Melatonin Supplement Plus Exercise Effectively Counteracts the Challenges of Isoproterenol-Induced Cardiac Injury in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Animals and Experimental Model
2.2. Measurement of Oxidative Stress-Associated Markers in Cardiac Tissue
2.3. Measurement of Biochemical Parameters in Serum and Cardiac Tissues
2.4. Measurement of Gene Expression in Cardiac Tissues
2.5. Cardiac Mitochondrial Function Measurement
2.6. Histology, Immunohistochemistry, and TUNEL Assay
2.7. Statistical Analysis
3. Results
3.1. Effect of Exercise and Melatonin on Body Weight, Heart Weight, and Cardiac Function
3.2. Effect of Exercise and Melatonin on Biochemical Parameters in Serum and Cardiac Tissue
3.3. Effect of Exercise and Melatonin on Oxidative Stress-Associated Markers in Cardiac Tissue
3.4. Effect of Exercise and Melatonin on Mitochondrial Function
3.5. Effect of Exercise and Melatonin on Inflammatory Cytokine, ER Stress Markers, and Histopathology in Cardiac Tissue
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghorpade, A.G.; Shrivastava, S.R.; Kar, S.S.; Sarkar, S.; Majgi, S.M.; Roy, G. Estimation of the cardiovascular risk using World Health Organization/International Society of Hypertension (WHO/ISH) risk prediction charts in a rural population of South India. Int. J. Health Policy Manag. 2015, 4, 531–536. [Google Scholar] [CrossRef]
- Rahman, M.M.; Kwon, H.S.; Kim, M.J.; Go, H.K.; Oak, M.H.; Kim, D.H. Melatonin supplementation plus exercise behavior ameliorate insulin resistance, hypertension and fatigue in a rat model of type 2 diabetes mellitus. Biomed. Pharmacother. Biomed. Pharmacother. 2017, 92, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Mendis, S.; Thygesen, K.; Kuulasmaa, K.; Giampaoli, S.; Mahonen, M.; Ngu Blackett, K.; Lisheng, L.; Writing group on behalf of the participating experts of the WHO consultation for revision of WHO definition of myocardial infarction. World Health Organization definition of myocardial infarction: 2008–09 revision. Int. J. Epidemiol. 2011, 40, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Tang, F.; Yang, Y.; Lu, M.; Luan, A.; Zhang, J.; Yang, J.; Wang, H. Astragaloside IV protects against isoproterenol-induced cardiac hypertrophy by regulating NF-kappaB/PGC-1alpha signaling mediated energy biosynthesis. PLoS ONE 2015, 10, e0118759. [Google Scholar] [CrossRef]
- Patel, V.; Upaganlawar, A.; Zalawadia, R.; Balaraman, R. Cardioprotective effect of melatonin against isoproterenol induced myocardial infarction in rats: A biochemical, electrocardiographic and histoarchitectural evaluation. Eur. J. Pharmacol. 2010, 644, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, X.Z.; Wu, Y.; Ni, Y.J.; Liu, J.H.; Gong, M.; Wang, X.H.; Wei, F.; Wang, T.Z.; Yuan, Z.; Ma, A.Q.; et al. Isoproterenol instigates cardiomyocyte apoptosis and heart failure via AMPK inactivation-mediated endoplasmic reticulum stress. Apoptosis Int. J. Program. Cell Death 2013, 18, 800–810. [Google Scholar] [CrossRef] [PubMed]
- Munzel, T.; Camici, G.G.; Maack, C.; Bonetti, N.R.; Fuster, V.; Kovacic, J.C. Impact of Oxidative Stress on the Heart and Vasculature: Part 2 of a 3-Part Series. J. Am. Coll. Cardiol. 2017, 70, 212–229. [Google Scholar] [CrossRef]
