Non-Invasive Electric and Magnetic Brain Stimulation for the Treatment of Fibromyalgia
Abstract
1. Introduction
2. Methods
2.1. Search Strategy and Selection Criteria
2.2. Data Extraction and Analysis
3. Results
3.1. Nervous System Involvement in Fibromyalgia
3.2. Contributions of Non-Invasive Brain Stimulation
3.3. Transcranial Magnetic Stimulation
3.3.1. Single and Double Pulse TMS
3.3.2. rTMS
3.3.3. Transcranial Direct Current Stimulation
3.3.4. Other Non-Invasive Neuromodulation Methods
4. Discussion
4.1. TMS and Cortical Neurophysiology in Fibromyalgia
4.2. Therapeutic Effects of Non-Invasive Brain Stimulation on Fibromyalgia Symptoms
4.2.1. tDCS
4.2.2. rTMS
4.3. Future Directions and Limitations
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Twenty-First Rheumatism Review. Review of American and English Literature for the Years 1971 and 1972. Arthritis Rheum 1974, 17, 651–922. [Google Scholar]
- Wang, S.-M.; Han, C.; Lee, S.-J.; Patkar, A.A.; Masand, P.S.; Pae, C.-U. Fibromyalgia Diagnosis: A Review of the Past, Present and Future. Expert Rev. Neurother. 2015, 15, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.-A.; Goldenberg, D.L.; Häuser, W.; Katz, R.L.; Mease, P.J.; Russell, A.S.; Russell, I.J.; Walitt, B. 2016 Revisions to the 2010/2011 Fibromyalgia Diagnostic Criteria. Semin. Arthritis Rheum. 2016, 46, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.P.; Santo, A.d.S.d.E.; Berssaneti, A.A.; Matsutani, L.A.; Yuan, S.L.K. Prevalence of Fibromyalgia: Literature Review Update. Rev. Bras. De Reumatol. Engl. Ed. 2017, 57, 356–363. [Google Scholar] [CrossRef]
- Sarzi-Puttini, P.; Giorgi, V.; Marotto, D.; Atzeni, F. Fibromyalgia: An Update on Clinical Characteristics, Aetiopathogenesis and Treatment. Nat. Rev. Rheumatol. 2020, 16, 645–660. [Google Scholar] [CrossRef]
- Chinn, S.; Caldwell, W.; Gritsenko, K. Fibromyalgia Pathogenesis and Treatment Options Update. Curr. Pain Headache Rep. 2016, 20, 25. [Google Scholar] [CrossRef]
- Grayston, R.; Czanner, G.; Elhadd, K.; Goebel, A.; Frank, B.; Üçeyler, N.; Malik, R.A.; Alam, U. A Systematic Review and Meta-Analysis of the Prevalence of Small Fiber Pathology in Fibromyalgia: Implications for a New Paradigm in Fibromyalgia Etiopathogenesis. Semin. Arthritis Rheum. 2019, 48, 933–940. [Google Scholar] [CrossRef]
- Maffei, M.E. Fibromyalgia: Recent Advances in Diagnosis, Classification, Pharmacotherapy and Alternative Remedies. Int. J. Mol. Sci. 2020, 21, 7877. [Google Scholar] [CrossRef]
- Hou, W.-H.; Wang, T.-Y.; Kang, J.-H. The Effects of Add-on Non-Invasive Brain Stimulation in Fibromyalgia: A Meta-Analysis and Meta-Regression of Randomized Controlled Trials. Rheumatology 2016, 55, 1507–1517. [Google Scholar] [CrossRef]
- Kaplan, C.M.; Harris, R.E.; Lee, U.; DaSilva, A.F.; Mashour, G.A.; Harte, S.E. Targeting Network Hubs with Noninvasive Brain Stimulation in Patients with Fibromyalgia. Pain 2020, 161, 43–46. [Google Scholar] [CrossRef]
- Lloyd, D.M.; Wittkopf, P.G.; Arendsen, L.J.; Jones, A.K.P. Is Transcranial Direct Current Stimulation (TDCS) Effective for the Treatment of Pain in Fibromyalgia? A Systematic Review and Meta-Analysis. J. Pain 2020, 21, 1085–1100. [Google Scholar] [CrossRef]
- Codella, R.; Alongi, R.; Filipas, L.; Luzi, L. Ergogenic Effects of Bihemispheric Transcranial Direct Current Stimulation on Fitness: A Randomized Cross-over Trial. Int. J. Sports Med. 2021, 42, 66–73. [Google Scholar] [CrossRef]
- Salerno, A.; Thomas, E.; Olive, P.; Blotman, F.; Picot, M.C.; Georgesco, M. Motor Cortical Dysfunction Disclosed by Single and Double Magnetic Stimulation in Patients with Fibromyalgia. Clin. Neurophysiol. 2000, 111, 994–1001. [Google Scholar] [CrossRef]
- Mhalla, A.; de Andrade, D.C.; Baudic, S.; Perrot, S.; Bouhassira, D. Alteration of Cortical Excitability in Patients with Fibromyalgia. Pain 2010, 149, 495–500. [Google Scholar] [CrossRef]
- Uygur-Kucukseymen, E.; Castelo-Branco, L.; Pacheco-Barrios, K.; Luna-Cuadros, M.A.; Cardenas-Rojas, A.; Giannoni-Luza, S.; Zeng, H.; Gianlorenco, A.C.; Gnoatto-Medeiros, M.; Shaikh, E.S.; et al. Decreased Neural Inhibitory State in Fibromyalgia Pain: A Cross-Sectional Study. Neurophysiol. Clin. 2020, 50, 279–288. [Google Scholar] [CrossRef]
- Tiwari, V.K.; Nanda, S.; Arya, S.; Kumar, U.; Sharma, R.; Kumaran, S.S.; Bhatia, R. Correlating Cognition and Cortical Excitability with Pain in Fibromyalgia: A Case Control Study. Adv. Rheumatol. 2021, 61, 10. [Google Scholar] [CrossRef]
- Cardinal, T.M.; Antunes, L.C.; Brietzke, A.P.; Parizotti, C.S.; Carvalho, F.; De Souza, A.; da Silva Torres, I.L.; Fregni, F.; Caumo, W. Differential Neuroplastic Changes in Fibromyalgia and Depression Indexed by Up-Regulation of Motor Cortex Inhibition and Disinhibition of the Descending Pain System: An Exploratory Study. Front. Hum. Neurosci. 2019, 13, 138. [Google Scholar] [CrossRef]
- Deitos, A.; Soldatelli, M.D.; Dussán-Sarria, J.A.; Souza, A.; da Silva Torres, I.L.; Fregni, F.; Caumo, W. Novel Insights of Effects of Pregabalin on Neural Mechanisms of Intracortical Disinhibition in Physiopathology of Fibromyalgia: An Explanatory, Randomized, Double-Blind Crossover Study. Front. Hum. Neurosci. 2018, 12, 406. [Google Scholar] [CrossRef]
- Schwenkreis, P.; Voigt, M.; Hasenbring, M.; Tegenthoff, M.; Vorgerd, M.; Kley, R.A. Central Mechanisms during Fatiguing Muscle Exercise in Muscular Dystrophy and Fibromyalgia Syndrome: A Study with Transcranial Magnetic Stimulation: Fatigue in MD and FMS. Muscle Nerve 2011, 43, 479–484. [Google Scholar] [CrossRef]
- Caumo, W.; Deitos, A.; Carvalho, S.; Leite, J.; Carvalho, F.; Dussán-Sarria, J.A.; Lopes Tarragó, M.d.G.; Souza, A.; Torres, I.L.d.S.; Fregni, F. Motor Cortex Excitability and BDNF Levels in Chronic Musculoskeletal Pain According to Structural Pathology. Front. Hum. Neurosci. 2016, 10, 357. [Google Scholar] [CrossRef]
- Izquierdo-Alventosa, R.; Inglés, M.; Cortés-Amador, S.; Gimeno-Mallench, L.; Sempere-Rubio, N.; Serra-Añó, P. Effectiveness of High-Frequency Transcranial Magnetic Stimulation and Physical Exercise in Women With Fibromyalgia: A Randomized Controlled Trial. Phys. Ther. 2021, 101, pzab159. [Google Scholar] [CrossRef]
