Non-Invasive Electric and Magnetic Brain Stimulation for the Treatment of Fibromyalgia
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy and Selection Criteria
2.2. Data Extraction and Analysis
3. Results
3.1. Nervous System Involvement in Fibromyalgia
3.2. Contributions of Non-Invasive Brain Stimulation
3.3. Transcranial Magnetic Stimulation
3.3.1. Single and Double Pulse TMS
3.3.2. rTMS
3.3.3. Transcranial Direct Current Stimulation
3.3.4. Other Non-Invasive Neuromodulation Methods
4. Discussion
4.1. TMS and Cortical Neurophysiology in Fibromyalgia
4.2. Therapeutic Effects of Non-Invasive Brain Stimulation on Fibromyalgia Symptoms
4.2.1. tDCS
4.2.2. rTMS
4.3. Future Directions and Limitations
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Twenty-First Rheumatism Review. Review of American and English Literature for the Years 1971 and 1972. Arthritis Rheum 1974, 17, 651–922. [Google Scholar]
- Wang, S.-M.; Han, C.; Lee, S.-J.; Patkar, A.A.; Masand, P.S.; Pae, C.-U. Fibromyalgia Diagnosis: A Review of the Past, Present and Future. Expert Rev. Neurother. 2015, 15, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.-A.; Goldenberg, D.L.; Häuser, W.; Katz, R.L.; Mease, P.J.; Russell, A.S.; Russell, I.J.; Walitt, B. 2016 Revisions to the 2010/2011 Fibromyalgia Diagnostic Criteria. Semin. Arthritis Rheum. 2016, 46, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.P.; Santo, A.d.S.d.E.; Berssaneti, A.A.; Matsutani, L.A.; Yuan, S.L.K. Prevalence of Fibromyalgia: Literature Review Update. Rev. Bras. De Reumatol. Engl. Ed. 2017, 57, 356–363. [Google Scholar] [CrossRef]
- Sarzi-Puttini, P.; Giorgi, V.; Marotto, D.; Atzeni, F. Fibromyalgia: An Update on Clinical Characteristics, Aetiopathogenesis and Treatment. Nat. Rev. Rheumatol. 2020, 16, 645–660. [Google Scholar] [CrossRef]
- Chinn, S.; Caldwell, W.; Gritsenko, K. Fibromyalgia Pathogenesis and Treatment Options Update. Curr. Pain Headache Rep. 2016, 20, 25. [Google Scholar] [CrossRef]
- Grayston, R.; Czanner, G.; Elhadd, K.; Goebel, A.; Frank, B.; Üçeyler, N.; Malik, R.A.; Alam, U. A Systematic Review and Meta-Analysis of the Prevalence of Small Fiber Pathology in Fibromyalgia: Implications for a New Paradigm in Fibromyalgia Etiopathogenesis. Semin. Arthritis Rheum. 2019, 48, 933–940. [Google Scholar] [CrossRef]
- Maffei, M.E. Fibromyalgia: Recent Advances in Diagnosis, Classification, Pharmacotherapy and Alternative Remedies. Int. J. Mol. Sci. 2020, 21, 7877. [Google Scholar] [CrossRef]
- Hou, W.-H.; Wang, T.-Y.; Kang, J.-H. The Effects of Add-on Non-Invasive Brain Stimulation in Fibromyalgia: A Meta-Analysis and Meta-Regression of Randomized Controlled Trials. Rheumatology 2016, 55, 1507–1517. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, C.M.; Harris, R.E.; Lee, U.; DaSilva, A.F.; Mashour, G.A.; Harte, S.E. Targeting Network Hubs with Noninvasive Brain Stimulation in Patients with Fibromyalgia. Pain 2020, 161, 43–46. [Google Scholar] [CrossRef]
- Lloyd, D.M.; Wittkopf, P.G.; Arendsen, L.J.; Jones, A.K.P. Is Transcranial Direct Current Stimulation (TDCS) Effective for the Treatment of Pain in Fibromyalgia? A Systematic Review and Meta-Analysis. J. Pain 2020, 21, 1085–1100. [Google Scholar] [CrossRef]
- Codella, R.; Alongi, R.; Filipas, L.; Luzi, L. Ergogenic Effects of Bihemispheric Transcranial Direct Current Stimulation on Fitness: A Randomized Cross-over Trial. Int. J. Sports Med. 2021, 42, 66–73. [Google Scholar] [CrossRef]
- Salerno, A.; Thomas, E.; Olive, P.; Blotman, F.; Picot, M.C.; Georgesco, M. Motor Cortical Dysfunction Disclosed by Single and Double Magnetic Stimulation in Patients with Fibromyalgia. Clin. Neurophysiol. 2000, 111, 994–1001. [Google Scholar] [CrossRef]
- Mhalla, A.; de Andrade, D.C.; Baudic, S.; Perrot, S.; Bouhassira, D. Alteration of Cortical Excitability in Patients with Fibromyalgia. Pain 2010, 149, 495–500. [Google Scholar] [CrossRef]
- Uygur-Kucukseymen, E.; Castelo-Branco, L.; Pacheco-Barrios, K.; Luna-Cuadros, M.A.; Cardenas-Rojas, A.; Giannoni-Luza, S.; Zeng, H.; Gianlorenco, A.C.; Gnoatto-Medeiros, M.; Shaikh, E.S.; et al. Decreased Neural Inhibitory State in Fibromyalgia Pain: A Cross-Sectional Study. Neurophysiol. Clin. 2020, 50, 279–288. [Google Scholar] [CrossRef]
- Tiwari, V.K.; Nanda, S.; Arya, S.; Kumar, U.; Sharma, R.; Kumaran, S.S.; Bhatia, R. Correlating Cognition and Cortical Excitability with Pain in Fibromyalgia: A Case Control Study. Adv. Rheumatol. 2021, 61, 10. [Google Scholar] [CrossRef]
- Cardinal, T.M.; Antunes, L.C.; Brietzke, A.P.; Parizotti, C.S.; Carvalho, F.; De Souza, A.; da Silva Torres, I.L.; Fregni, F.; Caumo, W. Differential Neuroplastic Changes in Fibromyalgia and Depression Indexed by Up-Regulation of Motor Cortex Inhibition and Disinhibition of the Descending Pain System: An Exploratory Study. Front. Hum. Neurosci. 2019, 13, 138. [Google Scholar] [CrossRef] [Green Version]
- Deitos, A.; Soldatelli, M.D.; Dussán-Sarria, J.A.; Souza, A.; da Silva Torres, I.L.; Fregni, F.; Caumo, W. Novel Insights of Effects of Pregabalin on Neural Mechanisms of Intracortical Disinhibition in Physiopathology of Fibromyalgia: An Explanatory, Randomized, Double-Blind Crossover Study. Front. Hum. Neurosci. 2018, 12, 406. [Google Scholar] [CrossRef] [Green Version]
- Schwenkreis, P.; Voigt, M.; Hasenbring, M.; Tegenthoff, M.; Vorgerd, M.; Kley, R.A. Central Mechanisms during Fatiguing Muscle Exercise in Muscular Dystrophy and Fibromyalgia Syndrome: A Study with Transcranial Magnetic Stimulation: Fatigue in MD and FMS. Muscle Nerve 2011, 43, 479–484. [Google Scholar] [CrossRef]
- Caumo, W.; Deitos, A.; Carvalho, S.; Leite, J.; Carvalho, F.; Dussán-Sarria, J.A.; Lopes Tarragó, M.d.G.; Souza, A.; Torres, I.L.d.S.; Fregni, F. Motor Cortex Excitability and BDNF Levels in Chronic Musculoskeletal Pain According to Structural Pathology. Front. Hum. Neurosci. 2016, 10, 357. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo-Alventosa, R.; Inglés, M.; Cortés-Amador, S.; Gimeno-Mallench, L.; Sempere-Rubio, N.; Serra-Añó, P. Effectiveness of High-Frequency Transcranial Magnetic Stimulation and Physical Exercise in Women With Fibromyalgia: A Randomized Controlled Trial. Phys. Ther. 2021, 101, pzab159. [Google Scholar] [CrossRef]