- Rius-Perez, S.; Torres-Cuevas, I.; Millan, I.; Ortega, A.L.; Perez, S. PGC-1alpha, Inflammation, and Oxidative Stress: An Integrative View in Metabolism. Oxid. Med. Cell Longev. 2020, 2020, 1452696. [Google Scholar] [CrossRef]
- Buttar, H.S.; Li, T.; Ravi, N. Prevention of cardiovascular diseases: Role of exercise, dietary interventions, obesity and smoking cessation. Exp. Clin. Cardiol. 2005, 10, 229–249. [Google Scholar]
- Adhihetty, P.J.; O’Leary, M.F.; Chabi, B.; Wicks, K.L.; Hood, D.A. Effect of denervation on mitochondrially mediated apoptosis in skeletal muscle. J. Appl. Physiol. 2007, 102, 1143–1151. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lee, S.J.; Mun, A.R.; Adam, G.O.; Park, R.M.; Kim, G.B.; Kang, H.S.; Kim, J.S.; Kim, S.J.; Kim, S.Z. Relationships between blood Mg2+ and energy metabolites/enzymes after acute exhaustive swimming exercise in rats. Biol. Trace Elem. Res. 2014, 161, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Mesa, Y.; Gimenez-Llort, L.; Lopez, L.C.; Venegas, C.; Cristofol, R.; Escames, G.; Acuna-Castroviejo, D.; Sanfeliu, C. Melatonin plus physical exercise are highly neuroprotective in the 3xTg-AD mouse. Neurobiol. Aging 2012, 33, 1124-e13. [Google Scholar] [CrossRef] [PubMed]
- Carloni, S.; Albertini, M.C.; Galluzzi, L.; Buonocore, G.; Proietti, F.; Balduini, W. Melatonin reduces endoplasmic reticulum stress and preserves sirtuin 1 expression in neuronal cells of newborn rats after hypoxia-ischemia. J. Pineal Res. 2014, 57, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Raygan, F.; Ostadmohammadi, V.; Bahmani, F.; Reiter, R.J.; Asemi, Z. Melatonin administration lowers biomarkers of oxidative stress and cardio-metabolic risk in type 2 diabetic patients with coronary heart disease: A randomized, double-blind, placebo-controlled trial. Clin. Nutr. 2019, 38, 191–196. [Google Scholar] [CrossRef]
- El Assar, M.; Alvarez-Bustos, A.; Sosa, P.; Angulo, J.; Rodriguez-Manas, L. Effect of Physical Activity/Exercise on Oxidative Stress and Inflammation in Muscle and Vascular Aging. Int. J. Mol. Sci. 2022, 23, 8713. [Google Scholar] [CrossRef]
- Yeleswaram, K.; McLaughlin, L.G.; Knipe, J.O.; Schabdach, D. Pharmacokinetics and oral bioavailability of exogenous melatonin in preclinical animal models and clinical implications. J. Pineal. Res. 1997, 22, 45–51. [Google Scholar] [CrossRef]
- Rahman, M.M.; Park, S.J.; Jeon, H.Y.; Kim, S. Exercise and oral melatonin attenuate anxiety and depression like behavior in type 2 diabetic rats. J. Adv. Biotechnol. Exp. Ther. 2021, 4, 238–247. [Google Scholar] [CrossRef]
- Fan, Y. Cardioprotective Effect of Rhapontigenin in Isoproterenol-Induced Myocardial Infarction in a Rat Model. Pharmacology 2019, 103, 291–302. [Google Scholar] [CrossRef]
- Chen, Y.; Gui, D.; Chen, J.; He, D.; Luo, Y.; Wang, N. Down-regulation of PERK-ATF4-CHOP pathway by Astragaloside IV is associated with the inhibition of endoplasmic reticulum stress-induced podocyte apoptosis in diabetic rats. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2014, 33, 1975–1987. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Zhang, D.; Chen, J.; Liu, S.; Berk, M. The effects of apoptosis vulnerability markers on the myocardium in depression after myocardial infarction. BMC Med. 2013, 11, 32. [Google Scholar] [CrossRef]