- Guinot, M.; Maindet, C.; Hodaj, H.; Hodaj, E.; Bachasson, D.; Baillieul, S.; Cracowski, J.-L.; Launois, S. Effects of Repetitive Transcranial Magnetic Stimulation and Multicomponent Therapy in Patients with Fibromyalgia: A Randomized Controlled Trial. Arthritis Care Res. 2021, 73, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Fitzgibbon, B.M.; Hoy, K.E.; Knox, L.A.; Guymer, E.K.; Littlejohn, G.; Elliot, D.; Wambeek, L.E.; McQueen, S.; Elford, K.A.; Lee, S.J.; et al. Evidence for the Improvement of Fatigue in Fibromyalgia: A 4-week Left Dorsolateral Prefrontal Cortex Repetitive Transcranial Magnetic Stimulation Randomized-controlled Trial. Eur. J. Pain 2018, 22, 1255–1267. [Google Scholar] [CrossRef] [PubMed]
- Short, B.E.; Borckardt, J.J.; Anderson, B.S.; Frohman, H.; Beam, W.; Reeves, S.T.; George, M.S. Ten Sessions of Adjunctive Left Prefrontal RTMS Significantly Reduces Fibromyalgia Pain: A Randomized, Controlled Pilot Study. Pain 2011, 152, 2477–2484. [Google Scholar] [CrossRef] [PubMed]
- Mhalla, A.; Baudic, S.; de Andrade, D.C.; Gautron, M.; Perrot, S.; Teixeira, M.J.; Attal, N.; Bouhassira, D. Long-Term Maintenance of the Analgesic Effects of Transcranial Magnetic Stimulation in Fibromyalgia. Pain 2011, 152, 1478–1485. [Google Scholar] [CrossRef]
- Tzabazis, A.; Aparici, C.M.; Rowbotham, M.C.; Schneider, M.B.; Etkin, A.; Yeomans, D.C. Shaped Magnetic Field Pulses by Multi-Coil Repetitive Transcranial Magnetic Stimulation (RTMS) Differentially Modulate Anterior Cingulate Cortex Responses and Pain in Volunteers and Fibromyalgia Patients. Mol. Pain 2013, 9, 33. [Google Scholar] [CrossRef]
- Forogh, B.; Haqiqatshenas, H.; Ahadi, T.; Ebadi, S.; Alishahi, V.; Sajadi, S. Repetitive Transcranial Magnetic Stimulation (RTMS) versus Transcranial Direct Current Stimulation (TDCS) in the Management of Patients with Fibromyalgia: A Randomized Controlled Trial. Neurophysiol. Clin. 2021, 51, 339–347. [Google Scholar] [CrossRef]
- Morin, M.; St-Gelais, R.; Ketounou, K.É.; d’Assomption, R.M.-L.; Ezzaidi, H.; Fernandes, K.B.P.; da Silva, R.A.; Ngomo, S. TDCS Task-Oriented Approach Improves Function in Individuals With Fibromyalgia Pain. A Pilot Study. Front. Pain Res. 2021, 2, 692250. [Google Scholar] [CrossRef]
- de Melo, G.A.; de Oliveira, E.A.; Dos Santos Andrade, S.M.M.; Fernández-Calvo, B.; Torro, N. Comparison of Two TDCS Protocols on Pain and EEG Alpha-2 Oscillations in Women with Fibromyalgia. Sci. Rep. 2020, 10, 18955. [Google Scholar] [CrossRef]
- Lim, M.; Kim, D.J.; Nascimento, T.D.; Ichesco, E.; Kaplan, C.; Harris, R.E.; DaSilva, A.F. Functional Magnetic Resonance Imaging Signal Variability Is Associated With Neuromodulation in Fibromyalgia. Neuromodulation Technol. Neural Interface 2022, S1094715922000526. [Google Scholar] [CrossRef]
- Yoo, H.B.; Ost, J.; Joos, W.; Van Havenbergh, T.; De Ridder, D.; Vanneste, S. Adding Prefrontal Transcranial Direct Current Stimulation Before Occipital Nerve Stimulation in Fibromyalgia. Clin. J. Pain 2018, 34, 421–427. [Google Scholar] [CrossRef]
- Samartin-Veiga, N.; González-Villar, A.J.; Pidal-Miranda, M.; Vázquez-Millán, A.; Carrillo-de-la-Peña, M.T. Active and Sham Transcranial Direct Current Stimulation (TDCS) Improved Quality of Life in Female Patients with Fibromyalgia. Qual. Life Res. 2022, 31, 2519–2534. [Google Scholar] [CrossRef]
- Kang, J.-H.; Choi, S.-E.; Park, D.-J.; Xu, H.; Lee, J.-K.; Lee, S.-S. Effects of Add-on Transcranial Direct Current Stimulation on Pain in Korean Patients with Fibromyalgia. Sci. Rep. 2020, 10, 12114. [Google Scholar] [CrossRef]
- Brietzke, A.P.; Zortea, M.; Carvalho, F.; Sanches, P.R.S.; Silva, D.P., Jr.; Torres, I.L.d.S.; Fregni, F.; Caumo, W. Large Treatment Effect with Extended Home-Based Transcranial Direct Current Stimulation Over Dorsolateral Prefrontal Cortex in Fibromyalgia: A Proof of Concept Sham-Randomized Clinical Study. J. Pain 2020, 21, 212–224. [Google Scholar] [CrossRef]
- de Paula, T.M.H.; Castro, M.S.; Medeiros, L.F.; Paludo, R.H.; Couto, F.F.; da Costa, T.R.; Fortes, J.P.; Salbego, M.d.O.; Behnck, G.S.; de Moura, T.A.M.; et al. Association of Low-Dose Naltrexone and Transcranial Direct Current Stimulation in Fibromyalgia: A Randomized, Double-Blinded, Parallel Clinical Trial. Braz. J. Anesthesiol. Engl. Ed. 2022, S010400142200104X. [Google Scholar] [CrossRef]
- To, W.T.; James, E.; Ost, J.; Hart, J.; De Ridder, D.; Vanneste, S. Differential Effects of Bifrontal and Occipital Nerve Stimulation on Pain and Fatigue Using Transcranial Direct Current Stimulation in Fibromyalgia Patients. J. Neural Transm. 2017, 124, 799–808. [Google Scholar] [CrossRef]
- Villamar, M.F.; Wivatvongvana, P.; Patumanond, J.; Bikson, M.; Truong, D.Q.; Datta, A.; Fregni, F. Focal Modulation of the Primary Motor Cortex in Fibromyalgia Using 4×1-Ring High-Definition Transcranial Direct Current Stimulation (HD-TDCS): Immediate and Delayed Analgesic Effects of Cathodal and Anodal Stimulation. J. Pain 2013, 14, 371–383. [Google Scholar] [CrossRef]
- Desbiens, S.; Girardin-Rondeau, M.; Guyot-Messier, L.; Lamoureux, D.; Paris, L.; da Silva, R.A.; Ngomo, S. Effect of Transcranial Direct Stimulation Combined with a Functional Task on Fibromyalgia Pain: A Case Study. Neurophysiol. Clin. 2020, 50, 134–137. [Google Scholar] [CrossRef]
- Valle, A.; Roizenblatt, S.; Botte, S.; Zaghi, S.; Riberto, M.; Tufik, S.; Boggio, P.S.; Fregni, F. Efficacy of Anodal Transcranial Direct Current Stimulation (TDCS) for the Treatment of Fibromyalgia: Results of a Randomized, Sham-Controlled Longitudinal Clinical Trial. J. Pain Manag. 2009, 2, 353–361. [Google Scholar]
- Fagerlund, A.J.; Hansen, O.A.; Aslaksen, P.M. Transcranial Direct Current Stimulation as a Treatment for Patients with Fibromyalgia: A Randomized Controlled Trial. Pain 2015, 156, 62–71. [Google Scholar] [CrossRef]
- Caumo, W.; Alves, R.L.; Vicuña, P.; Alves, C.F.d.S.; Ramalho, L.; Sanches, P.R.S.; Silva, D.P.; da Silva Torres, I.L.; Fregni, F. Impact of Bifrontal Home-Based Transcranial Direct Current Stimulation in Pain Catastrophizing and Disability Due to Pain in Fibromyalgia: A Randomized, Double-Blind Sham-Controlled Study. J. Pain 2022, 23, 641–656. [Google Scholar] [CrossRef] [PubMed]