- Guinot, M.; Maindet, C.; Hodaj, H.; Hodaj, E.; Bachasson, D.; Baillieul, S.; Cracowski, J.-L.; Launois, S. Effects of Repetitive Transcranial Magnetic Stimulation and Multicomponent Therapy in Patients with Fibromyalgia: A Randomized Controlled Trial. Arthritis Care Res. 2021, 73, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Fitzgibbon, B.M.; Hoy, K.E.; Knox, L.A.; Guymer, E.K.; Littlejohn, G.; Elliot, D.; Wambeek, L.E.; McQueen, S.; Elford, K.A.; Lee, S.J.; et al. Evidence for the Improvement of Fatigue in Fibromyalgia: A 4-week Left Dorsolateral Prefrontal Cortex Repetitive Transcranial Magnetic Stimulation Randomized-controlled Trial. Eur. J. Pain 2018, 22, 1255–1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Short, B.E.; Borckardt, J.J.; Anderson, B.S.; Frohman, H.; Beam, W.; Reeves, S.T.; George, M.S. Ten Sessions of Adjunctive Left Prefrontal RTMS Significantly Reduces Fibromyalgia Pain: A Randomized, Controlled Pilot Study. Pain 2011, 152, 2477–2484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mhalla, A.; Baudic, S.; de Andrade, D.C.; Gautron, M.; Perrot, S.; Teixeira, M.J.; Attal, N.; Bouhassira, D. Long-Term Maintenance of the Analgesic Effects of Transcranial Magnetic Stimulation in Fibromyalgia. Pain 2011, 152, 1478–1485. [Google Scholar] [CrossRef]
- Tzabazis, A.; Aparici, C.M.; Rowbotham, M.C.; Schneider, M.B.; Etkin, A.; Yeomans, D.C. Shaped Magnetic Field Pulses by Multi-Coil Repetitive Transcranial Magnetic Stimulation (RTMS) Differentially Modulate Anterior Cingulate Cortex Responses and Pain in Volunteers and Fibromyalgia Patients. Mol. Pain 2013, 9, 33. [Google Scholar] [CrossRef] [Green Version]
- Forogh, B.; Haqiqatshenas, H.; Ahadi, T.; Ebadi, S.; Alishahi, V.; Sajadi, S. Repetitive Transcranial Magnetic Stimulation (RTMS) versus Transcranial Direct Current Stimulation (TDCS) in the Management of Patients with Fibromyalgia: A Randomized Controlled Trial. Neurophysiol. Clin. 2021, 51, 339–347. [Google Scholar] [CrossRef]
- Morin, M.; St-Gelais, R.; Ketounou, K.É.; d’Assomption, R.M.-L.; Ezzaidi, H.; Fernandes, K.B.P.; da Silva, R.A.; Ngomo, S. TDCS Task-Oriented Approach Improves Function in Individuals With Fibromyalgia Pain. A Pilot Study. Front. Pain Res. 2021, 2, 692250. [Google Scholar] [CrossRef]
- de Melo, G.A.; de Oliveira, E.A.; Dos Santos Andrade, S.M.M.; Fernández-Calvo, B.; Torro, N. Comparison of Two TDCS Protocols on Pain and EEG Alpha-2 Oscillations in Women with Fibromyalgia. Sci. Rep. 2020, 10, 18955. [Google Scholar] [CrossRef]
- Lim, M.; Kim, D.J.; Nascimento, T.D.; Ichesco, E.; Kaplan, C.; Harris, R.E.; DaSilva, A.F. Functional Magnetic Resonance Imaging Signal Variability Is Associated With Neuromodulation in Fibromyalgia. Neuromodulation Technol. Neural Interface 2022, S1094715922000526. [Google Scholar] [CrossRef]
- Yoo, H.B.; Ost, J.; Joos, W.; Van Havenbergh, T.; De Ridder, D.; Vanneste, S. Adding Prefrontal Transcranial Direct Current Stimulation Before Occipital Nerve Stimulation in Fibromyalgia. Clin. J. Pain 2018, 34, 421–427. [Google Scholar] [CrossRef]
- Samartin-Veiga, N.; González-Villar, A.J.; Pidal-Miranda, M.; Vázquez-Millán, A.; Carrillo-de-la-Peña, M.T. Active and Sham Transcranial Direct Current Stimulation (TDCS) Improved Quality of Life in Female Patients with Fibromyalgia. Qual. Life Res. 2022, 31, 2519–2534. [Google Scholar] [CrossRef]
- Kang, J.-H.; Choi, S.-E.; Park, D.-J.; Xu, H.; Lee, J.-K.; Lee, S.-S. Effects of Add-on Transcranial Direct Current Stimulation on Pain in Korean Patients with Fibromyalgia. Sci. Rep. 2020, 10, 12114. [Google Scholar] [CrossRef]
- Brietzke, A.P.; Zortea, M.; Carvalho, F.; Sanches, P.R.S.; Silva, D.P., Jr.; Torres, I.L.d.S.; Fregni, F.; Caumo, W. Large Treatment Effect with Extended Home-Based Transcranial Direct Current Stimulation Over Dorsolateral Prefrontal Cortex in Fibromyalgia: A Proof of Concept Sham-Randomized Clinical Study. J. Pain 2020, 21, 212–224. [Google Scholar] [CrossRef]
- de Paula, T.M.H.; Castro, M.S.; Medeiros, L.F.; Paludo, R.H.; Couto, F.F.; da Costa, T.R.; Fortes, J.P.; Salbego, M.d.O.; Behnck, G.S.; de Moura, T.A.M.; et al. Association of Low-Dose Naltrexone and Transcranial Direct Current Stimulation in Fibromyalgia: A Randomized, Double-Blinded, Parallel Clinical Trial. Braz. J. Anesthesiol. Engl. Ed. 2022, S010400142200104X. [Google Scholar] [CrossRef]
- To, W.T.; James, E.; Ost, J.; Hart, J.; De Ridder, D.; Vanneste, S. Differential Effects of Bifrontal and Occipital Nerve Stimulation on Pain and Fatigue Using Transcranial Direct Current Stimulation in Fibromyalgia Patients. J. Neural Transm. 2017, 124, 799–808. [Google Scholar] [CrossRef]
- Villamar, M.F.; Wivatvongvana, P.; Patumanond, J.; Bikson, M.; Truong, D.Q.; Datta, A.; Fregni, F. Focal Modulation of the Primary Motor Cortex in Fibromyalgia Using 4×1-Ring High-Definition Transcranial Direct Current Stimulation (HD-TDCS): Immediate and Delayed Analgesic Effects of Cathodal and Anodal Stimulation. J. Pain 2013, 14, 371–383. [Google Scholar] [CrossRef]
- Desbiens, S.; Girardin-Rondeau, M.; Guyot-Messier, L.; Lamoureux, D.; Paris, L.; da Silva, R.A.; Ngomo, S. Effect of Transcranial Direct Stimulation Combined with a Functional Task on Fibromyalgia Pain: A Case Study. Neurophysiol. Clin. 2020, 50, 134–137. [Google Scholar] [CrossRef]
- Valle, A.; Roizenblatt, S.; Botte, S.; Zaghi, S.; Riberto, M.; Tufik, S.; Boggio, P.S.; Fregni, F. Efficacy of Anodal Transcranial Direct Current Stimulation (TDCS) for the Treatment of Fibromyalgia: Results of a Randomized, Sham-Controlled Longitudinal Clinical Trial. J. Pain Manag. 2009, 2, 353–361. [Google Scholar]
- Fagerlund, A.J.; Hansen, O.A.; Aslaksen, P.M. Transcranial Direct Current Stimulation as a Treatment for Patients with Fibromyalgia: A Randomized Controlled Trial. Pain 2015, 156, 62–71. [Google Scholar] [CrossRef]
- Caumo, W.; Alves, R.L.; Vicuña, P.; Alves, C.F.d.S.; Ramalho, L.; Sanches, P.R.S.; Silva, D.P.; da Silva Torres, I.L.; Fregni, F. Impact of Bifrontal Home-Based Transcranial Direct Current Stimulation in Pain Catastrophizing and Disability Due to Pain in Fibromyalgia: A Randomized, Double-Blind Sham-Controlled Study. J. Pain 2022, 23, 641–656. [Google Scholar] [CrossRef] [PubMed]