- Guo, R.; Liu, B.; Zhou, S.; Zhang, B.; Xu, Y. The protective effect of fasudil on the structure and function of cardiac mitochondria from rats with type 2 diabetes induced by streptozotocin with a high-fat diet is mediated by the attenuation of oxidative stress. Biomed. Res. Int. 2013, 2013, 430791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.; Chen, C.; Chen, A.; Wu, Y.; Wen, J.; Huang, F.; Zeng, Z. Oridonin Attenuates Myocardial Ischemia/Reperfusion Injury via Downregulating Oxidative Stress and NLRP3 Inflammasome Pathway in Mice. Evid.-Based Complement. Alternat. Med. 2020, 2020, 7395187. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xie, Y.H.; Yang, Q.; Wang, S.W.; Zhang, B.L.; Wang, J.B.; Cao, W.; Bi, L.L.; Sun, J.Y.; Miao, S.; et al. Cardioprotective effect of paeonol and danshensu combination on isoproterenol-induced myocardial injury in rats. PLoS ONE 2012, 7, e48872. [Google Scholar] [CrossRef]
- Pisano, A.; Cerbelli, B.; Perli, E.; Pelullo, M.; Bargelli, V.; Preziuso, C.; Mancini, M.; He, L.; Bates, M.G.; Lucena, J.R.; et al. Impaired mitochondrial biogenesis is a common feature to myocardial hypertrophy and end-stage ischemic heart failure. Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol. 2016, 25, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, J.; Tanwar, V.; Golechha, M.; Siddiqui, K.M.; Nag, T.C.; Ray, R.; Kumari, S.; Arya, D.S. Crocus sativus L. (saffron) attenuates isoproterenol-induced myocardial injury via preserving cardiac functions and strengthening antioxidant defense system. Exp. Toxicol. Pathol. Off. J. Ges. Toxikol. Pathol. 2012, 64, 557–564. [Google Scholar] [CrossRef]
- Peoples, J.N.; Saraf, A.; Ghazal, N.; Pham, T.T.; Kwong, J.Q. Mitochondrial dysfunction and oxidative stress in heart disease. Exp. Mol. Med. 2019, 51, 1–13. [Google Scholar] [CrossRef]
- Souza-Neto, F.V.; Islas, F.; Jimenez-Gonzalez, S.; Luaces, M.; Ramchandani, B.; Romero-Miranda, A.; Delgado-Valero, B.; Roldan-Molina, E.; Saiz-Pardo, M.; Ceron-Nieto, M.A.; et al. Mitochondrial Oxidative Stress Promotes Cardiac Remodeling in Myocardial Infarction through the Activation of Endoplasmic Reticulum Stress. Antioxidants 2022, 11, 1232. [Google Scholar] [CrossRef]
- Kang, J.W.; Hong, J.M.; Lee, S.M. Melatonin enhances mitophagy and mitochondrial biogenesis in rats with carbon tetrachloride-induced liver fibrosis. J. Pineal Res. 2016, 60, 383–393. [Google Scholar] [CrossRef]
- Yu, L.; Gong, B.; Duan, W.; Fan, C.; Zhang, J.; Li, Z.; Xue, X.; Xu, Y.; Meng, D.; Li, B.; et al. Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: Role of AMPK-PGC-1alpha-SIRT3 signaling. Sci. Rep. 2017, 7, 41337. [Google Scholar] [CrossRef]
- Arany, Z.; He, H.; Lin, J.; Hoyer, K.; Handschin, C.; Toka, O.; Ahmad, F.; Matsui, T.; Chin, S.; Wu, P.H.; et al. Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab. 2005, 1, 259–271. [Google Scholar] [CrossRef]