- Khedr, E.M.; Omran, E.A.H.; Ismail, N.M.; El-Hammady, D.H.; Goma, S.H.; Kotb, H.; Galal, H.; Osman, A.M.; Farghaly, H.S.M.; Karim, A.A.; et al. Effects of Transcranial Direct Current Stimulation on Pain, Mood and Serum Endorphin Level in the Treatment of Fibromyalgia: A Double Blinded, Randomized Clinical Trial. Brain Stimul. 2017, 10, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Mendonca, M.E.; Santana, M.B.; Baptista, A.F.; Datta, A.; Bikson, M.; Fregni, F.; Araujo, C.P. Transcranial DC Stimulation in Fibromyalgia: Optimized Cortical Target Supported by High-Resolution Computational Models. J. Pain 2011, 12, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.F.; Zortea, M.; Carvalho, S.; Leite, J.; Torres, I.L.d.S.; Fregni, F.; Caumo, W. Anodal Transcranial Direct Current Stimulation over the Left Dorsolateral Prefrontal Cortex Modulates Attention and Pain in Fibromyalgia: Randomized Clinical Trial. Sci. Rep. 2017, 7, 135. [Google Scholar] [CrossRef]
- Santos, V.S.d.S.d.; Zortea, M.; Alves, R.L.; Naziazeno, C.C.d.S.; Saldanha, J.S.; Carvalho, S.d.C.R.d.; Leite, A.J.d.C.; Torres, I.L.d.S.; Souza, A.d.; Calvetti, P.Ü.; et al. Cognitive Effects of Transcranial Direct Current Stimulation Combined with Working Memory Training in Fibromyalgia: A Randomized Clinical Trial. Sci. Rep. 2018, 8, 12477. [Google Scholar] [CrossRef]
- De Ridder, D.; Vanneste, S. Occipital Nerve Field Transcranial Direct Current Stimulation Normalizes Imbalance Between Pain Detecting and Pain Inhibitory Pathways in Fibromyalgia. Neurotherapeutics 2017, 14, 484–501. [Google Scholar] [CrossRef]
- Foerster, B.R.; Nascimento, T.D.; DeBoer, M.; Bender, M.A.; Rice, I.C.; Truong, D.Q.; Bikson, M.; Clauw, D.J.; Zubieta, J.; Harris, R.E.; et al. Brief Report: Excitatory and Inhibitory Brain Metabolites as Targets of Motor Cortex Transcranial Direct Current Stimulation Therapy and Predictors of Its Efficacy in Fibromyalgia. Arthritis Rheumatol. 2015, 67, 576–581. [Google Scholar] [CrossRef]
- Matias, M.G.L.; Germano Maciel, D.; França, I.M.; Cerqueira, M.S.; Silva, T.C.L.A.; Okano, A.H.; Pegado, R.; Brito Vieira, W.H. Transcranial Direct Current Stimulation Associated with Functional Exercise Program for Treating Fibromyalgia: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2022, 103, 245–254. [Google Scholar] [CrossRef]
- Samartin-Veiga, N.; Pidal-Miranda, M.; González-Villar, A.J.; Bradley, C.; Garcia-Larrea, L.; O’Brien, A.T.; Carrillo-de-la-Peña, M.T. Transcranial Direct Current Stimulation of 3 Cortical Targets Is No More Effective than Placebo as Treatment for Fibromyalgia: A Double-Blind Sham-Controlled Clinical Trial. Pain 2022, 163, e850–e861. [Google Scholar] [CrossRef]
- Castillo-Saavedra, L.; Gebodh, N.; Bikson, M.; Diaz-Cruz, C.; Brandao, R.; Coutinho, L.; Truong, D.; Datta, A.; Shani-Hershkovich, R.; Weiss, M.; et al. Clinically Effective Treatment of Fibromyalgia Pain With High-Definition Transcranial Direct Current Stimulation: Phase II Open-Label Dose Optimization. J. Pain 2016, 17, 14–26. [Google Scholar] [CrossRef]
- Cummiford, C.M.; Nascimento, T.D.; Foerster, B.R.; Clauw, D.J.; Zubieta, J.-K.; Harris, R.E.; DaSilva, A.F. Changes in Resting State Functional Connectivity after Repetitive Transcranial Direct Current Stimulation Applied to Motor Cortex in Fibromyalgia Patients. Arthritis Res. Ther. 2016, 18, 40. [Google Scholar] [CrossRef]
- Roizenblatt, S.; Fregni, F.; Gimenez, R.; Wetzel, T.; Rigonatti, S.P.; Tufik, S.; Boggio, P.S.; Valle, A.C. Site-Specific Effects of Transcranial Direct Current Stimulation on Sleep and Pain in Fibromyalgia: A Randomized, Sham-Controlled Study. Pain Pract. 2007, 7, 297–306. [Google Scholar] [CrossRef]
- Riberto, M.; Marcon Alfieri, F.; Monteiro de Benedetto Pacheco, K.; Dini Leite, V.; Nemoto Kaihami, H.; Fregni, F.; Rizzo Battistella, L. Efficacy of Transcranial Direct Current Stimulation Coupled with a Multidisciplinary Rehabilitation Program for the Treatment of Fibromyalgia. Open Rheumatol. J. 2011, 5, 45–50. [Google Scholar] [CrossRef]
- Fregni, F.; Gimenes, R.; Valle, A.C.; Ferreira, M.J.L.; Rocha, R.R.; Natalle, L.; Bravo, R.; Rigonatti, S.P.; Freedman, S.D.; Nitsche, M.A.; et al. A Randomized, Sham-Controlled, Proof of Principle Study of Transcranial Direct Current Stimulation for the Treatment of Pain in Fibromyalgia. Arthritis Rheum. 2006, 54, 3988–3998. [Google Scholar] [CrossRef]
- Plazier, M.; Tchen, S.; Ost, J.; Joos, K.; De Ridder, D.; Vanneste, S. Is Transcranial Direct Current Stimulation an Effective Predictor for Invasive Occipital Nerve Stimulation Treatment Success in Fibromyalgia Patients? Neuromodulation Technol. Neural Interface 2015, 18, 623–629. [Google Scholar] [CrossRef]
- Mendonca, M.E.; Simis, M.; Grecco, L.C.; Battistella, L.R.; Baptista, A.F.; Fregni, F. Transcranial Direct Current Stimulation Combined with Aerobic Exercise to Optimize Analgesic Responses in Fibromyalgia: A Randomized Placebo-Controlled Clinical Trial. Front. Hum. Neurosci. 2016, 10, 68. [Google Scholar] [CrossRef]
- DalĺAgnol, L.; Pascoal-Faria, P.; Barros Cecílio, S.; Corrêa, F.I. Transcranial Direct Current Stimulation in the Neuromodulation of Pain in Fibromyalgia: A Case Study. Ann. Phys. Rehabil. Med. 2015, 58, 351–353. [Google Scholar] [CrossRef]
- Ramasawmy, P.; Khalid, S.; Petzke, F.; Antal, A. Pain Reduction in Fibromyalgia Syndrome through Pairing Transcranial Direct Current Stimulation and Mindfulness Meditation: A Randomized, Double-Blinded, Sham-Controlled Pilot Clinical Trial. Front. Med. 2022, 9, 908133. [Google Scholar] [CrossRef]
- Serrano, P.V.; Zortea, M.; Alves, R.L.; Beltrán, G.; Bavaresco, C.; Ramalho, L.; Alves, C.F.d.S.; Medeiros, L.; Sanches, P.R.S.; Silva, D.P.; et al. The Effect of Home-Based Transcranial Direct Current Stimulation in Cognitive Performance in Fibromyalgia: A Randomized, Double-Blind Sham-Controlled Trial. Front. Hum. Neurosci. 2022, 16, 992742. [Google Scholar] [CrossRef]