- Khedr, E.M.; Omran, E.A.H.; Ismail, N.M.; El-Hammady, D.H.; Goma, S.H.; Kotb, H.; Galal, H.; Osman, A.M.; Farghaly, H.S.M.; Karim, A.A.; et al. Effects of Transcranial Direct Current Stimulation on Pain, Mood and Serum Endorphin Level in the Treatment of Fibromyalgia: A Double Blinded, Randomized Clinical Trial. Brain Stimul. 2017, 10, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Mendonca, M.E.; Santana, M.B.; Baptista, A.F.; Datta, A.; Bikson, M.; Fregni, F.; Araujo, C.P. Transcranial DC Stimulation in Fibromyalgia: Optimized Cortical Target Supported by High-Resolution Computational Models. J. Pain 2011, 12, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.F.; Zortea, M.; Carvalho, S.; Leite, J.; Torres, I.L.d.S.; Fregni, F.; Caumo, W. Anodal Transcranial Direct Current Stimulation over the Left Dorsolateral Prefrontal Cortex Modulates Attention and Pain in Fibromyalgia: Randomized Clinical Trial. Sci. Rep. 2017, 7, 135. [Google Scholar] [CrossRef] [Green Version]
- Santos, V.S.d.S.d.; Zortea, M.; Alves, R.L.; Naziazeno, C.C.d.S.; Saldanha, J.S.; Carvalho, S.d.C.R.d.; Leite, A.J.d.C.; Torres, I.L.d.S.; Souza, A.d.; Calvetti, P.Ü.; et al. Cognitive Effects of Transcranial Direct Current Stimulation Combined with Working Memory Training in Fibromyalgia: A Randomized Clinical Trial. Sci. Rep. 2018, 8, 12477. [Google Scholar] [CrossRef] [Green Version]
- De Ridder, D.; Vanneste, S. Occipital Nerve Field Transcranial Direct Current Stimulation Normalizes Imbalance Between Pain Detecting and Pain Inhibitory Pathways in Fibromyalgia. Neurotherapeutics 2017, 14, 484–501. [Google Scholar] [CrossRef] [Green Version]
- Foerster, B.R.; Nascimento, T.D.; DeBoer, M.; Bender, M.A.; Rice, I.C.; Truong, D.Q.; Bikson, M.; Clauw, D.J.; Zubieta, J.; Harris, R.E.; et al. Brief Report: Excitatory and Inhibitory Brain Metabolites as Targets of Motor Cortex Transcranial Direct Current Stimulation Therapy and Predictors of Its Efficacy in Fibromyalgia. Arthritis Rheumatol. 2015, 67, 576–581. [Google Scholar] [CrossRef] [Green Version]
- Matias, M.G.L.; Germano Maciel, D.; França, I.M.; Cerqueira, M.S.; Silva, T.C.L.A.; Okano, A.H.; Pegado, R.; Brito Vieira, W.H. Transcranial Direct Current Stimulation Associated with Functional Exercise Program for Treating Fibromyalgia: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2022, 103, 245–254. [Google Scholar] [CrossRef]
- Samartin-Veiga, N.; Pidal-Miranda, M.; González-Villar, A.J.; Bradley, C.; Garcia-Larrea, L.; O’Brien, A.T.; Carrillo-de-la-Peña, M.T. Transcranial Direct Current Stimulation of 3 Cortical Targets Is No More Effective than Placebo as Treatment for Fibromyalgia: A Double-Blind Sham-Controlled Clinical Trial. Pain 2022, 163, e850–e861. [Google Scholar] [CrossRef]
- Castillo-Saavedra, L.; Gebodh, N.; Bikson, M.; Diaz-Cruz, C.; Brandao, R.; Coutinho, L.; Truong, D.; Datta, A.; Shani-Hershkovich, R.; Weiss, M.; et al. Clinically Effective Treatment of Fibromyalgia Pain With High-Definition Transcranial Direct Current Stimulation: Phase II Open-Label Dose Optimization. J. Pain 2016, 17, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Cummiford, C.M.; Nascimento, T.D.; Foerster, B.R.; Clauw, D.J.; Zubieta, J.-K.; Harris, R.E.; DaSilva, A.F. Changes in Resting State Functional Connectivity after Repetitive Transcranial Direct Current Stimulation Applied to Motor Cortex in Fibromyalgia Patients. Arthritis Res. Ther. 2016, 18, 40. [Google Scholar] [CrossRef] [Green Version]
- Roizenblatt, S.; Fregni, F.; Gimenez, R.; Wetzel, T.; Rigonatti, S.P.; Tufik, S.; Boggio, P.S.; Valle, A.C. Site-Specific Effects of Transcranial Direct Current Stimulation on Sleep and Pain in Fibromyalgia: A Randomized, Sham-Controlled Study. Pain Pract. 2007, 7, 297–306. [Google Scholar] [CrossRef]
- Riberto, M.; Marcon Alfieri, F.; Monteiro de Benedetto Pacheco, K.; Dini Leite, V.; Nemoto Kaihami, H.; Fregni, F.; Rizzo Battistella, L. Efficacy of Transcranial Direct Current Stimulation Coupled with a Multidisciplinary Rehabilitation Program for the Treatment of Fibromyalgia. Open Rheumatol. J. 2011, 5, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Fregni, F.; Gimenes, R.; Valle, A.C.; Ferreira, M.J.L.; Rocha, R.R.; Natalle, L.; Bravo, R.; Rigonatti, S.P.; Freedman, S.D.; Nitsche, M.A.; et al. A Randomized, Sham-Controlled, Proof of Principle Study of Transcranial Direct Current Stimulation for the Treatment of Pain in Fibromyalgia. Arthritis Rheum. 2006, 54, 3988–3998. [Google Scholar] [CrossRef]
- Plazier, M.; Tchen, S.; Ost, J.; Joos, K.; De Ridder, D.; Vanneste, S. Is Transcranial Direct Current Stimulation an Effective Predictor for Invasive Occipital Nerve Stimulation Treatment Success in Fibromyalgia Patients? Neuromodulation Technol. Neural Interface 2015, 18, 623–629. [Google Scholar] [CrossRef]
- Mendonca, M.E.; Simis, M.; Grecco, L.C.; Battistella, L.R.; Baptista, A.F.; Fregni, F. Transcranial Direct Current Stimulation Combined with Aerobic Exercise to Optimize Analgesic Responses in Fibromyalgia: A Randomized Placebo-Controlled Clinical Trial. Front. Hum. Neurosci. 2016, 10, 68. [Google Scholar] [CrossRef] [Green Version]
- DalĺAgnol, L.; Pascoal-Faria, P.; Barros Cecílio, S.; Corrêa, F.I. Transcranial Direct Current Stimulation in the Neuromodulation of Pain in Fibromyalgia: A Case Study. Ann. Phys. Rehabil. Med. 2015, 58, 351–353. [Google Scholar] [CrossRef] [Green Version]
- Ramasawmy, P.; Khalid, S.; Petzke, F.; Antal, A. Pain Reduction in Fibromyalgia Syndrome through Pairing Transcranial Direct Current Stimulation and Mindfulness Meditation: A Randomized, Double-Blinded, Sham-Controlled Pilot Clinical Trial. Front. Med. 2022, 9, 908133. [Google Scholar] [CrossRef]
- Serrano, P.V.; Zortea, M.; Alves, R.L.; Beltrán, G.; Bavaresco, C.; Ramalho, L.; Alves, C.F.d.S.; Medeiros, L.; Sanches, P.R.S.; Silva, D.P.; et al. The Effect of Home-Based Transcranial Direct Current Stimulation in Cognitive Performance in Fibromyalgia: A Randomized, Double-Blind Sham-Controlled Trial. Front. Hum. Neurosci. 2022, 16, 992742. [Google Scholar] [CrossRef]