- Lira, V.A.; Benton, C.R.; Yan, Z.; Bonen, A. PGC-1alpha regulation by exercise training and its influences on muscle function and insulin sensitivity. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E145–E161. [Google Scholar] [CrossRef] [Green Version]
- Baldelli, S.; Aquilano, K.; Ciriolo, M.R. PGC-1alpha buffers ROS-mediated removal of mitochondria during myogenesis. Cell Death Dis. 2014, 5, e1515. [Google Scholar] [CrossRef] [PubMed]
- Rowe, G.C.; Jiang, A.; Arany, Z. PGC-1 coactivators in cardiac development and disease. Circ. Res. 2010, 107, 825–838. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.A.; Perry, J.B.; Allen, M.E.; Sabbah, H.N.; Stauffer, B.L.; Shaikh, S.R.; Cleland, J.G.; Colucci, W.S.; Butler, J.; Voors, A.A.; et al. Expert consensus document: Mitochondrial function as a therapeutic target in heart failure. Nat. Rev. Cardiol. 2017, 14, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Fabregat-Andres, O.; Tierrez, A.; Mata, M.; Estornell-Erill, J.; Ridocci-Soriano, F.; Monsalve, M. Induction of PGC-1alpha expression can be detected in blood samples of patients with ST-segment elevation acute myocardial infarction. PLoS ONE 2011, 6, e26913. [Google Scholar] [CrossRef]
- Fu, H.Y.; Okada, K.; Liao, Y.; Tsukamoto, O.; Isomura, T.; Asai, M.; Sawada, T.; Okuda, K.; Asano, Y.; Sanada, S.; et al. Ablation of C/EBP homologous protein attenuates endoplasmic reticulum-mediated apoptosis and cardiac dysfunction induced by pressure overload. Circulation 2010, 122, 361–369. [Google Scholar] [CrossRef]
- Nishida, K.; Yamaguchi, O.; Otsu, K. Crosstalk between autophagy and apoptosis in heart disease. Circ. Res. 2008, 103, 343–351. [Google Scholar] [CrossRef]
- Nikoletopoulou, V.; Markaki, M.; Palikaras, K.; Tavernarakis, N. Crosstalk between apoptosis, necrosis and autophagy. Biochim. Biophys. Acta 2013, 1833, 3448–3459. [Google Scholar] [CrossRef]
- Abbate, A.; Bussani, R.; Amin, M.S.; Vetrovec, G.W.; Baldi, A. Acute myocardial infarction and heart failure: Role of apoptosis. Int. J. Biochem. Cell Biol. 2006, 38, 1834–1840. [Google Scholar] [CrossRef]
- Wu, J.; Ruas, J.L.; Estall, J.L.; Rasbach, K.A.; Choi, J.H.; Ye, L.; Bostrom, P.; Tyra, H.M.; Crawford, R.W.; Campbell, K.P.; et al. The unfolded protein response mediates adaptation to exercise in skeletal muscle through a PGC-1alpha/ATF6alpha complex. Cell Metab. 2011, 13, 160–169. [Google Scholar] [CrossRef] [Green Version]
Genes | Primers | |
---|---|---|
PGC1-α | forward | 5′-ACCCACAGGATCAGAACAAACC-3′ |
reverse | 5′-GACAAATGCTCTTTGCTTTATTGC-3′ | |
NRF-1 | forward | 5′-TTCTCTGCTGTGGCTGATGG-3′ |
reverse | 5′-CCTCTGATGCTTGCGTCGTCT-3′ | |
mtTFA | forward | 5′-AGCCATGTGGAGGGAGCTT-3′ |
reverse | 5′-TTGTACACCTTCCACTCAGCTTTAA-3′ | |
CHOP | forward | 5′-CCAGCAGAGGTCACAAGCAC-3′ |
reverse | 5′-CGCACTGACCACTCTGTTTC-3′ | |
ATF4 | forward | 5′-GTTGGTCAGTGCCTCAGACA-3′ |
reverse | 5′-CATTCGAAACAGAGCATCGA-3′ | |
Bcl2 | forward | 5′-ATGTGTGTGGAGAGCGTCAACC-3′ |
reverse | 5′-CCAGGAGAAATCAAACAGAGGC-3′ | |
Bax | forward | 5′-GCGATGAACTGGACAACAACAT-3′ |
reverse | 5′-TAGCAAAGTAGAAAAGGGCAACC-3′ | |
GAPDH | forward | 5′-TTCTTGTGCAGTGCCAGCCTCGTC-3′ |
reverse | 5′-TAGGAACACGGAAGGCCATGCCAG-3′ |