- Arroyo-Fernández, R.; Avendaño-Coy, J.; Velasco-Velasco, R.; Palomo-Carrión, R.; Bravo-Esteban, E.; Ferri-Morales, A. Effectiveness of Transcranial Direct Current Stimulation Combined With Exercising in People With Fibromyalgia: A Randomized Sham-Controlled Clinical Trial. Arch. Phys. Med. Rehabil. 2022, 103, 1524–1532. [Google Scholar] [CrossRef]
- La Rocca, M.; Clemente, L.; Gentile, E.; Ricci, K.; Delussi, M.; de Tommaso, M. Effect of Single Session of Anodal M1 Transcranial Direct Current Stimulation—TDCS—On Cortical Hemodynamic Activity: A Pilot Study in Fibromyalgia. Brain Sci. 2022, 12, 1569. [Google Scholar] [CrossRef] [PubMed]
- Schweinhardt, P.; Sauro, K.M.; Bushnell, M.C. Fibromyalgia: A Disorder of the Brain? Neuroscientist 2008, 14, 415–421. [Google Scholar] [CrossRef]
- Cagnie, B.; Coppieters, I.; Denecker, S.; Six, J.; Danneels, L.; Meeus, M. Central Sensitization in Fibromyalgia? A Systematic Review on Structural and Functional Brain MRI. Semin. Arthritis Rheum. 2014, 44, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.E.; Craggs, J.G.; Price, D.D.; Perlstein, W.M.; Staud, R. Gray Matter Volumes of Pain-Related Brain Areas Are Decreased in Fibromyalgia Syndrome. J. Pain 2011, 12, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K.B.; Kosek, E.; Petzke, F.; Carville, S.; Fransson, P.; Marcus, H.; Williams, S.C.R.; Choy, E.; Giesecke, T.; Mainguy, Y.; et al. Evidence of Dysfunctional Pain Inhibition in Fibromyalgia Reflected in RACC during Provoked Pain. Pain 2009, 144, 95–100. [Google Scholar] [CrossRef]
- Craggs, J.G.; Staud, R.; Robinson, M.E.; Perlstein, W.M.; Price, D.D. Effective Connectivity Among Brain Regions Associated With Slow Temporal Summation of C-Fiber-Evoked Pain in Fibromyalgia Patients and Healthy Controls. J. Pain 2012, 13, 390–400. [Google Scholar] [CrossRef]
- Staud, R.; Craggs, J.G.; Perlstein, W.M.; Robinson, M.E.; Price, D.D. Brain Activity Associated with Slow Temporal Summation of C-Fiber Evoked Pain in Fibromyalgia Patients and Healthy Controls. Eur. J. Pain 2008, 12, 1078–1089. [Google Scholar] [CrossRef]
- Di Franco, M.; Iannuccelli, C.; Atzeni, F.; Cazzola, M.; Salaffi, F.; Valesini, G.; Sarzi-Puttini, P. Pharmacological Treatment of Fibromyalgia. Clin. Exp. Rheumatol. 2010, 28, S110–S116. [Google Scholar]
- Han, C.; Lee, S.-J.; Lee, S.-Y.; Seo, H.-J.; Wang, S.-M.; Park, M.-H.; Patkar, A.A.; Koh, J.; Masand, P.S.; Pae, C.-U. Available Therapies and Current Management of Fibromyalgia: Focusing on Pharmacological Agents. Drugs Today 2011, 47, 539. [Google Scholar] [CrossRef]
- Sarzi-Puttini, P.; Torta, R.; Marinangeli, F.; Biasi, G.; Spath, M.; Buskila, D.; Gracely, R.H.; Giamberardino, M.A.; Bazzichi, L.; Cazzola, M.; et al. Fibromyalgia Syndrome: The Pharmacological Treatment Options. Reumatismo 2011, 60, 50–58. [Google Scholar] [CrossRef]
- Thorpe, J.; Shum, B.; Moore, R.A.; Wiffen, P.J.; Gilron, I. Combination Pharmacotherapy for the Treatment of Fibromyalgia in Adults. Cochrane Database Syst. Rev. 2018, 2, CD010585. [Google Scholar] [CrossRef]
- Fregni, F.; Nitsche, M.A.; Loo, C.K.; Brunoni, A.R.; Marangolo, P.; Leite, J.; Carvalho, S.; Bolognini, N.; Caumo, W.; Paik, N.J.; et al. Regulatory Considerations for the Clinical and Research Use of Transcranial Direct Current Stimulation (TDCS): Review and Recommendations from an Expert Panel. Clin. Res. Regul. Aff. 2015, 32, 22–35. [Google Scholar] [CrossRef]
- Shin, Y.-I.; Foerster, Á.; Nitsche, M.A. Transcranial Direct Current Stimulation (TDCS)—Application in Neuropsychology. Neuropsychologia 2015, 69, 154–175. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Z. Neuromodulation for Pain Management. In Neural Interface: Frontiers and Applications; Zheng, X., Ed.; Advances in Experimental Medicine and Biology; Springer: Singapore, 2019; Volume 1101, pp. 207–223. ISBN 9789811320491. [Google Scholar]
- Duarte, D.; Castelo-Branco, L.E.C.; Uygur Kucukseymen, E.; Fregni, F. Developing an Optimized Strategy with Transcranial Direct Current Stimulation to Enhance the Endogenous Pain Control System in Fibromyalgia. Expert Rev. Med. Devices 2018, 15, 863–873. [Google Scholar] [CrossRef]
- Bernardi, L.; Bertuccelli, M.; Formaggio, E.; Rubega, M.; Bosco, G.; Tenconi, E.; Cattelan, M.; Masiero, S.; Del Felice, A. Beyond Physiotherapy and Pharmacological Treatment for Fibromyalgia Syndrome: Tailored TACS as a New Therapeutic Tool. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 199–210. [Google Scholar] [CrossRef]
- Frohlich, F.; Riddle, J. Transcranial Alternating Current Stimulation (TACS) as a Treatment for Fibromyalgia Syndrome? Eur. Arch. Psychiatry Clin. Neurosci. 2022, 272, 349–350. [Google Scholar] [CrossRef]
- Coskun Benlidayi, I. The Effectiveness and Safety of Electrotherapy in the Management of Fibromyalgia. Rheumatol. Int. 2020, 40, 1571–1580. [Google Scholar] [CrossRef]
- Banic, B.; Petersen-Felix, S.; Andersen, O.K.; Radanov, B.P.; Villiger, M.P.; Arendt-Nielsen, L.; Curatolo, M. Evidence for Spinal Cord Hypersensitivity in Chronic Pain after Whiplash Injury and in Fibromyalgia. Pain 2004, 107, 7–15. [Google Scholar] [CrossRef]
- Nizard, J.; Lefaucheur, J.-P.; Helbert, M.; de Chauvigny, E.; Nguyen, J.-P. Non-Invasive Stimulation Therapies for the Treatment of Refractory Pain. Discov. Med. 2012, 14, 21–31. [Google Scholar]
- Lange, G.; Janal, M.N.; Maniker, A.; FitzGibbons, J.; Fobler, M.; Cook, D.; Natelson, B.H. Safety and Efficacy of Vagus Nerve Stimulation in Fibromyalgia: A Phase I/II Proof of Concept Trial. Pain Med. 2011, 12, 1406–1413. [Google Scholar] [CrossRef]
- Yuan, H.; Silberstein, S.D. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part I: Headache. Headache: J. Head Face Pain 2016, 56, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.L.; Wilson, C.G. A Review of Vagus Nerve Stimulation as a Therapeutic Intervention. J. Inflamm. Res. 2018, 11, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Kutlu, N.; Özden, A.V.; Alptekin, H.K.; Alptekin, J.Ö. The Impact of Auricular Vagus Nerve Stimulation on Pain and Life Quality in Patients with Fibromyalgia Syndrome. BioMed. Res. Int. 2020, 2020, 8656218. [Google Scholar] [CrossRef] [PubMed]