- Arroyo-Fernández, R.; Avendaño-Coy, J.; Velasco-Velasco, R.; Palomo-Carrión, R.; Bravo-Esteban, E.; Ferri-Morales, A. Effectiveness of Transcranial Direct Current Stimulation Combined With Exercising in People With Fibromyalgia: A Randomized Sham-Controlled Clinical Trial. Arch. Phys. Med. Rehabil. 2022, 103, 1524–1532. [Google Scholar] [CrossRef]
- La Rocca, M.; Clemente, L.; Gentile, E.; Ricci, K.; Delussi, M.; de Tommaso, M. Effect of Single Session of Anodal M1 Transcranial Direct Current Stimulation—TDCS—On Cortical Hemodynamic Activity: A Pilot Study in Fibromyalgia. Brain Sci. 2022, 12, 1569. [Google Scholar] [CrossRef] [PubMed]
- Schweinhardt, P.; Sauro, K.M.; Bushnell, M.C. Fibromyalgia: A Disorder of the Brain? Neuroscientist 2008, 14, 415–421. [Google Scholar] [CrossRef]
- Cagnie, B.; Coppieters, I.; Denecker, S.; Six, J.; Danneels, L.; Meeus, M. Central Sensitization in Fibromyalgia? A Systematic Review on Structural and Functional Brain MRI. Semin. Arthritis Rheum. 2014, 44, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.E.; Craggs, J.G.; Price, D.D.; Perlstein, W.M.; Staud, R. Gray Matter Volumes of Pain-Related Brain Areas Are Decreased in Fibromyalgia Syndrome. J. Pain 2011, 12, 436–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, K.B.; Kosek, E.; Petzke, F.; Carville, S.; Fransson, P.; Marcus, H.; Williams, S.C.R.; Choy, E.; Giesecke, T.; Mainguy, Y.; et al. Evidence of Dysfunctional Pain Inhibition in Fibromyalgia Reflected in RACC during Provoked Pain. Pain 2009, 144, 95–100. [Google Scholar] [CrossRef]
- Craggs, J.G.; Staud, R.; Robinson, M.E.; Perlstein, W.M.; Price, D.D. Effective Connectivity Among Brain Regions Associated With Slow Temporal Summation of C-Fiber-Evoked Pain in Fibromyalgia Patients and Healthy Controls. J. Pain 2012, 13, 390–400. [Google Scholar] [CrossRef] [Green Version]
- Staud, R.; Craggs, J.G.; Perlstein, W.M.; Robinson, M.E.; Price, D.D. Brain Activity Associated with Slow Temporal Summation of C-Fiber Evoked Pain in Fibromyalgia Patients and Healthy Controls. Eur. J. Pain 2008, 12, 1078–1089. [Google Scholar] [CrossRef]
- Di Franco, M.; Iannuccelli, C.; Atzeni, F.; Cazzola, M.; Salaffi, F.; Valesini, G.; Sarzi-Puttini, P. Pharmacological Treatment of Fibromyalgia. Clin. Exp. Rheumatol. 2010, 28, S110–S116. [Google Scholar]
- Han, C.; Lee, S.-J.; Lee, S.-Y.; Seo, H.-J.; Wang, S.-M.; Park, M.-H.; Patkar, A.A.; Koh, J.; Masand, P.S.; Pae, C.-U. Available Therapies and Current Management of Fibromyalgia: Focusing on Pharmacological Agents. Drugs Today 2011, 47, 539. [Google Scholar] [CrossRef]
- Sarzi-Puttini, P.; Torta, R.; Marinangeli, F.; Biasi, G.; Spath, M.; Buskila, D.; Gracely, R.H.; Giamberardino, M.A.; Bazzichi, L.; Cazzola, M.; et al. Fibromyalgia Syndrome: The Pharmacological Treatment Options. Reumatismo 2011, 60, 50–58. [Google Scholar] [CrossRef]
- Thorpe, J.; Shum, B.; Moore, R.A.; Wiffen, P.J.; Gilron, I. Combination Pharmacotherapy for the Treatment of Fibromyalgia in Adults. Cochrane Database Syst. Rev. 2018, 2, CD010585. [Google Scholar] [CrossRef]
- Fregni, F.; Nitsche, M.A.; Loo, C.K.; Brunoni, A.R.; Marangolo, P.; Leite, J.; Carvalho, S.; Bolognini, N.; Caumo, W.; Paik, N.J.; et al. Regulatory Considerations for the Clinical and Research Use of Transcranial Direct Current Stimulation (TDCS): Review and Recommendations from an Expert Panel. Clin. Res. Regul. Aff. 2015, 32, 22–35. [Google Scholar] [CrossRef] [Green Version]
- Shin, Y.-I.; Foerster, Á.; Nitsche, M.A. Transcranial Direct Current Stimulation (TDCS)—Application in Neuropsychology. Neuropsychologia 2015, 69, 154–175. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Z. Neuromodulation for Pain Management. In Neural Interface: Frontiers and Applications; Zheng, X., Ed.; Advances in Experimental Medicine and Biology; Springer: Singapore, 2019; Volume 1101, pp. 207–223. ISBN 9789811320491. [Google Scholar]
- Duarte, D.; Castelo-Branco, L.E.C.; Uygur Kucukseymen, E.; Fregni, F. Developing an Optimized Strategy with Transcranial Direct Current Stimulation to Enhance the Endogenous Pain Control System in Fibromyalgia. Expert Rev. Med. Devices 2018, 15, 863–873. [Google Scholar] [CrossRef]
- Bernardi, L.; Bertuccelli, M.; Formaggio, E.; Rubega, M.; Bosco, G.; Tenconi, E.; Cattelan, M.; Masiero, S.; Del Felice, A. Beyond Physiotherapy and Pharmacological Treatment for Fibromyalgia Syndrome: Tailored TACS as a New Therapeutic Tool. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 199–210. [Google Scholar] [CrossRef]
- Frohlich, F.; Riddle, J. Transcranial Alternating Current Stimulation (TACS) as a Treatment for Fibromyalgia Syndrome? Eur. Arch. Psychiatry Clin. Neurosci. 2022, 272, 349–350. [Google Scholar] [CrossRef]
- Coskun Benlidayi, I. The Effectiveness and Safety of Electrotherapy in the Management of Fibromyalgia. Rheumatol. Int. 2020, 40, 1571–1580. [Google Scholar] [CrossRef]
- Banic, B.; Petersen-Felix, S.; Andersen, O.K.; Radanov, B.P.; Villiger, M.P.; Arendt-Nielsen, L.; Curatolo, M. Evidence for Spinal Cord Hypersensitivity in Chronic Pain after Whiplash Injury and in Fibromyalgia. Pain 2004, 107, 7–15. [Google Scholar] [CrossRef]
- Nizard, J.; Lefaucheur, J.-P.; Helbert, M.; de Chauvigny, E.; Nguyen, J.-P. Non-Invasive Stimulation Therapies for the Treatment of Refractory Pain. Discov. Med. 2012, 14, 21–31. [Google Scholar]
- Lange, G.; Janal, M.N.; Maniker, A.; FitzGibbons, J.; Fobler, M.; Cook, D.; Natelson, B.H. Safety and Efficacy of Vagus Nerve Stimulation in Fibromyalgia: A Phase I/II Proof of Concept Trial. Pain Med. 2011, 12, 1406–1413. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Silberstein, S.D. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part I: Headache. Headache: J. Head Face Pain 2016, 56, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.L.; Wilson, C.G. A Review of Vagus Nerve Stimulation as a Therapeutic Intervention. J. Inflamm. Res. 2018, 11, 203–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kutlu, N.; Özden, A.V.; Alptekin, H.K.; Alptekin, J.Ö. The Impact of Auricular Vagus Nerve Stimulation on Pain and Life Quality in Patients with Fibromyalgia Syndrome. BioMed. Res. Int. 2020, 2020, 8656218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molero-Chamizo, A.; Nitsche, M.A.; Bolz, A.; Andújar Barroso, R.T.; Alameda Bailén, J.R.; García Palomeque, J.C.; Rivera-Urbina, G.N. Non-Invasive Transcutaneous Vagus Nerve Stimulation for the Treatment of Fibromyalgia Symptoms: A Study Protocol. Brain Sci. 2022, 12, 95. [Google Scholar] [CrossRef]
