B.M.; Lee, J.C. Nasopharyngeal carcinoma cell line (C666-1) consistently harbouring Epstein-Barr virus. Int. J. Cancer 1999, 83, 121–126. [Google Scholar] [CrossRef]
- Huang, D.P.; Ho, J.H.C.; Poon, Y.F.; Chew, E.C.; Saw, D.; Lui, M.; Li, C.L.; Mak, L.S.; Lai, S.H.; Lau, W.H. Establishment of a cell line (NPC/HK1) from a differentiated squamous carcinoma of the nasopharynx. Int. J. Cancer 1980, 26, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
# | Author | Study Design | Cell Line | Sample Size | Evaluated Group | Photosensitizer | Wavelength (nm) | Irradiation Time (minutes) | Photosensitizer Incubation Time | Light Dose | Results |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Du et al., 2002 [20] | In vitro | HK-1 CNE-2 | 6 | G1: PDT G2: no PDT | Hypericin | 585 | ND | 4 h (HK-1) 6 h (CNE-2) | 0.5 J/cm2 | IL-8 (pg/mL) HK-1/ G1: 168.80 ± 7.93 HK-1/G2: 130.80 ± 5.80 CNE-2/ G1:71.15 ± 9.81 CNE-2/G2: 60.09 ± 2.01 |
2 | Koon et al., 2010 [21] | In vitro | HK-1 | ND | G1: HK-1 (EBV+) G2: HK-1 (EBV-) G3: control (no PDT + EBV+) | Zn-BC-AM | 682 | ND | 24 h | 0.25–1.0 J/cm2 | Apoptosis (PI) HK-1 (EBV+): 80% HK-1 (EBV−): 60% IL-1α (pg/mL) HK-1 (EBV+): 6300 ± 250 HK-1 (EBV−): 3301 ± 500 Control/G3: 1350 ± 250 IL-1β (pg/mL) HK-1 (EBV+): 92 ± 5 HK-1 (EBV−): 55 ± 5 Control/G3: 18 ± 2 IL-8 (pg/mL) HK-1 (EBV+): 15 ± 1 HK-1 (EBV−): 0 ± 0 Control/G3: 430 ± 25 |
3 | Li et al., 2010 [22] | In vitro | c666-1 CNE-2 | 3 | G1: c666-1 (EBV+) G2: CNE-2 (EBV-) | HMME (7(12)-(1-methoxyethyl)-12(7)-(1-hydroxyethyl)-3,8,13,17- tetramethyl-21H,23H-porphin-2,18-dipropionic) | 630 | ND | 3 h | 0.6–14.4 J/cm2 | Phototoxicity (clonogenic assay) There were significant and similar results for G1 and G2, particularly when the intracellular uptake of HMME was balanced between the groups. |
4 | Wu et al., 2013 [23] | In vitro | c666-1 HK-1 CNE-2 | 3 | G1: c666-1 (EBV+) G2: HK-1 (EBV-) G3: CNE-2 (EBV-) | FosPeg | 630 | ND | 4 h | 3.0 J/cm2 | Cytotoxicity (MTT) c666-1: 69% HK-1: 77% CNE-2: 84% LMP1 mRNA expression c666-1: 8 ± 1.5 (PDT+) c666-1: 1 ± 0.0 (PDT−) EBV-miR-BART 1-5p c666-1: 0.75 ± 0.1 (PDT+) c666-1: 1.0 ± 0.0 (PDT−) EBV-miR-BART 16 c666-1: 0.6 ± 0.25 (PDT+) c666-1: 1.0 ± 0.0 (PDT−) EBV-miR-BART 17-5p c666-1: 0.75 ± 0.1 (PDT+) c666-1: 1.0 ± 0.1 (PDT−) LMP1 protein expression c666-1: 1.35 ± 0.15 (PDT+) c666-1: 1.0 ± 0.1 (PDT−) |
5 | Peng et al., 2017 [24] | In vitro | NPC 5-8F NPC 6-10B | ND | G1: PDT G2: PDT + Lovastatin | Photosan II | 630 | 1 | 24 h | 10 J/cm2 | Cell viability (Alamar blue) There were significant results for Lovastatin + PDT for both cell lines. |
6 | Wu et al., 2020 (a) [25] | In vitro | c666-1 | 3 | G1: 2D culture G2: 3D culture (MCL and MCS) | FosPeg | 652 | ND | 24 h | 20 J/cm2 | Cell viability (MTT) 2D: 95 ± 5% MCL: 60 ± 10% MCS: 70% Apoptosis (Annexin V) 2D: 30.6 ± 7.7 MCL: 31.0 ± 7.4 MCS: 27.6 ± 7.0 Necrosis (Annexin V) 2D: 16.3 ± 8.6 MCL: 9.8 ± 10.6 MCS: 13.5 ± 3.2 LC3BI protein expression 2D: 1.5 ± 1.0 MCL: 1.4 ± 1.2 MCS: 0.8 ± 0.5 LC3BII protein expression 2D: 1.8 ± 1.0 MCL: 1.25 ± 0.8 MCS: 0.8 ± 0.5 LMP1 protein expression 2D: 0.9 ± 0.25 MCL: 1.25 ± 1.0 MCS: 2.0 ± 1.25 MMP2 protein expression 2D: 0.7 ± 0.15 MCL: 1.2 ± 0.25 MCS: 1.5 ± 1.0 MMP9 protein expression 2D: 0.7 ± 0.15 MCL: 2.2 ± 0.75 MCS: 1.5 ± 0.65 ABCB1 protein expression 2D: 0.5 ± 0.25 MCL: 1.5 ± 0.65 MCS: 1 ± 0.8 ABCC1 protein expression 2D: 1.0 ± 0.25 MCL: 2.3 ± 1.2 MCS: 1.8 ± 0.1 ABCG2 protein expression 2D: 1.7 ± 0.5 MCL: 1.5 ± 0.5 MCS: 1.8 ± 2.0 |