- Molero-Chamizo, A.; Nitsche, M.A.; Bolz, A.; Andújar Barroso, R.T.; Alameda Bailén, J.R.; García Palomeque, J.C.; Rivera-Urbina, G.N. Non-Invasive Transcutaneous Vagus Nerve Stimulation for the Treatment of Fibromyalgia Symptoms: A Study Protocol. Brain Sci. 2022, 12, 95. [Google Scholar] [CrossRef]
- Deuchars, S.A.; Lall, V.K.; Clancy, J.; Mahadi, M.; Murray, A.; Peers, L.; Deuchars, J. Mechanisms Underpinning Sympathetic Nervous Activity and Its Modulation Using Transcutaneous Vagus Nerve Stimulation. Exp. Physiol. 2018, 103, 326–331. [Google Scholar] [CrossRef]
- Clancy, J.A.; Mary, D.A.; Witte, K.K.; Greenwood, J.P.; Deuchars, S.A.; Deuchars, J. Non-Invasive Vagus Nerve Stimulation in Healthy Humans Reduces Sympathetic Nerve Activity. Brain Stimul. 2014, 7, 871–877. [Google Scholar] [CrossRef]
- von Wrede, R.; Surges, R. Transcutaneous Vagus Nerve Stimulation in the Treatment of Drug-Resistant Epilepsy. Auton. Neurosci. 2021, 235, 102840. [Google Scholar] [CrossRef]
- Paccione, C.E.; Stubhaug, A.; Diep, L.M.; Rosseland, L.A.; Jacobsen, H.B. Meditative-Based Diaphragmatic Breathing vs. Vagus Nerve Stimulation in the Treatment of Fibromyalgia—A Randomized Controlled Trial: Body vs. Machine. Front. Neurol. 2022, 13, 1030927. [Google Scholar] [CrossRef]
- Curatolo, M.; La Bianca, G.; Cosentino, G.; Baschi, R.; Salemi, G.; Talotta, R.; Romano, M.; Triolo, G.; De Tommaso, M.; Fierro, B.; et al. Motor Cortex TRNS Improves Pain, Affective and Cognitive Impairment in Patients with Fibromyalgia: Preliminary Results of a Randomised Sham-Controlled Trial. Clin. Exp. Rheumatol. 2017, 35, 100–105. [Google Scholar]
- Pacheco-Barrios, K.; Lima, D.; Pimenta, D.; Slawka, E.; Navarro-Flores, A.; Parente, J.; Rebello-Sanchez, I.; Cardenas-Rojas, A.; Gonzalez-Mego, P.; Castelo-Branco, L.; et al. Motor Cortex Inhibition as a Fibromyalgia Biomarker: A Meta-Analysis of Transcranial Magnetic Stimulation Studies. Brain Netw Modul. 2022, 1, 88. [Google Scholar] [CrossRef]
- Zhu, C.; Yu, B.; Zhang, W.; Chen, W.; Qi, Q.; Miao, Y. Effiectiveness and Safety of Transcranial Direct Current Stimulation in Fibromyalgia: A Systematic Review and Meta-Analysis. J. Rehabil. Med. 2017, 49, 2–9. [Google Scholar] [CrossRef]
- Brighina, F.; Curatolo, M.; Cosentino, G.; De Tommaso, M.; Battaglia, G.; Sarzi-Puttini, P.C.; Guggino, G.; Fierro, B. Brain Modulation by Electric Currents in Fibromyalgia: A Structured Review on Non-Invasive Approach with Transcranial Electrical Stimulation. Front. Hum. Neurosci. 2019, 13, 40. [Google Scholar] [CrossRef]
- Teixeira, P.E.P.; Pacheco-Barrios, K.; Branco, L.C.; de Melo, P.S.; Marduy, A.; Caumo, W.; Papatheodorou, S.; Keysor, J.; Fregni, F. The Analgesic Effect of Transcranial Direct Current Stimulation in Fibromyalgia: A Systematic Review, Meta-Analysis, and Meta-Regression of Potential Influencers of Clinical Effect. Neuromodulation Technol. Neural Interface 2022, S1094715922013320. [Google Scholar] [CrossRef]
- Lin, A.P.; Chiu, C.-C.; Chen, S.-C.; Huang, Y.-J.; Lai, C.-H.; Kang, J.-H. Using High-Definition Transcranial Alternating Current Stimulation to Treat Patients with Fibromyalgia: A Randomized Double-Blinded Controlled Study. Life 2022, 12, 1364. [Google Scholar] [CrossRef]
- Xiong, H.-Y.; Zheng, J.-J.; Wang, X.-Q. Non-Invasive Brain Stimulation for Chronic Pain: State of the Art and Future Directions. Front. Mol. Neurosci. 2022, 15, 888716. [Google Scholar] [CrossRef]
- Garcia-Larrea, L.; Quesada, C. Cortical Stimulation for Chronic Pain: From Anecdote to Evidence. Eur. J. Phys. Rehabil. Med. 2022, 58, 290–305. [Google Scholar] [CrossRef]
- Choo, Y.J.; Kwak, S.G.; Chang, M.C. Effectiveness of Repetitive Transcranial Magnetic Stimulation on Managing Fibromyalgia: A Systematic Meta-Analysis. Pain Med. 2022, 23, 1272–1282. [Google Scholar] [CrossRef]
- Che, X.; Cash, R.F.H.; Luo, X.; Luo, H.; Lu, X.; Xu, F.; Zang, Y.-F.; Fitzgerald, P.B.; Fitzgibbon, B.M. High-Frequency RTMS over the Dorsolateral Prefrontal Cortex on Chronic and Provoked Pain: A Systematic Review and Meta-Analysis. Brain Stimul. 2021, 14, 1135–1146. [Google Scholar] [CrossRef]
- Gilron, I.; Chaparro, L.E.; Tu, D.; Holden, R.R.; Milev, R.; Towheed, T.; DuMerton-Shore, D.; Walker, S. Combination of Pregabalin with Duloxetine for Fibromyalgia: A Randomized Controlled Trial. Pain 2016, 157, 1532–1540. [Google Scholar] [CrossRef]
- Pérocheau, D.; Laroche, F.; Perrot, S. Relieving Pain in Rheumatology Patients: Repetitive Transcranial Magnetic Stimulation (RTMS), a Developing Approach. Jt. Bone Spine 2014, 81, 22–26. [Google Scholar] [CrossRef]
- Tsai, Y.-Y.; Wu, W.-T.; Han, D.-S.; Mezian, K.; Ricci, V.; Özçakar, L.; Hsu, P.-C.; Chang, K.-V. Application of Repetitive Transcranial Magnetic Stimulation in Neuropathic Pain: A Narrative Review. Life 2023, 13, 258. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.-J.; Zhu, H.-Q.; Zhang, X.-A.; Wang, X.-Q. The Mechanism and Effect of Repetitive Transcranial Magnetic Stimulation for Post-Stroke Pain. Front. Mol. Neurosci. 2023, 15, 1091402. [Google Scholar] [CrossRef] [PubMed]
- Antal, A.; Terney, D.; Kühnl, S.; Paulus, W. Anodal Transcranial Direct Current Stimulation of the Motor Cortex Ameliorates Chronic Pain and Reduces Short Intracortical Inhibition. J. Pain Symptom Manag. 2010, 39, 890–903. [Google Scholar] [CrossRef] [PubMed]
Reference | Sample Size | TMS Measures | Target Area | Pain Measures | Other Measures | TMS Results | Other Results | Adverse Events |
---|---|---|---|---|---|---|---|---|
[13] Salerno et al., 2000 | 13 FM W, 13 HC W, 5 RA W | spTMS: CSP, MEPs ppTMS: SICI, ICF | M1 | None | None | FM: ICF↓, SICI↓, CSP↓ | None | NR |
[14] Mhalla et al., 2010 | 46 FM W, 21 non-FM W | spTMS: RMT, MEPs ppTMS: SICI, ICF | M1 | VAS | CPM, EEG, fatigue, anxiety, depression, CAT | FM: ICF↓, SICI↓ | r- between ICF/SICI and fatigue, depression, and CAT scores | NR |
[15] Uygur-Kucukseymen et al., 2020 | 36 FM (23 W) | spTMS: MEPs ppTMS: SICI, ICF | M1 | VAS | CPM, EEG | r+ between SICI and theta ERD; r- between ICF and delta ERD | r- between VAS scores and α/ß EEG power; r- between VAS and θ/δ power. r+ between ERD and δ power | NR |
[16] Tiwari et al., 2021 | 34 FM (W), 30 PFC (W) | spTMS: RMT, MEPs | M1 | NPRS | MMSI, Stroop color-word, ESS, PSQI | FM vs. PFC: No TMS differences | FM vs. PFC: MMSI↓, Stroop↓, RT↑, PSQI↑ | Occasional mild headache (up to 24 h) |
