A Review of Serotonin in the Developing Lung and Neonatal Pulmonary Hypertension
Abstract
:1. Introduction
2. Serotonin in Adult Pulmonary Circulation
2.1. Serotonin Signaling in the Adult Lung
2.2. Serotonin in Adult Pulmonary Hypertension
3. Serotonin in Fetal Pulmonary Circulation
3.1. Serotonin Signaling during Pregnancy and Fetal Development
3.2. Serotonin Signaling in the Fetal Lung
4. Serotonin in Neonatal Pulmonary Circulation
4.1. Neonatal Cardiopulmonary Transition
4.2. Selective Serotonin Reuptake Inhibitors and Persistent Pulmonary Hypertension of the Newborn
4.3. Serotonin in Neonatal Pulmonary Hypertension
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rapport, M.M.; Green, A.; Page, I.H. Serum Vasoconstriction (Serotonin): Isolation and Characterization. J. Biol. Chem. 1948, 176, 1243–1251. [Google Scholar] [CrossRef] [PubMed]
- Kroeze, W.K.; Kristiansen, K.; Roth, B.L. Molecular biology of serotonin receptors structure and function at the molecular level. Curr. Top. Med. Chem. 2002, 2, 507–528. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.; Gray, J.A.; Roth, B.L. The expanded biology of serotonin. Annu. Rev. Med. 2009, 60, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Walther, D.J.; Bader, M. A unique central tryptophan hydroxylase isoform. Biochem. Pharmacol. 2003, 66, 1673–1680. [Google Scholar] [CrossRef]
- Walther, D.J.; Peter, J.U.; Bashammakh, S.; Hörtnagl, H.; Voits, M.; Fink, H.; Bader, M. Synthesis of Serotonin by a Second Tryptophan Hydroxylase Isoform. Science 2003, 299, 5603. [Google Scholar] [CrossRef]
- Brenner, B.; Harney, J.T.; Ahmed, B.A.; Jeffus, B.C.; Unal, R.; Mehta, J.L.; Kilic, F. Plasma serotonin levels and the platelet serotonin transporter. J. Neurochem. 2007, 102, 206–215. [Google Scholar] [CrossRef]
- Raymond, J.R.; Mukhin, Y.V.; Gelasco, A.; Turner, J.; Collinsworth, G.; Gettys, T.W.; Grewal, J.S.; Garnovskaya, M.N. Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol. Ther. 2001, 92, 179–212. [Google Scholar] [CrossRef]
- Hannon, J.; Hoyer, D. Molecular biology of 5-HT receptors. Behav. Brain Res. 2008, 195, 198–213. [Google Scholar] [CrossRef]
- Izikki, M.; Hanoun, N.; Marcos, E.; Savale, L.; Barlier-Mur, A.M.; Saurini, F.; Eddahibi, S.; Hamon, M.; Adnot, S. Tryptophan hydroxylase 1 knockout and tryptophan hydroxylase 2 polymorphism: Effects on hypoxic pulmonary hypertension in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2007, 293, L1045–L1052. [Google Scholar] [CrossRef]
- Eddahibi, S.; Guignabert, C.; Barlier-Mur, A.-M.; Dewachter, L.; Fadel, E.; Dartevelle, P.; Humbert, M.; Simonneau, G.; Hanoun, N.; Saurini, F.; et al. Cross talk between endothelial and smooth muscle cells in pulmonary hypertension: Critical role for serotonin-induced smooth muscle hyperplasia. Circulation 2006, 113, 1857–1864. [Google Scholar] [CrossRef]
- Thomas, D.P.; Vane, J.R. 5-hydroxytryptamine in the circulation of the dog. Nature 1967, 216, 335–338. [Google Scholar] [CrossRef] [PubMed]
- Strum, J.M.; Junod, A.F. Radioautographic demonstration of 5-hydroxytryptamine-3H uptake by pulmonary endothelial cells. J. Cell Biol. 1972, 54, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Alabaster, V.A.; Bakhle, Y.S. Removal of 5-hydroxytryptamine by rat isolated lung. Br. J. Pharmacol. 1970, 38, 440P–441P. [Google Scholar]
- Gillis, C.N.; Roth, J.A. The fate of biogenic monoamines in perfused rabbit lung. Br. J. Pharmacol. 1977, 59, 585–590. [Google Scholar] [CrossRef]
- Pickett, R.D.; Anderson, M.W.; Orton, T.C.; Eling, T.E. The pharmacodynamics of 5-hydroxytryptamine uptake and metabolism by the isolated perfused rabbit lung. J. Pharmacol. Exp. Ther. 1975, 194, 545–553. [Google Scholar]
- Gao, Y.; Chen, T.; Raj, J.U. Endothelial and Smooth Muscle Cell Interactions in the Pathobiology of Pulmonary Hypertension. Am. J. Respir. Cell Mol. Biol. 2016, 54, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Ullmer, C.; Schmuck, K.; Kalkman, H.O.; Lübbert, H. Expression of serotonin receptor mRNAs in blood vessels. FEBS Lett. 1995, 370, 215–221. [Google Scholar] [CrossRef]