- Deuchars, S.A.; Lall, V.K.; Clancy, J.; Mahadi, M.; Murray, A.; Peers, L.; Deuchars, J. Mechanisms Underpinning Sympathetic Nervous Activity and Its Modulation Using Transcutaneous Vagus Nerve Stimulation. Exp. Physiol. 2018, 103, 326–331. [Google Scholar] [CrossRef] [Green Version]
- Clancy, J.A.; Mary, D.A.; Witte, K.K.; Greenwood, J.P.; Deuchars, S.A.; Deuchars, J. Non-Invasive Vagus Nerve Stimulation in Healthy Humans Reduces Sympathetic Nerve Activity. Brain Stimul. 2014, 7, 871–877. [Google Scholar] [CrossRef]
- von Wrede, R.; Surges, R. Transcutaneous Vagus Nerve Stimulation in the Treatment of Drug-Resistant Epilepsy. Auton. Neurosci. 2021, 235, 102840. [Google Scholar] [CrossRef]
- Paccione, C.E.; Stubhaug, A.; Diep, L.M.; Rosseland, L.A.; Jacobsen, H.B. Meditative-Based Diaphragmatic Breathing vs. Vagus Nerve Stimulation in the Treatment of Fibromyalgia—A Randomized Controlled Trial: Body vs. Machine. Front. Neurol. 2022, 13, 1030927. [Google Scholar] [CrossRef]
- Curatolo, M.; La Bianca, G.; Cosentino, G.; Baschi, R.; Salemi, G.; Talotta, R.; Romano, M.; Triolo, G.; De Tommaso, M.; Fierro, B.; et al. Motor Cortex TRNS Improves Pain, Affective and Cognitive Impairment in Patients with Fibromyalgia: Preliminary Results of a Randomised Sham-Controlled Trial. Clin. Exp. Rheumatol. 2017, 35, 100–105. [Google Scholar]
- Pacheco-Barrios, K.; Lima, D.; Pimenta, D.; Slawka, E.; Navarro-Flores, A.; Parente, J.; Rebello-Sanchez, I.; Cardenas-Rojas, A.; Gonzalez-Mego, P.; Castelo-Branco, L.; et al. Motor Cortex Inhibition as a Fibromyalgia Biomarker: A Meta-Analysis of Transcranial Magnetic Stimulation Studies. Brain Netw Modul. 2022, 1, 88. [Google Scholar] [CrossRef]
- Zhu, C.; Yu, B.; Zhang, W.; Chen, W.; Qi, Q.; Miao, Y. Effiectiveness and Safety of Transcranial Direct Current Stimulation in Fibromyalgia: A Systematic Review and Meta-Analysis. J. Rehabil. Med. 2017, 49, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Brighina, F.; Curatolo, M.; Cosentino, G.; De Tommaso, M.; Battaglia, G.; Sarzi-Puttini, P.C.; Guggino, G.; Fierro, B. Brain Modulation by Electric Currents in Fibromyalgia: A Structured Review on Non-Invasive Approach with Transcranial Electrical Stimulation. Front. Hum. Neurosci. 2019, 13, 40. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, P.E.P.; Pacheco-Barrios, K.; Branco, L.C.; de Melo, P.S.; Marduy, A.; Caumo, W.; Papatheodorou, S.; Keysor, J.; Fregni, F. The Analgesic Effect of Transcranial Direct Current Stimulation in Fibromyalgia: A Systematic Review, Meta-Analysis, and Meta-Regression of Potential Influencers of Clinical Effect. Neuromodulation Technol. Neural Interface 2022, S1094715922013320. [Google Scholar] [CrossRef]
- Lin, A.P.; Chiu, C.-C.; Chen, S.-C.; Huang, Y.-J.; Lai, C.-H.; Kang, J.-H. Using High-Definition Transcranial Alternating Current Stimulation to Treat Patients with Fibromyalgia: A Randomized Double-Blinded Controlled Study. Life 2022, 12, 1364. [Google Scholar] [CrossRef]
- Xiong, H.-Y.; Zheng, J.-J.; Wang, X.-Q. Non-Invasive Brain Stimulation for Chronic Pain: State of the Art and Future Directions. Front. Mol. Neurosci. 2022, 15, 888716. [Google Scholar] [CrossRef]
- Garcia-Larrea, L.; Quesada, C. Cortical Stimulation for Chronic Pain: From Anecdote to Evidence. Eur. J. Phys. Rehabil. Med. 2022, 58, 290–305. [Google Scholar] [CrossRef]
- Choo, Y.J.; Kwak, S.G.; Chang, M.C. Effectiveness of Repetitive Transcranial Magnetic Stimulation on Managing Fibromyalgia: A Systematic Meta-Analysis. Pain Med. 2022, 23, 1272–1282. [Google Scholar] [CrossRef]
- Che, X.; Cash, R.F.H.; Luo, X.; Luo, H.; Lu, X.; Xu, F.; Zang, Y.-F.; Fitzgerald, P.B.; Fitzgibbon, B.M. High-Frequency RTMS over the Dorsolateral Prefrontal Cortex on Chronic and Provoked Pain: A Systematic Review and Meta-Analysis. Brain Stimul. 2021, 14, 1135–1146. [Google Scholar] [CrossRef]
- Gilron, I.; Chaparro, L.E.; Tu, D.; Holden, R.R.; Milev, R.; Towheed, T.; DuMerton-Shore, D.; Walker, S. Combination of Pregabalin with Duloxetine for Fibromyalgia: A Randomized Controlled Trial. Pain 2016, 157, 1532–1540. [Google Scholar] [CrossRef] [Green Version]
- Pérocheau, D.; Laroche, F.; Perrot, S. Relieving Pain in Rheumatology Patients: Repetitive Transcranial Magnetic Stimulation (RTMS), a Developing Approach. Jt. Bone Spine 2014, 81, 22–26. [Google Scholar] [CrossRef]
- Tsai, Y.-Y.; Wu, W.-T.; Han, D.-S.; Mezian, K.; Ricci, V.; Özçakar, L.; Hsu, P.-C.; Chang, K.-V. Application of Repetitive Transcranial Magnetic Stimulation in Neuropathic Pain: A Narrative Review. Life 2023, 13, 258. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.-J.; Zhu, H.-Q.; Zhang, X.-A.; Wang, X.-Q. The Mechanism and Effect of Repetitive Transcranial Magnetic Stimulation for Post-Stroke Pain. Front. Mol. Neurosci. 2023, 15, 1091402. [Google Scholar] [CrossRef] [PubMed]
- Antal, A.; Terney, D.; Kühnl, S.; Paulus, W. Anodal Transcranial Direct Current Stimulation of the Motor Cortex Ameliorates Chronic Pain and Reduces Short Intracortical Inhibition. J. Pain Symptom Manag. 2010, 39, 890–903. [Google Scholar] [CrossRef] [PubMed]
Reference | Sample Size | TMS Measures | Target Area | Pain Measures | Other Measures | TMS Results | Other Results | Adverse Events |
---|---|---|---|---|---|---|---|---|
[13] Salerno et al., 2000 | 13 FM W, 13 HC W, 5 RA W | spTMS: CSP, MEPs ppTMS: SICI, ICF | M1 | None | None | FM: ICF↓, SICI↓, CSP↓ | None | NR |
[14] Mhalla et al., 2010 | 46 FM W, 21 non-FM W | spTMS: RMT, MEPs ppTMS: SICI, ICF | M1 | VAS | CPM, EEG, fatigue, anxiety, depression, CAT | FM: ICF↓, SICI↓ | r- between ICF/SICI and fatigue, depression, and CAT scores | NR |
[15] Uygur-Kucukseymen et al., 2020 | 36 FM (23 W) | spTMS: MEPs ppTMS: SICI, ICF | M1 | VAS | CPM, EEG | r+ between SICI and theta ERD; r- between ICF and delta ERD | r- between VAS scores and α/ß EEG power; r- between VAS and θ/δ power. r+ between ERD and δ power | NR |