[17] Cardinal et al., 2019 | 18 FM, 19 MDD, 29 HC (W) | spTMS: CSP, MEPs, RMT ppTMS: SICI, ICF | M1 | VAS, NPS, HPT | BDNF, QST, BDI, PSQI, FIQ, STAI, B-PCS | FM (vs. MDD and HC): SICI↑ | FM vs. MDD: BDNF↑, NPS→. r+ between NPS and SICI; r- between HPT and BDNF values | NR |
[18] Deitos et al., 2018 | 17 FM + Pgb, 10 HC + Pgb (W) | spTMS: CSP, MEPs, RMT ppTMS: SICI, ICF | M1 | VAS, NPS, PPT | BDI, B-PCS, STAI, MINI, FIQ, PSQI, BDNF, S100-B protein | FM + Pgb: VAS↓, SICI↓, CSP↑ | FM + Pgb: r+ between BDNF and CSP; r- between S100-B and CSP | NR |
[19] Schwenkreis et al., 2011 | FMET: 16 FM, 23 MD, 23 HC. TMS before and after FMET | spTMS: CSP, RMT ppTMS: ICI, ICF | M1 | None | None | FM and MD (pre-FMET): ICI↓. HC (post-FMET): ICI↓ | - | NR |
[20] Caumo et al., 2016 | FM W (n = 19), MPS W (n = 54), OA W (n = 27), HC (n = 14) | spTMS: CSP, RMT, MEPs ppTMS: SICI, ICF | M1 | CPM-NPS, QST | BDNF, BDI-II, B-PCS | FM and MPS: SICI↓ | FM and MPS: r- between SICI and BDNF. r- between BDNF and NPS changes | NR |
Reference | Study Design | Sample Size | rTMS Protocol | Target Area | Intensity | Stimuli/Session | No. of Sessions | Physiological Measures | Pain Measures | Other Measures | Physiological Outcomes | Pain Outcomes | Other Outcomes | Adverse Effects |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[21] Izquierdo-Alventosa et al., 2021 | RDB, SC, PG: TMS vs. PE vs. control (NI) | 49 FM W | 60 trains/ 5 s pulses; 10 Hz; 15 s interval/each train | M1 | 80% RMT | 3000 pulses | 10 | - | VAS, PPT | FIQR, PhC, 6-MWT, HAD, BDI-II, PSS-10, SLS | - | TMS: PPT↑, VAS↓. PE: PPT↑ | TMS; 6 MWT↑, HAD↓, BDI-II↓, PSS-10↓, PhC↑. PE: FIQR↓, PhC↑, PSS-10↓, BDI-II↓, HAD↓, 6 MWT↑ | NR |
[22] Guinot et al., 2021 | RDB, SC, PG. rTMS vs. sham plus AT +PBE +RXT | 37 FM (33 W) | active vs. sham rTMS, 10 Hz | M1 | 80% RMT | 2000 pulses | 16 (12 for RXT) | CF, autonomic responses | VAS | FIQ, BDI, PSQI, PCS, PGIC | No BG differences: CF↑ | No BG differences: VAS↓, PCS↓ | No BG differences: BDI↓, FIQ↓ | None |
[23] Fitzgibbon et al., 2018 | RDB, SC, PG | 26 FM (24 W): 14 rTMS (13 W), 12 sham (11 W) | 75 trains-4 s, 10 Hz | DLPFC | 120% RMT | 3000 pulses | 20 | - | SF-MPQ, BPI, NPRS | ACR, MFI, FIQ, PCS, PGIC, BDI-II, BAI | - | No BG differences: SF-MPQ↓, BPI↓, NPRS↓ | rTMS: MFI↓ | Discomfort, headaches, pain, nausea, dizziness (both groups) |
[24] Short et al., 2011 | RDB, SC, PG | 20 FM (17 W): TMS (n = 10), sham (n = 10) | 80 trains, 15 s, 10 Hz | DLPFC | 120% RMT | 4000 pulses | 10 | - | NPRS, BPI, FIQ | HDRS | - | Pre vs. post-TMS: NPRS↓, BPI↓ | Pre vs. post-TMS: HDRS↓ | Headache (2 subjects). No dropouts |
[25] Mhalla et al., 2011 | RDB, SC, PG | 16 FM (rTMS), 14 FM (sham) | 15 trains, 10 s pulses, 10 Hz, 50 s interval/train | M1 | 80% RMT | 1500 pulses | 14 | RMT, MEPs, SICI, ICF | NPS, BPI, MPQ PCS | FIQ, HAD, BDI | Active rTMS: SICI↑, ICF↑. r- between SICI and NPS. r- between ICF and PCS, and between ICF and FIQ | Active rTMS: NPS↓, BPI↓, MPQ↓ (r+ FIQ). PCS↓ | Active rTMS: FIQ↓ | 1 sham + 1 active dropped out (headache). Transient mild headache, dizziness (both groups) |
[26] Tzabazis et al., 2013 | DB, SC, Cr (4 coils rTMS vs. sham) | 16 FM (14 W), 16 HC (11 W) | 1/10 Hz vs. sham: PMF (×4 coils) | dACC | 110% RMT | 1800 pulses | 1 (HC), 20 (FM) | - | BPI, NRS | - | - | 1 Hz rTMS (HC): NRS↓. 10 Hz rTMS (FM): NRS↓ | - | Pruritus, headache, back pain, neck pain, otalgia, nausea, lightheadedness, hot flashes, scalp pain (both groups) |
[27] Forogh et al., 2021 | RSB; rTMS vs. anodal tDCS effects | 15 FM W (tDCS), 15 FM W (rTMS) | 10 Hz, rest time (15 s) | DLPFC | 100% RMT | 1000 pulses | 3 | - | VAS | DASS-21, FIQR | - | rTMS and tDCS: VAS↓. rTMS effect > tDCS at 6 and 12 weeks of follow-up | - | Mild, transient, self-limiting headache (2 patients) |
Reference | Study Design | Sample Size | Anode electrode EEG Position | Return Electrode EEG Position | Target Area | Intensity | Electrode Size | Duration | Sessions Per Week | Total Sessions | Physiological Measures | Pain Measures | Other Measures | Physiological Outcomes | Pain Outcomes | Other Measures Outcomes | Adverse Effects |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[27] Forogh et al., 2021 | RSB, PG: tDCS vs. rTMS | 15 (tDCS) + 15 (rTMS) FM W | F3 | Fp2 | DLPFC | 2 mA | 35 cm2 | 20 min | 3 | 3 | - | VAS | DASS-21, FIQR | - | rTMS and tDCS: VAS↓. rTMS effect > tDCS at 6 and 12 weeks of follow-up | - | Headache up to 24 h |
[28] Morin et al., 2021 | Pre vs. post tDCS + FT (single group, no sham) | 10 FM W | C3/C4 | Fp2/Fp1 | M1 CL dominant hand | 2 mA | 35 cm2 | 20 min | 5 | 5 | - | VAS | Fatigue (Borg scale), FT | - | VAS→ | FT↑ | None |
[29] de Melo et al., 2020 | RDB, SC, PG | FM W: tDCS 5 days (11); tDCS 10 days (9); sham 5 days (11) | NS | Fp2 | M1 | 2 mA | 35 cm2 | 20 min | 5 vs. 10 | 5 vs. 10 | EEG oscillations (α frequency band) in F3, F4, P3, P4, O1, O2 | VAS | CIRS, MMSE, BAI | tDCS (5 days): α↓ in frontal and parietal regions | All groups: VAS↓ | - | None |
[30] Lim et al., 2022 | Cr, SC, SB: tDCS vs. sham | 12 FM W and 15 HC W | C3 | Fp2 | M1 | 2 mA | 35 cm2 | 20 min | 5 | 5 | fMRI BOLD | VAS, MPQ | - | FM baseline (vs. HC): BOLD↓ (vmPFC, lateral PFC, AI), BOLD↑ (PI). FM tDCS (vs. sham): BOLD↑ (rACC, lateral PFC, thalamus). Sham (vs. baseline): BOLD↓ (dorsomedial PFC, pCC, precuneus) | FM tDCS (vs. sham): VAS↓, r- between VAS and BOLD (rACC/vmPFC), r+ between VAS and BOLD (PI) | - | NR |
[31] Yoo et al., 2018 | RSB, SC, PG: DLPFC tDCS + ON tDCS vs. sham ON tDCS vs. ON tDCS, (sequential order) | 58 FM: DLPFC + ON tDCS (21, 20 W); Sham ON tDCS (16, 15 W); ON tDCS (21, 20 W) | Anode: right DLPFC (NS EEG position) vs. anode: right ON | Left DLPFC vs. right ON | DLPFC vs. ON | 2 mA (DLPFC), 1.5 mA (ON) | 35 cm2 | ON tDCS: 20 min, DLPFC + ON tDCS: 20 + 20 min | 2 | 8 | - | NRS | FIQ, BDI | - | ON tDCS: NRS↓ | ON tDCS: FIQ↓, BDI↓. DLPFC + ON tDCS: BDI↓ | Tingling, itching |