- MacLean, M.R.; Sweeney, G.; Baird, M.; McCulloch, K.M.; Houslay, M.; Morecroft, I. 5-Hydroxytryptamine receptors mediating vasoconstriction in pulmonary arteries from control and pulmonary hypertensive rats. Br. J. Pharmacol. 1996, 119, 917–930. [Google Scholar] [CrossRef]
- Cortijo, J.; Martí-Cabrera, M.; Bernabeu, E.; Domènech, T.; Bou, J.; Fernández, A.G.; Beleta, J.; Palacios, J.M.; Morcillo, E.J. Characterization of 5-HT receptors on human pulmonary artery and vein: Functional and binding studies. Br. J. Pharmacol. 1997, 122, 1455–1463. [Google Scholar] [CrossRef]
- Morecroft, I.; Heeley, R.P.; Prentice, H.M.; Kirk, A.; MacLean, M.R. 5-hydroxytryptamine receptors mediating contraction in human small muscular pulmonary arteries: Importance of the 5-HT1B receptor. Br. J. Pharmacol. 1999, 128, 730–734. [Google Scholar] [CrossRef]
- Keegan, A.; Morecroft, I.; Smillie, D.; Hicks, M.N.; MacLean, M.R. Contribution of the 5-HT(1B) receptor to hypoxia-induced pulmonary hypertension: Converging evidence using 5-HT(1B)-receptor knockout mice and the 5-HT(1B/1D)-receptor antagonist GR127935. Circ. Res. 2001, 89, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- MacLean, M.R.; Herve, P.; Eddahibi, S.; Adnot, S. 5-hydroxytryptamine and the pulmonary circulation: Receptors, transporters and relevance to pulmonary arterial hypertension. Br. J. Pharmacol. 2000, 131, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Watts, S.W.; Yang, P.; Banes, A.K.; Baez, M. Activation of Erk mitogen-activated protein kinase proteins by vascular serotonin receptors. J. Cardiovasc. Pharmacol. 2001, 38, 539–551. [Google Scholar] [CrossRef] [PubMed]
- Launay, J.-M.; Hervé, P.; Peoc’h, K.; Tournois, C.; Callebert, J.; Nebigil, C.; Etienne, N.; Drouet, L.; Humbert, M.; Simonneau, G.; et al. Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension. Nat. Med. 2002, 8, 1129–1135. [Google Scholar] [CrossRef]
- Lawrie, A.; Spiekerkoetter, E.; Martinez, E.C.; Ambartsumian, N.; Sheward, W.J.; MacLean, M.R.; Harmar, A.J.; Schmidt, A.-M.; Lukanidin, E.; Rabinovitch, M.; et al. Interdependent serotonin transporter and receptor pathways regulate S100A4/Mts1, a gene associated with pulmonary vascular disease. Circ. Res. 2005, 97, 227–235. [Google Scholar] [CrossRef]
- Fahlén, M.; Bergman, H.; Helder, G.; Rydén, L.; Wallentin, I.; Zettergren, L. Phenformin and pulmonary hypertension. Br. Heart J. 1973, 35, 824–828. [Google Scholar] [CrossRef]
- Gurtner, H.P. Aminorex and pulmonary hypertension. A review. Cor Vasa. 1985, 27, 160–171. [Google Scholar]
- Pouwels, H.M.; Smeets, J.L.; Cheriex, E.C.; Wouters, E.F. Pulmonary hypertension and fenfluramine. Eur. Respir. J. 1990, 3, 606–607. [Google Scholar] [CrossRef]
- Brenot, F.; Herve, P.; Petitpretz, P.; Parent, F.; Duroux, P.; Simonneau, G. Primary pulmonary hypertension and fenfluramine use. Br. Heart J. 1993, 70, 537–541. [Google Scholar] [CrossRef]
- Brenot, F. Primary pulmonary hypertension. Case series from France. Chest 1994, 105 (Suppl. S2), 33S–36S. [Google Scholar] [CrossRef]
- Abenhaim, L.; Moride, Y.; Brenot, F.; Rich, S.; Benichou, J.; Kurz, X.; Higenbottam, T.; Oakley, C.; Wouters, E.; Aubier, M.; et al. Appetite-suppressant drugs and the risk of primary pulmonary hypertension. International Primary Pulmonary Hypertension Study Group. N. Engl. J. Med. 1996, 335, 609–616. [Google Scholar] [CrossRef]
- Rothman, R.B.; Ayestas, M.A.; Dersch, C.M.; Baumann, M.H. Aminorex, fenfluramine, and chlorphentermine are serotonin transporter substrates. Implications for primary pulmonary hypertension. Circulation 1999, 100, 869–875. [Google Scholar] [CrossRef]
- Marasini, B.; Biondi, M.L.; Bianchi, E.; Dell’Orto, P.; Agostoni, A. Ketanserin treatment and serotonin in patients with primary and secondary Raynaud’s phenomenon. Eur. J. Clin. Pharmacol. 1988, 35, 419–421. [Google Scholar] [CrossRef]
- Klimiuk, P.S.; Grennan, A.; Weinkove, C.; Jayson, M.I. Platelet serotonin in systemic sclerosis. Ann. Rheum. Dis. 1989, 48, 586–589. [Google Scholar] [CrossRef] [PubMed]