[16] Tiwari et al., 2021 | 34 FM (W), 30 PFC (W) | spTMS: RMT, MEPs | M1 | NPRS | MMSI, Stroop color-word, ESS, PSQI | FM vs. PFC: No TMS differences | FM vs. PFC: MMSI↓, Stroop↓, RT↑, PSQI↑ | Occasional mild headache (up to 24 h) |
[17] Cardinal et al., 2019 | 18 FM, 19 MDD, 29 HC (W) | spTMS: CSP, MEPs, RMT ppTMS: SICI, ICF | M1 | VAS, NPS, HPT | BDNF, QST, BDI, PSQI, FIQ, STAI, B-PCS | FM (vs. MDD and HC): SICI↑ | FM vs. MDD: BDNF↑, NPS→. r+ between NPS and SICI; r- between HPT and BDNF values | NR |
[18] Deitos et al., 2018 | 17 FM + Pgb, 10 HC + Pgb (W) | spTMS: CSP, MEPs, RMT ppTMS: SICI, ICF | M1 | VAS, NPS, PPT | BDI, B-PCS, STAI, MINI, FIQ, PSQI, BDNF, S100-B protein | FM + Pgb: VAS↓, SICI↓, CSP↑ | FM + Pgb: r+ between BDNF and CSP; r- between S100-B and CSP | NR |
[19] Schwenkreis et al., 2011 | FMET: 16 FM, 23 MD, 23 HC. TMS before and after FMET | spTMS: CSP, RMT ppTMS: ICI, ICF | M1 | None | None | FM and MD (pre-FMET): ICI↓. HC (post-FMET): ICI↓ | - | NR |
[20] Caumo et al., 2016 | FM W (n = 19), MPS W (n = 54), OA W (n = 27), HC (n = 14) | spTMS: CSP, RMT, MEPs ppTMS: SICI, ICF | M1 | CPM-NPS, QST | BDNF, BDI-II, B-PCS | FM and MPS: SICI↓ | FM and MPS: r- between SICI and BDNF. r- between BDNF and NPS changes | NR |
Reference | Study Design | Sample Size | rTMS Protocol | Target Area | Intensity | Stimuli/Session | No. of Sessions | Physiological Measures | Pain Measures | Other Measures | Physiological Outcomes | Pain Outcomes | Other Outcomes | Adverse Effects |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[21] Izquierdo-Alventosa et al., 2021 | RDB, SC, PG: TMS vs. PE vs. control (NI) | 49 FM W | 60 trains/ 5 s pulses; 10 Hz; 15 s interval/each train | M1 | 80% RMT | 3000 pulses | 10 | - | VAS, PPT | FIQR, PhC, 6-MWT, HAD, BDI-II, PSS-10, SLS | - | TMS: PPT↑, VAS↓. PE: PPT↑ | TMS; 6 MWT↑, HAD↓, BDI-II↓, PSS-10↓, PhC↑. PE: FIQR↓, PhC↑, PSS-10↓, BDI-II↓, HAD↓, 6 MWT↑ | NR |
[22] Guinot et al., 2021 | RDB, SC, PG. rTMS vs. sham plus AT +PBE +RXT | 37 FM (33 W) | active vs. sham rTMS, 10 Hz | M1 | 80% RMT | 2000 pulses | 16 (12 for RXT) | CF, autonomic responses | VAS | FIQ, BDI, PSQI, PCS, PGIC | No BG differences: CF↑ | No BG differences: VAS↓, PCS↓ | No BG differences: BDI↓, FIQ↓ | None |
[23] Fitzgibbon et al., 2018 | RDB, SC, PG | 26 FM (24 W): 14 rTMS (13 W), 12 sham (11 W) | 75 trains-4 s, 10 Hz | DLPFC | 120% RMT | 3000 pulses | 20 | - | SF-MPQ, BPI, NPRS | ACR, MFI, FIQ, PCS, PGIC, BDI-II, BAI | - | No BG differences: SF-MPQ↓, BPI↓, NPRS↓ | rTMS: MFI↓ | Discomfort, headaches, pain, nausea, dizziness (both groups) |
[24] Short et al., 2011 | RDB, SC, PG | 20 FM (17 W): TMS (n = 10), sham (n = 10) | 80 trains, 15 s, 10 Hz | DLPFC | 120% RMT | 4000 pulses | 10 | - | NPRS, BPI, FIQ | HDRS | - | Pre vs. post-TMS: NPRS↓, BPI↓ | Pre vs. post-TMS: HDRS↓ | Headache (2 subjects). No dropouts |
[25] Mhalla et al., 2011 | RDB, SC, PG | 16 FM (rTMS), 14 FM (sham) | 15 trains, 10 s pulses, 10 Hz, 50 s interval/train | M1 | 80% RMT | 1500 pulses | 14 | RMT, MEPs, SICI, ICF | NPS, BPI, MPQ PCS | FIQ, HAD, BDI | Active rTMS: SICI↑, ICF↑. r- between SICI and NPS. r- between ICF and PCS, and between ICF and FIQ | Active rTMS: NPS↓, BPI↓, MPQ↓ (r+ FIQ). PCS↓ | Active rTMS: FIQ↓ | 1 sham + 1 active dropped out (headache). Transient mild headache, dizziness (both groups) |
[26] Tzabazis et al., 2013 | DB, SC, Cr (4 coils rTMS vs. sham) | 16 FM (14 W), 16 HC (11 W) | 1/10 Hz vs. sham: PMF (×4 coils) | dACC | 110% RMT | 1800 pulses | 1 (HC), 20 (FM) | - | BPI, NRS | - | - | 1 Hz rTMS (HC): NRS↓. 10 Hz rTMS (FM): NRS↓ | - | Pruritus, headache, back pain, neck pain, otalgia, nausea, lightheadedness, hot flashes, scalp pain (both groups) |
[27] Forogh et al., 2021 | RSB; rTMS vs. anodal tDCS effects | 15 FM W (tDCS), 15 FM W (rTMS) | 10 Hz, rest time (15 s) | DLPFC | 100% RMT | 1000 pulses | 3 | - | VAS | DASS-21, FIQR | - | rTMS and tDCS: VAS↓. rTMS effect > tDCS at 6 and 12 weeks of follow-up | - | Mild, transient, self-limiting headache (2 patients) |
Reference | Study Design | Sample Size | Anode electrode EEG Position | Return Electrode EEG Position | Target Area | Intensity | Electrode Size | Duration | Sessions Per Week | Total Sessions | Physiological Measures | Pain Measures | Other Measures | Physiological Outcomes | Pain Outcomes | Other Measures Outcomes | Adverse Effects |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[27] Forogh et al., 2021 | RSB, PG: tDCS vs. rTMS | 15 (tDCS) + 15 (rTMS) FM W | F3 | Fp2 | DLPFC | 2 mA | 35 cm2 | 20 min | 3 | 3 | - | VAS | DASS-21, FIQR | - | rTMS and tDCS: VAS↓. rTMS effect > tDCS at 6 and 12 weeks of follow-up | - | Headache up to 24 h |
[28] Morin et al., 2021 | Pre vs. post tDCS + FT (single group, no sham) | 10 FM W | C3/C4 | Fp2/Fp1 | M1 CL dominant hand | 2 mA | 35 cm2 | 20 min | 5 | 5 | - | VAS | Fatigue (Borg scale), FT | - | VAS→ | FT↑ | None |
[29] de Melo et al., 2020 | RDB, SC, PG | FM W: tDCS 5 days (11); tDCS 10 days (9); sham 5 days (11) | NS | Fp2 | M1 | 2 mA | 35 cm2 | 20 min | 5 vs. 10 | 5 vs. 10 | EEG oscillations (α frequency band) in F3, F4, P3, P4, O1, O2 | VAS | CIRS, MMSE, BAI | tDCS (5 days): α↓ in frontal and parietal regions | All groups: VAS↓ | - | None |
[30] Lim et al., 2022 | Cr, SC, SB: tDCS vs. sham | 12 FM W and 15 HC W | C3 | Fp2 | M1 | 2 mA | 35 cm2 | 20 min | 5 | 5 | fMRI BOLD | VAS, MPQ | - | FM baseline (vs. HC): BOLD↓ (vmPFC, lateral PFC, AI), BOLD↑ (PI). FM tDCS (vs. sham): BOLD↑ (rACC, lateral PFC, thalamus). Sham (vs. baseline): BOLD↓ (dorsomedial PFC, pCC, precuneus) | FM tDCS (vs. sham): VAS↓, r- between VAS and BOLD (rACC/vmPFC), r+ between VAS and BOLD (PI) | - | NR |
[31] Yoo et al., 2018 | RSB, SC, PG: DLPFC tDCS + ON tDCS vs. sham ON tDCS vs. ON tDCS, (sequential order) | 58 FM: DLPFC + ON tDCS (21, 20 W); Sham ON tDCS (16, 15 W); ON tDCS (21, 20 W) | Anode: right DLPFC (NS EEG position) vs. anode: right ON | Left DLPFC vs. right ON | DLPFC vs. ON | 2 mA (DLPFC), 1.5 mA (ON) | 35 cm2 | ON tDCS: 20 min, DLPFC + ON tDCS: 20 + 20 min | 2 | 8 | - | NRS | FIQ, BDI | - | ON tDCS: NRS↓ | ON tDCS: FIQ↓, BDI↓. DLPFC + ON tDCS: BDI↓ | Tingling, itching |