[32] Samartin-Veiga et al., 2022 | RDB, SC | M1 (29), DLPFC (26), OIC (28), sham (25) FM W | C3 vs. F3 vs. C5 (sham with any of these targets) | M1 and DLPFC: Fp2. OIC: F3, FC1, F8, FC5, P3 | M1 vs. DLPFC vs. OIC | M1 and DLPFC: 2 mA. OIC: anode current: 1.144 mA | 25 cm2 (M1 and DLPFC). 3.14 cm2 (OIC) | 20 min | 5 | 15 | - | - | FSQ, SF-36, FIQR | - | - | All groups: SF-36↓, FIQR↓ | 9 dropouts (due to NR adverse effects) |
[33] Kang et al., 2020 | OS: pre- vs. post-tDCS | 46 FM (44 W) | C3 | C4 | M1 | 2 mA | NR | 20 min | 5 | 5 | - | VAS, BPI | FIQ, BFI, BDI, STAI, MOS-SS | - | Post-tDCS: VAS↓ | Post-tDCS: FIQ↓, BDI↓, BFI↓ | Mild dizziness, light headache, transient sleep disturbance. No dropouts |
[34] Brietzke et al., 2020 | RDB, SC, PG (in home, neoprene cap, tDCS) | 10 FM W (anodal tDCS) + 10 FM W (sham) | F3 | F4 | DLPFC | 2 mA | 35 cm2 | 30 min | 5 | 60 | BDNF | VAS, B-PCP-S, PPT, HPT | Analgesic use, BDI, PSQI | tDCS: BDNF↑ predicted VAS↓ | tDCS: VAS↓, analgesic use↓, B-PCP-S↓, HPT↑ | tDCS: BDI↓, PSQI↓ | Both groups: burning, tingling, itchiness, redness, headache, neck pain, mood swings, concentration difficulties |
[35] de Paula et al., 2022 | RDB, SC, PG: Active/sham tDCS vs. LDN (4.5 mg/day) vs. LDN placebo | FM W: LDN + tDCS (21), LDN + sham (22), LDN placebo + tDCS (22), LDN placebo + sham (21) | NS | CL SO area (NS EEG position) | M1 | 2 mA | NR | 20 min | 5 | 5 | BDNF | VAS, PCS, PCP-S, PPT, CPM | STAI, FIQ, BDI-II | LDN + sham: BDNF↓. LDN placebo + tDCS: BDNF↓ | LDN + tDCS, LDN + sham, placebo + sham: VAS↓. LDN + tDCS: PCP-S↓ | LDN + tDCS: FIQ↓, STAI↓. All active interventions: BDI-II↓ | tDCS: ↑rate of tingling, itching, blushing vs. sham. All tDCS groups: headache, neck ache, scalp pain, burning, sleepiness, mood changes |
[36] To et al., 2017 | RSB, SC, PG | 42 FM (36 W): 15 C2; 11 DLPFC; 16 sham (8 C2 + 8 DLPFC) | F3 Left C2 nerve dermatome | F4 Right C2 nerve dermatome | DLPFC, ON | 1.5 mA | 35 cm2 | 20 min | 2 | 8 | - | NRS, PCS | MFIS | - | C2: NRS↓, DLPFC: NRS↓ | DLPFC: MFIS↓ | None |
[37] Villamar et al., 2013 | DB, SC, Cr (HD-tDCS 4 × 1 rings) | 18 FM (15 W) | Center electrode: C3 (anode) vs. C3 (cathode) vs. sham | Cz, F3, T7, and P3 | M1 | 2 mA | Ag/AgCl electrodes | 20 min | 1 | 3 | - | VAS, SWMs (pain), PPT, DNICs | QOL, VAS (anxiety), BDI-II, SWMs (touch detection threshold) | - | Anodal/ cathodal: VAS↓ | Anodal: SWMs↑ | Active and sham: mild/moderate tingling, itching sensations (few min long) |
[38] Desbiens et al., 2020 | CS: sham + PhT (17 days later: tDCS + PhT) | 1 FM W | Left M1 (NS EEG position) | NS | M1 | 2 mA | 35 cm2 | 20 min | 3 | 3 | RMT | NRS, BPI | FIQ, NRS (fatigue), PhT performance | RMT→ | tDCS + PhT: NRS↓, BPI↓ | tDCS/ sham +PhT: NRS (fatigue)↓, PhT↑, FIQ↓ | NR |
[39] Valle et al., 2009 | RDB, SC, PG | 41 FM W: M1 = 14, DLPFC = 13, Sham M1 = 14 | C3 vs. F3 | Fp2 | M1, DLPFC | 2 mA | 35 cm2 | 20 min | 5 | 10 | - | VAS | FIQ, BDI, IDATE, GDS, MMSE | - | M1 and DLPFC tDCS: VAS↓ (longer lasting effects with M1 tDCS) | M1 and DLPFC tDCS: FIQ↓ | All groups: Skin redness, tingling |
[40] Fagerlund et al., 2015 | RDB, SC, PG | 48 FM (45 W): tDCS: 24, sham: 24 | C3 | Fp2 | M1 | 2 mA | 35 cm2 | 20 min | 5 | 5 | - | NRS | FIQ, HADS, SCL-90R, SF-36 | - | tDCS: NRS↓ | tDCS: FIQ↓ | Skin redness, sleepiness, tingling (no BG differences) |
[41] Caumo et al., 2022 | RDB, SC, PG (home based tDCS) | FM W: tDCS (30), sham (15) | F3 | F4 | DLPFC | 2 mA | 35 cm2 | 20 min | 5 | 20 | BDNF | NPS, PCS, PCP-S, HPT, HPTo | BDI-II, PSQI, FIQ, STAI, CSI | r+ between BDNF and PCP-S. r-between BDNF and PCS | tDCS: PCS↓, PCP-S↓, HPTo↑. r+ between PCS and PCP-S | tDCS: BDI-II↓, PSQI↓. r+ between PCP-S and BDI-II and PSQI | Tingling, burning, redness, headache, neck pain, mood swings, concentration difficulties (higher frequency in tDCS) |
[42] Khedr et al., 2017 | RDB, SC, PG | 36 FM; tDCS: 18 (17 W), sham: 18 (17 W) | C3 | CL arm | M1 | 2 mA | 24 cm2 | 20 min | 5 | 10 | Beta-endorphin | VAS, WPI, PPT | SS, HAM-D, HAM-A | tDCS: r- between beta-endorphin and WPI and VAS | tDCS: VAS↓, WPI↓, PPT↓ | tDCS: SS↓, HAM-A↓, HAM-D↓. r- between beta-endorphin and SS, HAM-A, and HAM-D | Itching and skin redness in 3 patients (tDCS group) |
[43] Mendonca et al., 2011 | RDB, SC, PG | 30 FM (28 W) randomly divided into 5 groups | Anodal/cathodal C3 vs. anodal/cathodal Fp2 vs. sham | Transition of the cervical and thoracic spine | M1 vs. SO region | 2 mA | 80 cm2 extracephalic electrode, 16 cm2 cranial electrodes | 20 min | 1 | 1 | E-field simulation | VNS, PPT, BD | - | Dominantly temporoparietal current flow in M1 configurations | Cathodal/anodal SO: VNS↓ | - | Sham and real tDCS: mild tingling |
[44] Silva et al., 2017 | RDB, SC, Cr: tDCS vs. sham + a go/no-go task | 40 FM W | F3 | Fp2 | DLPFC | 1 mA | 35 cm2 | 20 min | 1 +1 (tDCS vs. sham) | 1 +1 (tDCS vs. sham) | - | VAS, B-PCS, HPT, HPTo | PSQI, FIQ, BDI-II, MINI, ANT | - | tDCS: HPT↑, HPTo↑ | tDCS: ANT↑ | Tingling, burning, itching (no BG differences) |
[45] Santos et al., 2018 | RDB, SC, PG: tDCS + DN-B | FM W: tDCS (19), sham (20) | F3 | Fp2 | DLPFC | 2 mA | 35 cm2 | 20 min | NR | 8 | BDNF | - | DN-B, RAVLT, PASAT, COWAT, FDS, BDS | tDCS: r- between BDNF and RAVLT | - | tDCS: RAVLT↑, COWAT↑, FDS↑ | NR |
[46] De Ridder et al., 2017 | RDB, SC, Cr: tDCS vs. sham (after washout) | 19 FM (15 W) and 19 HC | Right C2 dermatome | Left C2 dermatome | OCF | 1.5 mA | 35 cm2 | 20 min | 3 active tDCS + 3 sham | 3 active tDCS + 3 sham | sLORETA, EEG | NRS, PCS | FIQ | FM baseline: dorsal ACC↑, PM/DLPFC↑; after tDCS, pregenual ACC↑ | tDCS: NRS↓, PCS↓ | tDCS: FIQ↓ | Transient redness and slight itching after tDCS |
[47] Foerster et al., 2015 | L, Cr, NRa: tDCS vs. sham (after washout) | 12 FM W | Left M1 (NS EEG position) | Right SO (NS EEG position) | M1 | 2 mA | NR | 20 min | 5 active tDCS + 5 sham | 5 active tDCS + 5 sham | 1H-MRS | VAS, LF-MPQ, SF-MPQ | PANAS | tDCS: Glx (ACC)↓, sham: NAA (PI)↑, tDCS/sham: r- between baseline Glx (ACC) and VAS after stimulation | tDCS: VAS↓ | tDCS: PANAS↓ | NR |
[48] Matias et al., 2022 | RDB, SC, PG: tDCS + FE | 31 FM W: tDCS + FE (17), sham + FE (14) | C3 | Fp2 | M1 | 2 mA | 35 cm2 | 20 min | 5 | 5 | - | VAS, PPT | MWT6, SSt, FIQ, BDI, MINI, VAS (anxiety), MFI, FS | - | Real and sham tDCS+ FE: VAS↓, PPT↑ | - | Headache, tingling, dizziness, nausea (no BG differences) |