- Herve, P.; Drouet, L.; Dosquet, C.; Launay, J.-M.; Rain, B.; Simonneau, G.; Caen, J.; Duroux, P. Primary pulmonary hypertension in a patient with a familial platelet storage pool disease: Role of serotonin. Am. J. Med. 1990, 89, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Hervé, P.; Launay, J.-M.; Scrobohaci, M.-L.; Brenot, F.; Simonneau, G.; Petitpretz, P.; Poubeau, P.; Cerrina, J.; Duroux, P.; Drouet, L. Increased plasma serotonin in primary pulmonary hypertension. Am. J. Med. 1995, 99, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Kéreveur, A.; Callebert, J.; Humbert, M.; Hervé, P.; Simonneau, G.; Launay, J.-M.; Drouet, L. High plasma serotonin levels in primary pulmonary hypertension. Effect of long-term epoprostenol (prostacyclin) therapy. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 2233–2239. [Google Scholar] [CrossRef] [PubMed]
- Writing Committee Members; McLaughlin, V.V.; Archer, S.L.; Badesch, D.B.; Barst, R.J.; Farber, H.W.; Lindner, J.R.; Mathier, M.A.; McGoon, M.D.; Park, M.H.; et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension: A report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: Developed in collaboration with the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Association. Circulation 2009, 119, 2250–2294. [Google Scholar] [CrossRef]
- Tuder, R.M.; Archer, S.L.; Dorfmüller, P.; Erzurum, S.C.; Guignabert, C.; Michelakis, E.; Rabinovitch, M.; Schermuly, R.; Stenmark, K.R.; Morrell, N.W. Relevant issues in the pathology and pathobiology of pulmonary hypertension. J. Am. Coll. Cardiol. 2013, 62 (Suppl. S25), D4–D12. [Google Scholar] [CrossRef]
- Ivy, D.D.; Abman, S.H.; Barst, R.J.; Berger, R.M.; Bonnet, D.; Fleming, T.R.; Haworth, S.G.; Raj, J.U.; Rosenzweig, E.B.; Neick, I.S.; et al. Pediatric pulmonary hypertension. J. Am. Coll. Cardiol. 2013, 62 (Suppl. S25), D117–D126. [Google Scholar] [CrossRef]
- Ruoss, J.L.; Rios, D.R.; Levy, P.T. Updates on Management for Acute and Chronic Phenotypes of Neonatal Pulmonary Hypertension. Clin. Perinatol. 2020, 47, 593–615. [Google Scholar] [CrossRef] [PubMed]
- D’Alonzo, G.E.; Barst, R.J.; Ayres, S.M.; Bergofsky, E.H.; Brundage, B.H.; Detre, K.M.; Fishman, A.P.; Goldring, R.M.; Groves, B.M.; Kernis, J.T.; et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann. Intern. Med. 1991, 115, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Frank, D.B.; Crystal, M.A.; Morales, D.L.S.; Gerald, K.; Hanna, B.D.; Mallory, G.B.; Rossano, J.W. Trends in pediatric pulmonary hypertension-related hospitalizations in the United States from 2000–2009. Pulm Circ. 2015, 5, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, B.G.; Nies, M.K.; Ajuba-Iwuji, C.C.; Coulson, J.D.; Romer, L.H. Trends in Hospitalization for Pediatric Pulmonary Hypertension. Pediatrics 2015, 136, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Haworth, S.G.; Hislop, A.A. Treatment and survival in children with pulmonary arterial hypertension: The UK Pulmonary Hypertension Service for Children 2001–2006. Heart 2009, 95, 312–317. [Google Scholar] [CrossRef]
- Eddahibi, S.; Hanoun, N.; Lanfumey, L.; Lesch, K.; Raffestin, B.; Hamon, M.; Adnot, S. Attenuated hypoxic pulmonary hypertension in mice lacking the 5-hydroxytryptamine transporter gene. J. Clin. Investig. 2000, 105, 1555–1562. [Google Scholar] [CrossRef]
- Morecroft, I.; Dempsie, Y.; Bader, M.; Walther, D.J.; Kotnik, K.; Loughlin, L.; Nilsen, M.; MacLean, M.R. Effect of tryptophan hydroxylase 1 deficiency on the development of hypoxia-induced pulmonary hypertension. Hypertension 2007, 49, 232–236. [Google Scholar] [CrossRef]
- Marcos, E.; Fadel, E.; Sanchez, O.; Humbert, M.; Dartevelle, P.; Simonneau, G.; Hamon, M.; Adnot, S.; Eddahibi, S. Serotonin-induced smooth muscle hyperplasia in various forms of human pulmonary hypertension. Circ. Res. 2004, 94, 1263–1270. [Google Scholar] [CrossRef]
- Eddahibi, S.; Humbert, M.; Fadel, E.; Raffestin, B.; Darmon, M.; Capron, F.; Simonneau, G.; Dartevelle, P.; Hamon, M.; Adnot, S. Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension. J. Clin. Investig. 2001, 108, 1141–1150. [Google Scholar] [CrossRef]
- Guignabert, C.; Izikki, M.; Tu, L.I.; Li, Z.; Zadigue, P.; Barlier-Mur, A.-M.; Hanoun, N.; Rodman, D.; Hamon, M.; Adnot, S.; et al. Transgenic mice overexpressing the 5-hydroxytryptamine transporter gene in smooth muscle develop pulmonary hypertension. Circ. Res. 2006, 98, 1323–1330. [Google Scholar] [CrossRef]