BW(g) | HW (g) | HW to BW (%) | LVW (g) | LVW to BW (%) | LVW to HW (%) | |
---|---|---|---|---|---|---|
NC | 372 ± 3 | 1.22 ± 0.04 | 0.33 ± 0.01 | 0.85 ± 0.04 | 0.23 ± 0.01 | 69 ± 1 |
EC | 351 ± 3 *# | 1.21 ± 0.04 | 0.34 ± 0.01 | 0.84 ± 0.04 | 0.24 ± 0.01 | 69 ± 1 |
MC | 357 ± 6 | 1.17 ± 0.02 | 0.33 ± 0.01 | 0.80 ± 0.02 | 0.23 ± 0.01 | 68 ± 1 |
MEC | 349 ± 3 *# | 1.21 ± 0.02 | 0.35 ± 0.01 | 0.84 ± 0.02 | 0.24 ± 0.01 | 69 ± 1 |
IC | 363 ± 2 | 1.40 ± 0.02 ** | 0.38 ± 0.00 *** | 1.03 ± 0.02 *** | 0.28 ± 0.01 *** | 73 ± 1 ** |
EI | 349 ± 5 *# | 1.28 ± 0.04 # | 0.37 ± 0.01 # | 0.91 ± 0.04 # | 0.26 ± 0.01 | 71 ± 1 # |
MI | 354 ± 4 | 1.27 ± 0.02 # | 0.36 ± 0.01 ## | 0.90 ± 0.02 # | 0.25 ± 0.01 # | 71 ± 1 # |
MEI | 350 ± 2 *# | 1.22 ± 0.02 ## | 0.35 ± 0.01 ### | 0.85 ± 0.02 ### | 0.24 ± 0.01 ## | 70 ± 1 ## |
NC | EC | MC | MEC | IC | EI | MI | MEI | |
---|---|---|---|---|---|---|---|---|
Troponin I (pg/mL) | 151 ± 18 | 116 ± 13 | 121 ± 13 | 113 ± 18 | 510 ± 57 *** | 375 ± 61 ** | 319 ± 24 * | 218 ± 23 |
CK-MB (ng/mL) | 7.53 ± 0.56 | 6.13 ± 0.36 | 6.63 ± 0.36 | 5.53 ± 0.54 | 16.02 ± 1.10 *** | 11.56 ± 0.41 ***# | 9.77 ± 0.24 **## | 9.08 ± 0.44 *### |
CK (IU/mL) | 272 ± 16 | 270 ± 13 | 265 ± 19 | 261 ± 15 | 507 ± 50 *** | 443 ± 44 ** | 353 ± 28 **## | 338 ± 15 ## |
CK-Index | 2.8 ± 0.2 | 2.3 ± 0.2 | 2.5 ± 0.3 | 2.1 ± 0.2 * | 3.5 ± 0.4 * | 2.8 ± 0.3 | 2.9 ± 0.3 | 2.7 ± 0.2 |
LDH (IU/mL) | 202 ± 12 | 198 ± 5 | 199 ± 14 | 195 ± 14 | 381 ± 14 *** | 352 ± 16 *** | 224 ± 11 ### | 213 ± 12 ### |
AST (IU/mL) | 130 ± 4 | 128 ± 6 | 125 ± 6 | 124 ± 6 | 304 ± 22 *** | 253 ± 13 *** | 170 ± 8 ***### | 146 ± 7 ### |
TC (mg/dL) | 159 ± 3 | 144 ± 5 * | 150 ± 9 | 143 ± 8 * | 166 ± 6 *** | 155 ± 5 *** | 150 ± 5 | 149 ± 4 |
HDL (mg/dL) | 36 ± 3 | 42 ± 3 | 35 ± 2 | 42 ± 3 | 35 ± 2 | 39 ± 2 | 35 ± 2 | 41 ± 3 |
LDL (mg/dL) | 16 ± 1 | 12 ± 1 * | 12 ± 1 * | 10 ± 1 * | 17 ± 2 * | 13 ± 1 *# | 13 ± 1 *# | 11 ± 1 *## |
TG (mg/dL) | 142 ± 4 | 132 ± 3 | 127 ± 2 * | 117 ± 6 ** | 147 ± 3 | 140 ± 5 | 128 ± 4 *# | 119 ± 3 **## |
AI (mg/dL) | 4.63 ± 0.40 | 3.56 ± 0.26 * | 4.40 ± 0.33 | 3.54 ± 0.24 * | 4.91 ± 0.47 * | 4.02 ± 0.48 *** | 4.53 ± 0.27 | 3.80 ± 0.28 # |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Yang, D.K. Melatonin Supplement Plus Exercise Effectively Counteracts the Challenges of Isoproterenol-Induced Cardiac Injury in Rats. Biomedicines 2023, 11, 428. https://doi.org/10.3390/biomedicines11020428
Rahman MM, Yang DK. Melatonin Supplement Plus Exercise Effectively Counteracts the Challenges of Isoproterenol-Induced Cardiac Injury in Rats. Biomedicines. 2023; 11(2):428. https://doi.org/10.3390/biomedicines11020428
Chicago/Turabian StyleRahman, Md. Mahbubur, and Dong Kwon Yang. 2023. "Melatonin Supplement Plus Exercise Effectively Counteracts the Challenges of Isoproterenol-Induced Cardiac Injury in Rats" Biomedicines 11, no. 2: 428. https://doi.org/10.3390/biomedicines11020428
APA StyleRahman, M. M., & Yang, D. K. (2023). Melatonin Supplement Plus Exercise Effectively Counteracts the Challenges of Isoproterenol-Induced Cardiac Injury in Rats. Biomedicines, 11(2), 428. https://doi.org/10.3390/biomedicines11020428