[49] Samartin-Veiga et al., 2022 | RDB, SC, PG | 130 FM W: M1 tDCS: 34, DLPFC: 33, OIC: 33, sham: 30 | C3 vs. F3. OIC with multielectrode montage: FC5: 0.579 mA and C5: 1.144 mA | M1 and DLPFC: Fp2. OIC: F3: −0.565 mA, FC1: −0.508 mA, F8: −0.158 mA, and P3: −0.492 mA | M1, DLPFC, OIC | 2 mA | 25 cm2 (M1/DLPFC), 3.14 cm2 disc electrodes (OIC) | 20 min | 5 | 15 | - | NRS, FIQ, PPT | FIQ (fatigue), HADS, MFE-30, PSQI | - | All groups: NRS↓, PPT↑, FIQ↓ | All groups: MFE-30↓, PSQI↓, FIQ↓. tDCS groups: HADS↓ | Tickling, itching, burning. No BG differences |
[50] Castillo-Saavedra et al., 2016 | OL, single arm, phase II (HD-tDCS; no sham) | 14 FM (12 W) | C3 | CZ, T7, P3 and F3 | M1 | 2 mA | Standard Ag/AgCl ring electrodes | 20 min | 5 | ≤26 | EEG | VAS, PPT, SWMs | FIQ, BDI | Responders: baseline BNA↑ | VAS↓, VAS (50%)↓ in 7 out of 14 patients | FIQ↓ | Tingling sensation (scalp), mild headache, mild pain, skin redness |
[51] Cummiford et al., 2016 | SB, Cr, NRa: tDCS vs. sham (after washout) | 12 FM W | C3 | Fp2 | M1 | 2 mA | 35 cm2 | 20 min | 5 for sham tDCS (one week apart, 5 for active tDCS) | 5 sham + 5 active tDCS | rsFC fMRI | VAS, SF-MPQ | PANAS | sham: rsFC↓ (VPL-SI-Am). tDCS: rsFC↓ (VLT, mPFC, SMA) | tDCS and sham: r- between rsFC (M1-VLT, S1-AI, VLT-PAG) and VAS. tDCS and sham: r+ between rsFC (VLT/VPL-PI, M1, S1) and VAS | tDCS: PANAS negative affect↓ | NR |
[52] Roizenblatt et al., 2007 | RDB, SC, PG | 32 FM W: Sham (10), M1 tDCS (11), DLPFC tDCS (11) | C3 vs. F3 vs. sham C3 | Fp2 | M1, DLPFC | 2 mA | 35 cm2 | 20 min | 5 | 5 | PSG | VAS | VAS (tiredness, anxiety), CGI, PGA, BDI, FIQ, SF-36, MMSE | M1 tDCS: SE↑, SA↓; r- between BM and SE, r- between SE and FIQ, r+ between REM latency and FIQ, r+ between SL and VAS, r+ between SL and FIQ. DLPFC tDCS: SE↓, REM↑, SL↑ | M1 tDCS: VAS↓ | M1 tDCS: FIQ↓ | Well-tolerated; no BG differences |
[53] Riberto et al., 2011 | RDB, SC, PG: tDCS + multiple rehabilitation | FM W: 11 tDCS + 12 sham | C3 | Fp2 | M1 | 2 mA | 35 cm2 | 20 min | 1 | 10 | - | VAS, SF-36 (pain) | FIQ, HAQ, BDI, HAM-D | - | SF-36↓ (larger in the tDCS group) | No BG differences | None |
[54] Fregni et al., 2006 | RDB, SC, PG | 32 FM W (M1 tDCS: 11; DLPF tDCS: 11; sham: 10) | C3 vs. F3 | Fp2 | M1, DLPFC | 2 mA | 35 cm2 | 20 min | 5 | 5 | - | VAS | CGI, PGA, FIQ, SF-36, BDI, VAS (anxiety), MMSE, Stroop, DSfb, RT task | - | VAS↓ (greater in the M1 tDCS group) | M1 tDCS: FIQ↓, SF-36↑ | All groups: sleepiness and headache |
[55] Plazier et al., 2015 | RDB, SC, Cr: OCF subcutaneous stimulation, then ON tDCS and sham | 9 FM W | Left C2 dermatome | Right C2 dermatome | OCF | 1.5 mA | 35 cm2 | 20 min | 3 | 3 | - | NRS | - | - | ON tDCS: NRS↓. r+ between NRS (ON tDCS) and short-term NRS (invasive stimulation) | - | None |
[56] Mendonca et al., 2016 | RDB, SC, PG: tDCS + AE | 45 FM (44 W); M1 tDCS + AE: 15; Sham + AE: 15; M1 tDCS: 15 | C3 | Fp2 | M1 | 2 mA | 35 cm2 | 20 min | 5 | 5 | ICI, ICF | VNS, PPT | VNS (anxiety), SF-36, BDI | No BG differences | M1 tDCS + AE group (vs. M1 tDCS alone): VAS↓ | VNS (anxiety)↓, BDI↓ (in both real tDCS groups but larger in the tDCS + AE) | Tingling, skin redness (no BG differences) |
[57] DalĺAgnol et al., 2015 | CS: M1 tDCS vs. DLPFC tDCS vs. sham | 1 FM W | NR | NR | M1, DLPFC | 2 mA | NR | 20 min | NR | 10 each intervention | - | VAS, PCS | FIQ, Brazilian STAI, BDI | - | DLPFC tDCS: VAS↓, PCS↓; M1 tDCS: VAS↓ | DLPFC: STAI (trait)↓, RC↓; M1: STAI (state)↓, BDI↓ | Skin redness and tingling |
[58] Ramasawmy et al., 2022 | RDB, SC, PG: tDCS + MM vs. sham + MM vs. NI | 30 FM (28 W); M1 tDCS + MM: 10; sham + MM: 10; NI: 10 | 5 cm to the left of Cz | Right SO area (NS EEG position) | M1 | 2 mA | Anode: 16 cm2 Cathode: 50 cm2 | 20 min | 5 | 10 | - | NRS, PPT | FIQ, DASS-21, NRS (sleep quality) | - | No BG differences | tDCS + MM: FIQ↓ | Light headache, vertigo, fatigue, nervousness, skin redness (no BG differences) |
[59] Serrano et al., 2022 | RDB, SC, PG: Home-based tDCS | 36 FM W: DLPFC: 24; sham: 12 | F3 | F4 | DLPFC | 2 mA | 35 cm2 | 20 min | 5 | 20 | BDNF | CPM, PPT, B-PCS | TMT, WAIS-III (Ds), COWAT, FIQ, BDI-II, PSQI | r- between BDNF and TMT, Ds, and COWAT. r+ between BDNF and FIQ | Pain͢͢͢͢͢ measures͢͢→ | DLPFC tDCS: TMT↑, Ds↑, COWAT↑, FIQ↓ | Headache, tingling, burning, redness, itching (no BG differences) |
[60] Arroyo-Fernández et al., 2022 | RDB, SC, PG: anodal vs. sham tDCS + exercising, vs. NI) | 120 FM (113 W) | C3 | Fp2 | M1 | 2 mA | 25 cm2 | 20 min | 3 + 2 | 5 | - | VAS, PPT | FIQ, IDATE, PCS, BDI-II | - | Pre vs. post anodal tDCS: VAS↓ | Pre vs. post anodal and sham tDCS: PCS↓, BDI-II↓, FIQ↓ | None |
[61] La Rocca et al., 2022 | RDB, SC, PG: anodal vs. sham tDCS +FTT | 54 FM (41 W, anodal tDCS: 28; sham: 26); 22 HC (16 W, anodal tDCS: 11; sham: 11) | C3 | Fp2 | M1 | 2 mA | 35 cm2 | 20 min | 1 | 1 | fNIRS | - | FTT | Anodal tDCS: M1 activation↑ | - | FTT no BG differences | NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molero-Chamizo, A.; Nitsche, M.A.; Barroso, R.T.A.; Bailén, J.R.A.; Palomeque, J.C.G.; Rivera-Urbina, G.N. Non-Invasive Electric and Magnetic Brain Stimulation for the Treatment of Fibromyalgia. Biomedicines 2023, 11, 954. https://doi.org/10.3390/biomedicines11030954
Molero-Chamizo A, Nitsche MA, Barroso RTA, Bailén JRA, Palomeque JCG, Rivera-Urbina GN. Non-Invasive Electric and Magnetic Brain Stimulation for the Treatment of Fibromyalgia. Biomedicines. 2023; 11(3):954. https://doi.org/10.3390/biomedicines11030954
Chicago/Turabian StyleMolero-Chamizo, Andrés, Michael A. Nitsche, Rafael Tomás Andújar Barroso, José R. Alameda Bailén, Jesús Carlos García Palomeque, and Guadalupe Nathzidy Rivera-Urbina. 2023. "Non-Invasive Electric and Magnetic Brain Stimulation for the Treatment of Fibromyalgia" Biomedicines 11, no. 3: 954. https://doi.org/10.3390/biomedicines11030954
APA StyleMolero-Chamizo, A., Nitsche, M. A., Barroso, R. T. A., Bailén, J. R. A., Palomeque, J. C. G., & Rivera-Urbina, G. N. (2023). Non-Invasive Electric and Magnetic Brain Stimulation for the Treatment of Fibromyalgia. Biomedicines, 11(3), 954. https://doi.org/10.3390/biomedicines11030954