- MacLean, M.R.; Deuchar, G.A.; Hicks, M.N.; Morecroft, I.; Shen, S.; Sheward, J.; Colston, J.; Loughlin, L.; Nilsen, M.; Dempsie, Y.; et al. Overexpression of the 5-hydroxytryptamine transporter gene: Effect on pulmonary hemodynamics and hypoxia-induced pulmonary hypertension. Circulation 2004, 109, 2150–2155. [Google Scholar] [CrossRef] [PubMed]
- Rondelet, B.; Van Beneden, R.; Kerbaul, F.; Motte, S.; Fesler, P.; McEntee, K.; Brimioulle, S.; Ketelslegers, J.-M.; Naeije, R. Expression of the serotonin 1b receptor in experimental pulmonary hypertension. Eur. Respir. J. 2003, 22, 408–412. [Google Scholar] [CrossRef] [PubMed]
- Hironaka, E.; Hongo, M.; Sakai, A.; Mawatari, E.; Terasawa, F.; Okumura, N.; Yamazaki, A.; Ushiyama, Y.; Yazaki, Y.; Kinoshita, O. Serotonin receptor antagonist inhibits monocrotaline-induced pulmonary hypertension and prolongs survival in rats. Cardiovasc. Res. 2003, 60, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Hood, K.Y.; Mair, K.M.; Harvey, A.P.; Montezano, A.C.; Touyz, R.M.; MacLean, M.R. Serotonin Signaling Through the 5-HT1B Receptor and NADPH Oxidase 1 in Pulmonary Arterial Hypertension. Arter. Thromb. Vasc. Biol. 2017, 37, 1361–1370. [Google Scholar] [CrossRef]
- Lazarus, H.M.; Denning, J.; Wring, S.; Palacios, M.; Hoffman, S.; Crizer, K.; Kamau-Kelley, W.; Symonds, W.; Feldman, J. A trial design to maximize knowledge of the effects of rodatristat ethyl in the treatment of pulmonary arterial hypertension (ELEVATE 2). Pulm. Circ. 2022, 12, e12088. [Google Scholar] [CrossRef]
- Lazarus, H.; Denning, J.; Kamau-Kelley, W.; Wring, S.; Palacios, M.; Humbert, M. ELEVATE 2: A multicenter study of rodatristat ethyl in patients with WHO Group 1 pulmonary arterial hypertension (PAH). Eur. Respir. J. 2021, 58 (Suppl. S65). [Google Scholar] [CrossRef]
- Robson, J.M.; Senior, J.B. The 5-Hydroxytryptamine content of the placenta and foetus during pregnancy in mice. Br. J. Pharmacol. Chemother. 1964, 22, 380–391. [Google Scholar] [CrossRef]
- Badawy, A.A.B. Tryptophan metabolism, disposition and utilization in pregnancy. Biosci. Rep. 2015, 35, e00261. [Google Scholar] [CrossRef]
- Sano, M.; Ferchaud-Roucher, V.; Kaeffer, B.; Poupeau, G.; Castellano, B.; Darmaun, D. Maternal and fetal tryptophan metabolism in gestating rats: Effects of intrauterine growth restriction. Amino Acids. 2016, 48, 281–290. [Google Scholar] [CrossRef]
- Abad, C.; Karahoda, R.; Kastner, P.; Portillo, R.; Horackova, H.; Kucera, R.; Nachtigal, P.; Staud, F. Profiling of Tryptophan Metabolic Pathways in the Rat Fetoplacental Unit During Gestation. Int. J. Mol. Sci. 2020, 21, 7578. [Google Scholar] [CrossRef]
- Anderson, G.M.; Czarkowski, K.; Ravski, N.; Epperson, C.N. Platelet serotonin in newborns and infants: Ontogeny, heritability, and effect of in utero exposure to selective serotonin reuptake inhibitors. Pediatr. Res. 2004, 56, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Oberlander, T.F.; Warburton, W.; Misri, S.; Aghajanian, J.; Hertzman, C. Neonatal outcomes after prenatal exposure to selective serotonin reuptake inhibitor antidepressants and maternal depression using population-based linked health data. Arch. Gen. Psychiatry 2006, 63, 898–906. [Google Scholar] [CrossRef] [PubMed]
- Bonnin, A.; Torii, M.; Wang, L.; Rakic, P.; Levitt, P. Serotonin modulates the response of embryonic thalamocortical axons to netrin-1. Nat. Neurosci. 2007, 10, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Oberlander, T.F.; Gingrich, J.A.; Ansorge, M.S. Sustained neurobehavioral effects of exposure to SSRI antidepressants during development: Molecular to clinical evidence. Clin. Pharmacol. Ther. 2009, 86, 672–677. [Google Scholar] [CrossRef]
- Davidson, S.; Prokonov, D.; Taler, M.; Maayan, R.; Harell, D.; Gil-Ad, I.; Weizman, A. Effect of Exposure to Selective Serotonin Reuptake Inhibitors In Utero on Fetal Growth: Potential Role for the IGF-I and HPA Axes. Pediatr. Res. 2009, 65, 236–241. [Google Scholar] [CrossRef]
- Narboux-Nême, N.; Angenard, G.; Mosienko, V.; Klempin, F.; Pitychoutis, P.M.; Deneris, E.; Bader, M.; Giros, B.; Alenina, N.; Gaspar, P. Postnatal growth defects in mice with constitutive depletion of central serotonin. ACS Chem. Neurosci. 2013, 4, 171–181. [Google Scholar] [CrossRef]