[32] Samartin-Veiga et al., 2022 | RDB, SC | M1 (29), DLPFC (26), OIC (28), sham (25) FM W | C3 vs. F3 vs. C5 (sham with any of these targets) | M1 and DLPFC: Fp2. OIC: F3, FC1, F8, FC5, P3 | M1 vs. DLPFC vs. OIC | M1 and DLPFC: 2 mA. OIC: anode current: 1.144 mA | 25 cm2 (M1 and DLPFC). 3.14 cm2 (OIC) | 20 min | 5 | 15 | - | - | FSQ, SF-36, FIQR | - | - | All groups: SF-36↓, FIQR↓ | 9 dropouts (due to NR adverse effects) |
[33] Kang et al., 2020 | OS: pre- vs. post-tDCS | 46 FM (44 W) | C3 | C4 | M1 | 2 mA | NR | 20 min | 5 | 5 | - | VAS, BPI | FIQ, BFI, BDI, STAI, MOS-SS | - | Post-tDCS: VAS↓ | Post-tDCS: FIQ↓, BDI↓, BFI↓ | Mild dizziness, light headache, transient sleep disturbance. No dropouts |
[34] Brietzke et al., 2020 | RDB, SC, PG (in home, neoprene cap, tDCS) | 10 FM W (anodal tDCS) + 10 FM W (sham) | F3 | F4 | DLPFC | 2 mA | 35 cm2 | 30 min | 5 | 60 | BDNF | VAS, B-PCP-S, PPT, HPT | Analgesic use, BDI, PSQI | tDCS: BDNF↑ predicted VAS↓ | tDCS: VAS↓, analgesic use↓, B-PCP-S↓, HPT↑ | tDCS: BDI↓, PSQI↓ | Both groups: burning, tingling, itchiness, redness, headache, neck pain, mood swings, concentration difficulties |
[35] de Paula et al., 2022 | RDB, SC, PG: Active/sham tDCS vs. LDN (4.5 mg/day) vs. LDN placebo | FM W: LDN + tDCS (21), LDN + sham (22), LDN placebo + tDCS (22), LDN placebo + sham (21) | NS | CL SO area (NS EEG position) | M1 | 2 mA | NR | 20 min | 5 | 5 | BDNF | VAS, PCS, PCP-S, PPT, CPM | STAI, FIQ, BDI-II | LDN + sham: BDNF↓. LDN placebo + tDCS: BDNF↓ | LDN + tDCS, LDN + sham, placebo + sham: VAS↓. LDN + tDCS: PCP-S↓ | LDN + tDCS: FIQ↓, STAI↓. All active interventions: BDI-II↓ | tDCS: ↑rate of tingling, itching, blushing vs. sham. All tDCS groups: headache, neck ache, scalp pain, burning, sleepiness, mood changes |
[36] To et al., 2017 | RSB, SC, PG | 42 FM (36 W): 15 C2; 11 DLPFC; 16 sham (8 C2 + 8 DLPFC) | F3 Left C2 nerve dermatome | F4 Right C2 nerve dermatome | DLPFC, ON | 1.5 mA | 35 cm2 | 20 min | 2 | 8 | - | NRS, PCS | MFIS | - | C2: NRS↓, DLPFC: NRS↓ | DLPFC: MFIS↓ | None |
[37] Villamar et al., 2013 | DB, SC, Cr (HD-tDCS 4 × 1 rings) | 18 FM (15 W) | Center electrode: C3 (anode) vs. C3 (cathode) vs. sham | Cz, F3, T7, and P3 | M1 | 2 mA | Ag/AgCl electrodes | 20 min | 1 | 3 | - | VAS, SWMs (pain), PPT, DNICs | QOL, VAS (anxiety), BDI-II, SWMs (touch detection threshold) | - | Anodal/ cathodal: VAS↓ | Anodal: SWMs↑ | Active and sham: mild/moderate tingling, itching sensations (few min long) |
[38] Desbiens et al., 2020 | CS: sham + PhT (17 days later: tDCS + PhT) | 1 FM W | Left M1 (NS EEG position) | NS | M1 | 2 mA | 35 cm2 | 20 min | 3 | 3 | RMT | NRS, BPI | FIQ, NRS (fatigue), PhT performance | RMT→ | tDCS + PhT: NRS↓, BPI↓ | tDCS/ sham +PhT: NRS (fatigue)↓, PhT↑, FIQ↓ | NR |
[39] Valle et al., 2009 | RDB, SC, PG | 41 FM W: M1 = 14, DLPFC = 13, Sham M1 = 14 | C3 vs. F3 | Fp2 | M1, DLPFC | 2 mA | 35 cm2 | 20 min | 5 | 10 | - | VAS | FIQ, BDI, IDATE, GDS, MMSE | - | M1 and DLPFC tDCS: VAS↓ (longer lasting effects with M1 tDCS) | M1 and DLPFC tDCS: FIQ↓ | All groups: Skin redness, tingling |
[40] Fagerlund et al., 2015 | RDB, SC, PG | 48 FM (45 W): tDCS: 24, sham: 24 | C3 | Fp2 | M1 | 2 mA | 35 cm2 | 20 min | 5 | 5 | - | NRS | FIQ, HADS, SCL-90R, SF-36 | - | tDCS: NRS↓ | tDCS: FIQ↓ | Skin redness, sleepiness, tingling (no BG differences) |
[41] Caumo et al., 2022 | RDB, SC, PG (home based tDCS) | FM W: tDCS (30), sham (15) | F3 | F4 | DLPFC | 2 mA | 35 cm2 | 20 min | 5 | 20 | BDNF | NPS, PCS, PCP-S, HPT, HPTo | BDI-II, PSQI, FIQ, STAI, CSI | r+ between BDNF and PCP-S. r-between BDNF and PCS | tDCS: PCS↓, PCP-S↓, HPTo↑. r+ between PCS and PCP-S | tDCS: BDI-II↓, PSQI↓. r+ between PCP-S and BDI-II and PSQI | Tingling, burning, redness, headache, neck pain, mood swings, concentration difficulties (higher frequency in tDCS) |
[42] Khedr et al., 2017 | RDB, SC, PG | 36 FM; tDCS: 18 (17 W), sham: 18 (17 W) | C3 | CL arm | M1 | 2 mA | 24 cm2 | 20 min | 5 | 10 | Beta-endorphin | VAS, WPI, PPT | SS, HAM-D, HAM-A | tDCS: r- between beta-endorphin and WPI and VAS | tDCS: VAS↓, WPI↓, PPT↓ | tDCS: SS↓, HAM-A↓, HAM-D↓. r- between beta-endorphin and SS, HAM-A, and HAM-D | Itching and skin redness in 3 patients (tDCS group) |
[43] Mendonca et al., 2011 | RDB, SC, PG | 30 FM (28 W) randomly divided into 5 groups | Anodal/cathodal C3 vs. anodal/cathodal Fp2 vs. sham | Transition of the cervical and thoracic spine | M1 vs. SO region | 2 mA | 80 cm2 extracephalic electrode, 16 cm2 cranial electrodes | 20 min | 1 | 1 | E-field simulation | VNS, PPT, BD | - | Dominantly temporoparietal current flow in M1 configurations | Cathodal/anodal SO: VNS↓ | - | Sham and real tDCS: mild tingling |
[44] Silva et al., 2017 | RDB, SC, Cr: tDCS vs. sham + a go/no-go task | 40 FM W | F3 | Fp2 | DLPFC | 1 mA | 35 cm2 | 20 min | 1 +1 (tDCS vs. sham) | 1 +1 (tDCS vs. sham) | - | VAS, B-PCS, HPT, HPTo | PSQI, FIQ, BDI-II, MINI, ANT | - | tDCS: HPT↑, HPTo↑ | tDCS: ANT↑ | Tingling, burning, itching (no BG differences) |
[45] Santos et al., 2018 | RDB, SC, PG: tDCS + DN-B | FM W: tDCS (19), sham (20) | F3 | Fp2 | DLPFC | 2 mA | 35 cm2 | 20 min | NR | 8 | BDNF | - | DN-B, RAVLT, PASAT, COWAT, FDS, BDS | tDCS: r- between BDNF and RAVLT | - | tDCS: RAVLT↑, COWAT↑, FDS↑ | NR |
[46] De Ridder et al., 2017 | RDB, SC, Cr: tDCS vs. sham (after washout) | 19 FM (15 W) and 19 HC | Right C2 dermatome | Left C2 dermatome | OCF | 1.5 mA | 35 cm2 | 20 min | 3 active tDCS + 3 sham | 3 active tDCS + 3 sham | sLORETA, EEG | NRS, PCS | FIQ | FM baseline: dorsal ACC↑, PM/DLPFC↑; after tDCS, pregenual ACC↑ | tDCS: NRS↓, PCS↓ | tDCS: FIQ↓ | Transient redness and slight itching after tDCS |
[47] Foerster et al., 2015 | L, Cr, NRa: tDCS vs. sham (after washout) | 12 FM W | Left M1 (NS EEG position) | Right SO (NS EEG position) | M1 | 2 mA | NR | 20 min | 5 active tDCS + 5 sham | 5 active tDCS + 5 sham | 1H-MRS | VAS, LF-MPQ, SF-MPQ | PANAS | tDCS: Glx (ACC)↓, sham: NAA (PI)↑, tDCS/sham: r- between baseline Glx (ACC) and VAS after stimulation | tDCS: VAS↓ | tDCS: PANAS↓ | NR |
[48] Matias et al., 2022 | RDB, SC, PG: tDCS + FE | 31 FM W: tDCS + FE (17), sham + FE (14) | C3 | Fp2 | M1 | 2 mA | 35 cm2 | 20 min | 5 | 5 | - | VAS, PPT | MWT6, SSt, FIQ, BDI, MINI, VAS (anxiety), MFI, FS | - | Real and sham tDCS+ FE: VAS↓, PPT↑ | - | Headache, tingling, dizziness, nausea (no BG differences) |