7 | Wu et al., 2020 (b) [26] | In vitro | c666-1 CNE-2 | 3 | G1: c666-1 (EBV+) G2: CNE-2 (EBV-) | H-ALA (5-aminolevulinic acid hexyl ester) | 630 | ND | 4 h | 2–4 J/cm2 | Cytotoxicity (MTT) G1: 70% G2: 80% LMP1 protein expression G1: 1.5 ± 0.0 Control: 1.0 ± 0 EGRF protein expression G1: 0.75 ± 0.16 G2: 0.6 ± 0.0 Control: 1.0 ± 0.0 p-EGRF protein expression G1: 0.5 ± 0.3 G2: 0.8 ± 0.16 Control: 1.0 ± 0.0 NF-ĸB protein expression G1: 0.8 ± 0.25 G2: 0.8 ± 0.16 Control: 1.0 ± 0.0 |
Questions/Studies | Du et al., 2002 [20] | Koon et al., 2010 [21] | Li et al., 2010 [22] | Wu et al., 2013 [23] | Peng et al., 2017 [24] | Wu et al., 2020 (a) [25] | Wu et al., 2020 (b) [26] |
---|---|---|---|---|---|---|---|
Was the administered dose or exposure level adequately randomized? | ++ | ++ | ++ | ++ | ++ | ++ | ++ |
Were study group allocations adequately concealed? | ++ | ++ | ++ | ++ | ++ | ++ | ++ |
Were the experimental conditions identical across study groups? | ++ | ++ | ++ | ++ | ++ | ++ | ++ |
Were research personnel blind to the study group during the investigation? | − | − | − | − | − | − | − |
Were outcome data complete without attrition or exclusion from the analysis? | ++ | ++ | ++ | ++ | ++ | ++ | ++ |
Was the exposure characterization reliable? | ++ | ++ | ++ | ++ | ++ | ++ | ++ |
Was the outcome assessment reliable (including the blinding of evaluators)? | − | − | − | − | − | − | − |
Were there no other potential threats to internal validity? | −− | −− | −− | −− | −− | −− | −− |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fornel, D.G.; Ferrisse, T.M.; de Oliveira, A.B.; Fontana, C.R. Photodynamic Therapy Can Modulate the Nasopharyngeal Carcinoma Microenvironment Infected with the Epstein–Barr Virus: A Systematic Review and Meta-Analysis. Biomedicines 2023, 11, 1344. https://doi.org/10.3390/biomedicines11051344
Fornel DG, Ferrisse TM, de Oliveira AB, Fontana CR. Photodynamic Therapy Can Modulate the Nasopharyngeal Carcinoma Microenvironment Infected with the Epstein–Barr Virus: A Systematic Review and Meta-Analysis. Biomedicines. 2023; 11(5):1344. https://doi.org/10.3390/biomedicines11051344
Chicago/Turabian StyleFornel, Diógenes Germano, Túlio Morandin Ferrisse, Analú Barros de Oliveira, and Carla Raquel Fontana. 2023. "Photodynamic Therapy Can Modulate the Nasopharyngeal Carcinoma Microenvironment Infected with the Epstein–Barr Virus: A Systematic Review and Meta-Analysis" Biomedicines 11, no. 5: 1344. https://doi.org/10.3390/biomedicines11051344
APA StyleFornel, D. G., Ferrisse, T. M., de Oliveira, A. B., & Fontana, C. R. (2023). Photodynamic Therapy Can Modulate the Nasopharyngeal Carcinoma Microenvironment Infected with the Epstein–Barr Virus: A Systematic Review and Meta-Analysis. Biomedicines, 11(5), 1344. https://doi.org/10.3390/biomedicines11051344