- Ranzil, S.; Ellery, S.; Walker, D.W.; Vaillancourt, C.; Alfaidy, N.; Bonnin, A.; Borg, A.; Wallace, E.M.; Ebeling, P.R.; Erwich, J.J.; et al. Disrupted placental serotonin synthetic pathway and increased placental serotonin: Potential implications in the pathogenesis of human fetal growth restriction. Placenta 2019, 84, 74–83. [Google Scholar] [CrossRef]
- Rosenfeld, C.S. Placental serotonin signaling, pregnancy outcomes, and regulation of fetal brain development†. Biol. Reprod. 2020, 102, 532–538. [Google Scholar] [CrossRef]
- Domingues, R.R.; Beard, A.D.; Connelly, M.K.; Wiltbank, M.C.; Hernandez, L.L. Fluoxetine-induced perinatal morbidity in a sheep model. Front. Med. 2022, 9, 955560. [Google Scholar] [CrossRef]
- Lauder, J.M.; Krebs, H. Serotonin as a differentiation signal in early neurogenesis. Dev. Neurosci. 1978, 1, 15–30. [Google Scholar] [CrossRef]
- Rakic, P.; Lidow, M.S. Distribution and density of monoamine receptors in the primate visual cortex devoid of retinal input from early embryonic stages. J. Neurosci. 1995, 15 Pt 2, 2561–2574. [Google Scholar] [CrossRef]
- Vitalis, T.; Cases, O.; Passemard, S.; Callebert, J.; Parnavelas, J.G. Embryonic depletion of serotonin affects cortical development. Eur. J. Neurosci. 2007, 26, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Peters, D.A. Maternal stress increases fetal brain and neonatal cerebral cortex 5-hydroxytryptamine synthesis in rats: A possible mechanism by which stress influences brain development. Pharmacol. Biochem. Behav. 1990, 35, 943–947. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.L.; Murakami, P.; Ruczinski, I.; Ross, R.G.; Sinkus, M.; Sullivan, B.; Leonard, S. Two complex genotypes relevant to the kynurenine pathway and melanotropin function show association with schizophrenia and bipolar disorder. Schizophr. Res. 2009, 113, 259–267. [Google Scholar] [CrossRef]
- Tsuang, D.W.; Bird, T.D. Genetic factors in neurodegenerative diseases. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2017, 174, 3–4. [Google Scholar] [CrossRef]
- Cutz, E.; Gillan, J.E.; Bryan, A.C. Neuroendocrine cells in the developing human lung: Morphologic and functional considerations. Pediatr. Pulmonol. 1985, 1 (Suppl. S3), S21–S29. [Google Scholar] [PubMed]
- Garg, A.; Sui, P.; Verheyden, J.M.; Young, L.R.; Sun, X. Consider the lung as a sensory organ: A tip from pulmonary neuroendocrine cells. Curr. Top. Dev. Biol. 2019, 132, 67–89. [Google Scholar] [CrossRef]
- Boers, J.E.; den Brok, J.L.; Koudstaal, J.; Arends, J.W.; Thunnissen, F.B. Number and proliferation of neuroendocrine cells in normal human airway epithelium. Am. J. Respir. Crit. Care Med. 1996, 154 Pt 1, 758–763. [Google Scholar] [CrossRef]
- Travaglini, K.J.; Nabhan, A.N.; Penland, L.; Sinha, R.; Gillich, A.; Sit, R.V.; Chang, S.; Conley, S.D.; Mori, Y.; Seita, J.; et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 2020, 587, 619–625. [Google Scholar] [CrossRef]
- Karahoda, R.; Horackova, H.; Kastner, P.; Matthios, A.; Cerveny, L.; Kucera, R.; Kacerovsky, M.; Tebbens, J.D.; Bonnin, A.; Abad, C.; et al. Serotonin homeostasis in the materno-foetal interface at term: Role of transporters (SERT/SLC6A4 and OCT3/SLC22A3) and monoamine oxidase A (MAO-A) in uptake and degradation of serotonin by human and rat term placenta. Acta Physiol. 2020, 229, e13478. [Google Scholar] [CrossRef]
- Castro, E.C.C.; Sen, P.; Parks, W.T.; Langston, C.; Galambos, C. The Role of Serotonin Transporter in Human Lung Development and in Neonatal Lung Disorders. Can. Respir. J. 2017, 2017, 9064046. [Google Scholar] [CrossRef]
- Delaney, C.; Gien, J.; Grover, T.R.; Roe, G.; Abman, S.H. Pulmonary vascular effects of serotonin and selective serotonin reuptake inhibitors in the late-gestation ovine fetus. Am. J. Physiol. Lung Cell Mol. Physiol. 2011, 301, L937–L944. [Google Scholar] [CrossRef]
- Hodge, E.; Nelson, C.P.; Miller, S.; Billington, C.K.; Stewart, C.E.; Swan, C.; Malarstig, A.; Henry, A.P.; Gowland, C.; Melén, E.; et al. HTR4 gene structure and altered expression in the developing lung. Respir. Res. 2013, 14, 77. [Google Scholar] [CrossRef]