[49] Samartin-Veiga et al., 2022 | RDB, SC, PG | 130 FM W: M1 tDCS: 34, DLPFC: 33, OIC: 33, sham: 30 | C3 vs. F3. OIC with multielectrode montage: FC5: 0.579 mA and C5: 1.144 mA | M1 and DLPFC: Fp2. OIC: F3: −0.565 mA, FC1: −0.508 mA, F8: −0.158 mA, and P3: −0.492 mA | M1, DLPFC, OIC | 2 mA | 25 cm2 (M1/DLPFC), 3.14 cm2 disc electrodes (OIC) | 20 min | 5 | 15 | - | NRS, FIQ, PPT | FIQ (fatigue), HADS, MFE-30, PSQI | - | All groups: NRS↓, PPT↑, FIQ↓ | All groups: MFE-30↓, PSQI↓, FIQ↓. tDCS groups: HADS↓ | Tickling, itching, burning. No BG differences |
[50] Castillo-Saavedra et al., 2016 | OL, single arm, phase II (HD-tDCS; no sham) | 14 FM (12 W) | C3 | CZ, T7, P3 and F3 | M1 | 2 mA | Standard Ag/AgCl ring electrodes | 20 min | 5 | ≤26 | EEG | VAS, PPT, SWMs | FIQ, BDI | Responders: baseline BNA↑ | VAS↓, VAS (50%)↓ in 7 out of 14 patients | FIQ↓ | Tingling sensation (scalp), mild headache, mild pain, skin redness |
[51] Cummiford et al., 2016 | SB, Cr, NRa: tDCS vs. sham (after washout) | 12 FM W | C3 | Fp2 | M1 | 2 mA | 35 cm2 | 20 min | 5 for sham tDCS (one week apart, 5 for active tDCS) | 5 sham + 5 active tDCS | rsFC fMRI | VAS, SF-MPQ | PANAS | sham: rsFC↓ (VPL-SI-Am). tDCS: rsFC↓ (VLT, mPFC, SMA) | tDCS and sham: r- between rsFC (M1-VLT, S1-AI, VLT-PAG) and VAS. tDCS and sham: r+ between rsFC (VLT/VPL-PI, M1, S1) and VAS | tDCS: PANAS negative affect↓ | NR |
[52] Roizenblatt et al., 2007 | RDB, SC, PG | 32 FM W: Sham (10), M1 tDCS (11), DLPFC tDCS (11) | C3 vs. F3 vs. sham C3 | Fp2 | M1, DLPFC | 2 mA | 35 cm2 | 20 min | 5 | 5 | PSG | VAS | VAS (tiredness, anxiety), CGI, PGA, BDI, FIQ, SF-36, MMSE | M1 tDCS: SE↑, SA↓; r- between BM and SE, r- between SE and FIQ, r+ between REM latency and FIQ, r+ between SL and VAS, r+ between SL and FIQ. DLPFC tDCS: SE↓, REM↑, SL↑ | M1 tDCS: VAS↓ | M1 tDCS: FIQ↓ | Well-tolerated; no BG differences |
[53] Riberto et al., 2011 | RDB, SC, PG: tDCS + multiple rehabilitation | FM W: 11 tDCS + 12 sham | C3 | Fp2 | M1 | 2 mA | 35 cm2 | 20 min | 1 | 10 | - | VAS, SF-36 (pain) | FIQ, HAQ, BDI, HAM-D | - | SF-36↓ (larger in the tDCS group) | No BG differences | None |
[54] Fregni et al., 2006 | RDB, SC, PG | 32 FM W (M1 tDCS: 11; DLPF tDCS: 11; sham: 10) | C3 vs. F3 | Fp2 | M1, DLPFC | 2 mA | 35 cm2 | 20 min | 5 | 5 | - | VAS | CGI, PGA, FIQ, SF-36, BDI, VAS (anxiety), MMSE, Stroop, DSfb, RT task | - | VAS↓ (greater in the M1 tDCS group) | M1 tDCS: FIQ↓, SF-36↑ | All groups: sleepiness and headache |
[55] Plazier et al., 2015 | RDB, SC, Cr: OCF subcutaneous stimulation, then ON tDCS and sham | 9 FM W | Left C2 dermatome | Right C2 dermatome | OCF | 1.5 mA | 35 cm2 | 20 min | 3 | 3 | - | NRS | - | - | ON tDCS: NRS↓. r+ between NRS (ON tDCS) and short-term NRS (invasive stimulation) | - | None |
[56] Mendonca et al., 2016 | RDB, SC, PG: tDCS + AE | 45 FM (44 W); M1 tDCS + AE: 15; Sham + AE: 15; M1 tDCS: 15 | C3 | Fp2 | M1 | 2 mA | 35 cm2 | 20 min | 5 | 5 | ICI, ICF | VNS, PPT | VNS (anxiety), SF-36, BDI | No BG differences | M1 tDCS + AE group (vs. M1 tDCS alone): VAS↓ | VNS (anxiety)↓, BDI↓ (in both real tDCS groups but larger in the tDCS + AE) | Tingling, skin redness (no BG differences) |
[57] DalĺAgnol et al., 2015 | CS: M1 tDCS vs. DLPFC tDCS vs. sham | 1 FM W | NR | NR | M1, DLPFC | 2 mA | NR | 20 min | NR | 10 each intervention | - | VAS, PCS | FIQ, Brazilian STAI, BDI | - | DLPFC tDCS: VAS↓, PCS↓; M1 tDCS: VAS↓ | DLPFC: STAI (trait)↓, RC↓; M1: STAI (state)↓, BDI↓ | Skin redness and tingling |
[58] Ramasawmy et al., 2022 | RDB, SC, PG: tDCS + MM vs. sham + MM vs. NI | 30 FM (28 W); M1 tDCS + MM: 10; sham + MM: 10; NI: 10 | 5 cm to the left of Cz | Right SO area (NS EEG position) | M1 | 2 mA | Anode: 16 cm2 Cathode: 50 cm2 | 20 min | 5 | 10 | - | NRS, PPT | FIQ, DASS-21, NRS (sleep quality) | - | No BG differences | tDCS + MM: FIQ↓ | Light headache, vertigo, fatigue, nervousness, skin redness (no BG differences) |
[59] Serrano et al., 2022 | RDB, SC, PG: Home-based tDCS | 36 FM W: DLPFC: 24; sham: 12 | F3 | F4 | DLPFC | 2 mA | 35 cm2 | 20 min | 5 | 20 | BDNF | CPM, PPT, B-PCS | TMT, WAIS-III (Ds), COWAT, FIQ, BDI-II, PSQI | r- between BDNF and TMT, Ds, and COWAT. r+ between BDNF and FIQ | Pain͢͢͢͢͢ measures͢͢→ | DLPFC tDCS: TMT↑, Ds↑, COWAT↑, FIQ↓ | Headache, tingling, burning, redness, itching (no BG differences) |
[60] Arroyo-Fernández et al., 2022 | RDB, SC, PG: anodal vs. sham tDCS + exercising, vs. NI) | 120 FM (113 W) | C3 | Fp2 | M1 | 2 mA | 25 cm2 | 20 min | 3 + 2 | 5 | - | VAS, PPT | FIQ, IDATE, PCS, BDI-II | - | Pre vs. post anodal tDCS: VAS↓ | Pre vs. post anodal and sham tDCS: PCS↓, BDI-II↓, FIQ↓ | None |
[61] La Rocca et al., 2022 | RDB, SC, PG: anodal vs. sham tDCS +FTT | 54 FM (41 W, anodal tDCS: 28; sham: 26); 22 HC (16 W, anodal tDCS: 11; sham: 11) | C3 | Fp2 | M1 | 2 mA | 35 cm2 | 20 min | 1 | 1 | fNIRS | - | FTT | Anodal tDCS: M1 activation↑ | - | FTT no BG differences | NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molero-Chamizo, A.; Nitsche, M.A.; Barroso, R.T.A.; Bailén, J.R.A.; Palomeque, J.C.G.; Rivera-Urbina, G.N. Non-Invasive Electric and Magnetic Brain Stimulation for the Treatment of Fibromyalgia. Biomedicines 2023, 11, 954. https://doi.org/10.3390/biomedicines11030954
Molero-Chamizo A, Nitsche MA, Barroso RTA, Bailén JRA, Palomeque JCG, Rivera-Urbina GN. Non-Invasive Electric and Magnetic Brain Stimulation for the Treatment of Fibromyalgia. Biomedicines. 2023; 11(3):954. https://doi.org/10.3390/biomedicines11030954
Chicago/Turabian StyleMolero-Chamizo, Andrés, Michael A. Nitsche, Rafael Tomás Andújar Barroso, José R. Alameda Bailén, Jesús Carlos García Palomeque, and Guadalupe Nathzidy Rivera-Urbina. 2023. "Non-Invasive Electric and Magnetic Brain Stimulation for the Treatment of Fibromyalgia" Biomedicines 11, no. 3: 954. https://doi.org/10.3390/biomedicines11030954
APA StyleMolero-Chamizo, A., Nitsche, M. A., Barroso, R. T. A., Bailén, J. R. A., Palomeque, J. C. G., & Rivera-Urbina, G. N. (2023). Non-Invasive Electric and Magnetic Brain Stimulation for the Treatment of Fibromyalgia. Biomedicines, 11(3), 954. https://doi.org/10.3390/biomedicines11030954