- Nikolić, J.; Vukojević, K.; Šoljić, V.; Mišković, J.; Vlaho, M.O.; Saraga-Babić, M.; Filipović, N. Expression Patterns of Serotonin Receptors 5-HT1A, 5-HT2A, and 5-HT3A during Human Fetal Lung Development. Int. J. Mol. Sci. 2023, 24, 2965. [Google Scholar] [CrossRef]
- Morecroft, I.; MacLean, M.R. 5-hydroxytryptamine receptors mediating vasoconstriction and vasodilation in perinatal and adult rabbit small pulmonary arteries. Br. J. Pharmacol. 1998, 125, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Goyal, R.; Papamatheakis, D.G.; Loftin, M.; Vrancken, K.; Dawson, A.S.; Osman, N.J.; Blood, A.B.; Pearce, W.J.; Longo, L.D.; Wilson, S.M. Long-term maternal hypoxia: The role of extracellular Ca2+ entry during serotonin-mediated contractility in fetal ovine pulmonary arteries. Reprod. Sci. 2011, 18, 948–962. [Google Scholar] [CrossRef] [PubMed]
- Barst, R.J.; Ertel, S.I.; Beghetti, M.; Ivy, D.D. Pulmonary arterial hypertension: A comparison between children and adults. Eur. Respir. J. 2011, 37, 665–677. [Google Scholar] [CrossRef] [PubMed]
- Dawes, G.S.; Mott, J.C.; Widdicombe, J.G.; Wyatt, D.G. Changes in the lungs of the new-born lamb. J. Physiol. 1953, 121, 141–162. [Google Scholar] [CrossRef]
- Rudolph, A.M. Distribution and regulation of blood flow in the fetal and neonatal lamb. Circ. Res. 1985, 57, 811–821. [Google Scholar] [CrossRef]
- Fraisse, A.; Jais, X.; Schleich, J.-M.; di Filippo, S.; Maragnès, P.; Beghetti, M.; Gressin, V.; Voisin, M.; Dauphin, C.; Clerson, P.; et al. Characteristics and prospective 2-year follow-up of children with pulmonary arterial hypertension in France. Arch. Cardiovasc. Dis. 2010, 103, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Barst, R.J.; McGoon, M.D.; Elliott, C.G.; Foreman, A.J.; Miller, D.P.; Ivy, D.D. Survival in childhood pulmonary arterial hypertension: Insights from the registry to evaluate early and long-term pulmonary arterial hypertension disease management. Circulation 2012, 125, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Berger, R.M.; Beghetti, M.; Humpl, T.; Raskob, G.E.; Ivy, D.D.; Jing, Z.-C.; Bonnet, D.; Schulze-Neick, I.; Barst, R.J. Clinical features of paediatric pulmonary hypertension: A registry study. Lancet 2012, 379, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.A.; Gilboa, S.M.; Werler, M.M.; Kelley, K.E.; Louik, C.; Hernández-Díaz, S.; National Birth Defects Prevention Study. Medication use during pregnancy, with particular focus on prescription drugs: 1976–2008. Am. J. Obstet. Gynecol. 2011, 205, 51.e1–51.e8. [Google Scholar] [CrossRef] [PubMed]
- Huybrechts, K.F.; Palmsten, K.; Mogun, H.; Kowal, M.; Avorn, J.; Setoguchi-Iwata, S.; Hernández-Díaz, S. National trends in antidepressant medication treatment among publicly insured pregnant women. Gen. Hosp. Psychiatry 2013, 35, 265–271. [Google Scholar] [CrossRef]
- Huybrechts, K.F.; Bateman, B.T.; Palmsten, K.; Desai, R.J.; Patorno, E.; Gopalakrishnan, C.; Levin, R.; Mogun, H.; Hernandez-Diaz, S. Antidepressant use late in pregnancy and risk of persistent pulmonary hypertension of the newborn. JAMA 2015, 313, 2142–2151. [Google Scholar] [CrossRef]
- Epperson, C.N.; Jatlow, P.I.; Czarkowski, K.; Anderson, G.M. Maternal fluoxetine treatment in the postpartum period: Effects on platelet serotonin and plasma drug levels in breastfeeding mother-infant pairs. Pediatrics 2003, 112, e425. [Google Scholar] [CrossRef]
- Ewing, G.; Tatarchuk, Y.; Appleby, D.; Schwartz, N.; Kim, D. Placental transfer of antidepressant medications: Implications for postnatal adaptation syndrome. Clin. Pharmacokinet. 2015, 54, 359–370. [Google Scholar] [CrossRef]
- Horackova, H.; Karahoda, R.; Cerveny, L.; Vachalova, V.; Ebner, R.; Abad, C.; Staud, F. Effect of Selected Antidepressants on Placental Homeostasis of Serotonin: Maternal and Fetal Perspectives. Pharmaceutics 2021, 13, 1306. [Google Scholar] [CrossRef]
- Suhara, T.; Sudo, Y.; Yoshida, K.; Okubo, Y.; Fukuda, H.; Obata, T.; Yoshikawa, K.; Suzuki, K.; Sasaki, Y. Lung as reservoir for antidepressants in pharmacokinetic drug interactions. Lancet 1998, 351, 332–335. [Google Scholar] [CrossRef]
- Finkel, M.S.; Laghrissi-Thode, F.; Pollock, B.G.; Rong, J. Paroxetine is a novel nitric oxide synthase inhibitor. Psychopharmacol. Bull. 1996, 32, 653–658. [Google Scholar]
- Ikenouchi, A.; Okamoto, N.; Konno, Y.; Fujii, R.; Fujino, Y.; Yoshimura, R. Influence of antidepressants on plasma levels of nitric oxide metabolites in patients with major depressive disorder. BJPsych Open 2021, 8, e14. [Google Scholar] [CrossRef]
- Rurak, D.; Lim, K.; Sanders, A.; Brain, U.; Riggs, W.; Oberlander, T.F. Third trimester fetal heart rate and Doppler middle cerebral artery blood flow velocity characteristics during prenatal selective serotonin reuptake inhibitor exposure. Pediatr. Res. 2011, 70, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Chambers, C.D.; Hernandez-Diaz, S.; Van Marter, L.J.; Werler, M.M.; Louik, C.; Jones, K.L.; Mitchell, A.A. Selective serotonin-reuptake inhibitors and risk of persistent pulmonary hypertension of the newborn. N. Engl. J. Med. 2006, 354, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Reis, M.; Källén, B. Delivery outcome after maternal use of antidepressant drugs in pregnancy: An update using Swedish data. Psychol. Med. 2010, 40, 1723–1733. [Google Scholar] [CrossRef]
- Galbally, M.; Gentile, S.; Lewis, A.J. Further findings linking SSRIs during pregnancy and persistent pulmonary hypertension of the newborn: Clinical implications. CNS Drugs 2012, 26, 813–822. [Google Scholar] [CrossRef]
- Grigoriadis, S.; VonderPorten, E.H.; Mamisashvili, L.; Tomlinson, G.; Dennis, C.-L.; Koren, G.; Steiner, M.; Mousmanis, P.; Cheung, A.; Ross, L.E. Prenatal exposure to antidepressants and persistent pulmonary hypertension of the newborn: Systematic review and meta-analysis. BMJ 2014, 348, f6932. [Google Scholar] [CrossRef]
- Chambers, C.D.; Johnson, K.A.; Dick, L.M.; Felix, R.J.; Jones, K.L. Birth outcomes in pregnant women taking fluoxetine. N. Engl. J. Med. 1996, 335, 1010–1015. [Google Scholar] [CrossRef] [PubMed]
- Källén, B.; Olausson, P.O. Maternal use of selective serotonin re-uptake inhibitors and persistent pulmonary hypertension of the newborn. Pharmacoepidemiol. Drug Saf. 2008, 17, 801–806. [Google Scholar] [CrossRef]
- Kieler, H.; Artama, M.; Engeland, A.; Ericsson, Ö.; Furu, K.; Gissler, M.; Nielsen, R.B.; Nørgaard, M.; Stephansson, O.; Valdimarsdottir, U.; et al. Selective serotonin reuptake inhibitors during pregnancy and risk of persistent pulmonary hypertension in the newborn: Population based cohort study from the five Nordic countries. BMJ 2012, 344, d8012. [Google Scholar] [CrossRef]
- Andrade, S.E.; McPhillips, H.; Loren, D.; Raebel, M.A.; Lane, K.; Livingston, J.; Boudreau, D.M.; Smith, D.H.; Davis, R.L.; Willy, M.E.; et al. Antidepressant medication use and risk of persistent pulmonary hypertension of the newborn. Pharmacoepidemiol. Drug Saf. 2009, 18, 246–252. [Google Scholar] [CrossRef]
- Wichman, C.L.; Moore, K.M.; Lang, T.R.; St Sauver, J.L.; Heise, R.H., Jr.; Watson, W.J. Congenital heart disease associated with selective serotonin reuptake inhibitor use during pregnancy. Mayo Clin. Proc. 2009, 84, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.L.; Zelig, C.M.; Harvey, J.P.; Cunningham, B.S.; Dolinsky, B.M.; Napolitano, P.G. Persistent pulmonary hypertension of the newborn is associated with mode of delivery and not with maternal use of selective serotonin reuptake inhibitors. Am. J. Perinatol. 2011, 28, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Ng, Q.X.; Venkatanarayanan, N.; Ho, C.Y.X.; Sim, W.S.; Lim, D.Y.; Yeo, W.S. Selective Serotonin Reuptake Inhibitors and Persistent Pulmonary Hypertension of the Newborn: An Updated Meta-Analysis. J. Womens Health 2019, 28, 331–338. [Google Scholar] [CrossRef]
- Masarwa, R.; Bar-Oz, B.; Gorelik, E.; Reif, S.; Perlman, A.; Matok, I. Prenatal exposure to selective serotonin reuptake inhibitors and serotonin norepinephrine reuptake inhibitors and risk for persistent pulmonary hypertension of the newborn: A systematic review, meta-analysis, and network meta-analysis. Am. J. Obstet. Gynecol. 2019, 220, 57.e1–57.e13. [Google Scholar] [CrossRef]
- Austin, M.P. To treat or not to treat: Maternal depression, SSRI use in pregnancy and adverse neonatal effects. Psychol. Med. 2006, 36, 1663–1670. [Google Scholar] [CrossRef]
- da-Silva, V.A.; Altenburg, S.P.; Malheiros, L.R.; Thomaz, T.G.; Lindsey, C.J. Postnatal development of rats exposed to fluoxetine or venlafaxine during the third week of pregnancy. Braz. J. Med. Biol. Res. 1999, 32, 93–98. [Google Scholar] [CrossRef]
- Coleman, F.H.; Christensen, H.D.; Gonzalez, C.L.; Rayburn, W.F. Behavioral changes in developing mice after prenatal exposure to paroxetine (Paxil). Am. J. Obstet. Gynecol. 1999, 181 Pt 1, 1166–1171. [Google Scholar] [CrossRef]
- Morrison, J.L.; Chien, C.; Riggs, K.W.; Gruber, N.; Rurak, D. Effect of maternal fluoxetine administration on uterine blood flow, fetal blood gas status, and growth. Pediatr. Res. 2002, 51, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Fornaro, E.; Li, D.; Pan, J.; Belik, J. Prenatal exposure to fluoxetine induces fetal pulmonary hypertension in the rat. Am. J. Respir. Crit. Care Med. 2007, 176, 1035–1040. [Google Scholar] [CrossRef]
- Delaney, C.; Gien, J.; Roe, G.; Isenberg, N.; Kailey, J.; Abman, S.H. Serotonin contributes to high pulmonary vascular tone in a sheep model of persistent pulmonary hypertension of the newborn. Am. J. Physiol. Lung Cell Mol. Physiol. 2013, 304, L894–L901. [Google Scholar] [CrossRef]
- Hooper, C.W.; Delaney, C.; Streeter, T.; Yarboro, M.T.; Poole, S.; Brown, N.; Slaughter, J.C.; Cotton, R.B.; Reese, J.; Shelton, E.L. Selective serotonin reuptake inhibitor exposure constricts the mouse ductus arteriosus in utero. Am. J. Physiol. Heart Circ. Physiol. 2016, 311, H572–H581. [Google Scholar] [CrossRef]
- Johnson, D.E.; Kulik, T.J.; Lock, J.E.; Elde, R.P.; Thompson, T.R. Bombesin-, calcitonin-, and serotonin-immunoreactive pulmonary neuroendocrine cells in acute and chronic neonatal lung disease. Pediatr. Pulmonol. 1985, 1 (Suppl. S3), S13–S20. [Google Scholar] [PubMed]
- Breuer, J.; Georgaraki, A.; Sieverding, L.; Baden, W.; Apitz, J. Increased turnover of serotonin in children with pulmonary hypertension secondary to congenital heart disease. Pediatr. Cardiol. 1996, 17, 214–219. [Google Scholar] [CrossRef]
- de la Roque, E.D.; Smeralda, G.; Quignard, J.-F.; Freund-Michel, V.; Courtois, A.; Marthan, R.; Muller, B.; Guibert, C.; Dubois, M. Altered vasoreactivity in neonatal rats with pulmonary hypertension associated with bronchopulmonary dysplasia: Implication of both eNOS phosphorylation and calcium signaling. PLoS ONE 2017, 12, e0173044. [Google Scholar] [CrossRef] [PubMed]
- Delaney, C.; Sherlock, L.; Fisher, S.; Maltzahn, J.; Wright, C.; Nozik-Grayck, E. Serotonin 2A receptor inhibition protects against the development of pulmonary hypertension and pulmonary vascular remodeling in neonatal mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2018, 314, L871–L881. [Google Scholar] [CrossRef]
- Hofmann, A.D.; Friedmacher, F.; Hunziker, M.; Takahashi, H.; Duess, J.W.; Gosemann, J.-H.; Puri, P. Upregulation of serotonin-receptor-2a and serotonin transporter expression in the pulmonary vasculature of nitrofen-induced congenital diaphragmatic hernia. J. Pediatr. Surg. 2014, 49, 871–874, discussion 874–875. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.S.; Sherlock, L.G.; Posey, J.N.; Archambault, J.L.; Nozik, E.S.; Delaney, C.A. Serotonin-deficient neonatal mice are not protected against the development of experimental bronchopulmonary dysplasia or pulmonary hypertension. Physiol. Rep. 2022, 10, e15482. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Archambault, J.L.; Delaney, C.A. A Review of Serotonin in the Developing Lung and Neonatal Pulmonary Hypertension. Biomedicines 2023, 11, 3049. https://doi.org/10.3390/biomedicines11113049
Archambault JL, Delaney CA. A Review of Serotonin in the Developing Lung and Neonatal Pulmonary Hypertension. Biomedicines. 2023; 11(11):3049. https://doi.org/10.3390/biomedicines11113049
Chicago/Turabian StyleArchambault, Jamie L., and Cassidy A. Delaney. 2023. "A Review of Serotonin in the Developing Lung and Neonatal Pulmonary Hypertension" Biomedicines 11, no. 11: 3049. https://doi.org/10.3390/biomedicines11113049
APA StyleArchambault, J. L., & Delaney, C. A. (2023). A Review of Serotonin in the Developing Lung and Neonatal Pulmonary Hypertension. Biomedicines, 11(11), 3049. https://doi.org/10.3390/biomedicines11113049