Synergistic Antimicrobial Effects of Ibuprofen Combined with Standard-of-Care Antibiotics against Cystic Fibrosis Pathogens
Abstract
:1. Introduction
2. Material and Methods
2.1. Drugs
2.2. Bacterial Strains
2.3. Bacterial Culture
2.4. Disc Diffusion Assay
2.5. Minimum Inhibitory Concentration Assay
2.6. Checkerboard Assay
2.7. 24 h Endpoint CFU Assay
2.8. Acute Murine P. aeruginosa Lung Infection Model
2.9. Statistical Analysis
3. Results
3.1. Ibuprofen Increased the Zone of Inhibition of CF Clinical Isolates in a Disc-Diffusion Assay
3.2. In Vitro Antimicrobial Activity of Ibuprofen, Naproxen, Aspirin, Amikacin, Aztreonam, and Ceftazidime against P. aeruginosa and E. meningoseptica
3.3. Synergistic Effects of Ibuprofen and Ceftazidime against a Multi-Drug Resistant Clinical Isolate of P. aeruginosa (PA HP3) Demonstrated by Checkerboard Assay
3.4. Synergistic Effects of NSAIDs and Antibiotics Demonstrated by Endpoint CFU Studies
3.5. Ibuprofen in Combination with Ceftazidime Significantly Improved Mice Survival in an Acute Pneumonia Model
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chmiel, J.F.; Berger, M.; Konstan, M.W. The role of inflammation in the pathophysiology of CF lung disease. Clin. Rev. Allergy Immunol. 2002, 23, 5–27. [Google Scholar] [CrossRef] [PubMed]
- Davis, P.B.; Drumm, M.; Konstan, M.W. Cystic fibrosis. Am. J. Respir. Crit. Care Med. 1996, 154, 1229–1256. [Google Scholar] [CrossRef] [PubMed]
- Dakin, C.J.; Numa, A.H.; Wang, H.; Morton, J.R.; Vertzyas, C.C.; Henry, R.L. Inflammation, infection, and pulmonary function in infants and young children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2002, 165, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Chmiel, J.F.; Konstan, M.W. Inflammation and anti-inflammatory therapies for cystic fibrosis. Clin. Chest Med. 2007, 28, 331–346. [Google Scholar] [CrossRef] [PubMed]
- Dauletbaev, N.; Lam, J.; Eklove, D.; Iskandar, M.; Lands, L.C. Ibuprofen modulates NF-kB activity but not IL-8 production in cystic fibrosis respiratory epithelial cells. Respiration 2010, 79, 234–242. [Google Scholar] [CrossRef]
- Nichols, D.P.; Konstan, M.W.; Chmiel, J.F. Anti-inflammatory therapies for cystic fibrosis-related lung disease. Clin. Rev. Allergy Immunol. 2008, 35, 135–153. [Google Scholar] [CrossRef]
- Konstan, M.W. Ibuprofen therapy for cystic fibrosis lung disease: Revisited. Curr. Opin. Pulm. Med. 2008, 14, 567–573. [Google Scholar] [CrossRef]
- Lands, L.C.; Milner, R.; Cantin, A.M.; Manson, D.; Corey, M. High-dose ibuprofen in cystic fibrosis: Canadian safety and effectiveness trial. J. Pediatr. 2007, 151, 249–254. [Google Scholar] [CrossRef]
- Cheng, K.; Ashby, D.; Smyth, R.L. Oral steroids for long-term use in cystic fibrosis. Cochrane Database Syst. Rev. 2015, 2015, CD000407. [Google Scholar] [CrossRef]
- Konstan, M.W.; Byard, P.J.; Hoppel, C.L.; Davis, P.B. Effect of high-dose ibuprofen in patients with cystic fibrosis. N. Engl. J. Med. 1995, 332, 848–854. [Google Scholar] [CrossRef]
- Lai, H.C.; FitzSimmons, S.C.; Allen, D.B.; Kosorok, M.R.; Rosenstein, B.J.; Campbell, P.W.; Farrell, P.M. Risk of persistent growth impairment after alternate-day prednisone treatment in children with cystic fibrosis. N. Engl. J. Med. 2000, 342, 851–859. [Google Scholar] [CrossRef]
- Lands, L.C.; Stanojevic, S. Oral non-steroidal anti-inflammatory drug therapy for lung disease in cystic fibrosis. Cochrane Database Syst. Rev. 2016, 4, CD001505. [Google Scholar] [CrossRef] [PubMed]
- Saiman, L.; Marshall, B.C.; Mayer-Hamblett, N.; Burns, J.L.; Quittner, A.L.; Cibene, D.A.; Coquillette, S.; Fieberg, A.Y.; Accurso, F.J.; Campbell, P.W., 3rd. Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: A randomized controlled trial. JAMA 2003, 290, 1749–1756. [Google Scholar] [CrossRef] [PubMed]
- Rinaldo, J.E.; Pennock, B. Effects of ibuprofen on endotoxin-induced alveolitis: Biphasic dose response and dissociation between inflammation and hypoxemia. Am. J. Med. Sci. 1986, 291, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Sordelli, D.O.; Cerquetti, M.C.; El-Tawil, G.; Ramwell, P.W.; Hooke, A.M.; Bellanti, J.A. Ibuprofen modifies the inflammatory response of the murine lung to Pseudomonas aeruginosa. Eur. J. Respir. Dis. 1985, 67, 118–127. [Google Scholar] [PubMed]
- Konstan, M.W.; Vargo, K.M.; Davis, P.B. Ibuprofen attenuates the inflammatory response to Pseudomonas aeruginosa in a rat model of chronic pulmonary infection. Implications for antiinflammatory therapy in cystic fibrosis. Am. Rev. Respir. Dis. 1990, 141, 186–192. [Google Scholar] [CrossRef]
- Konstan, M.W.; Schluchter, M.D.; Xue, W.; Davis, P.B. Clinical use of ibuprofen is associated with slower FEV1 decline in children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2007, 176, 1084–1089. [Google Scholar] [CrossRef]
- Shah, P.N.; Shah, K.N.; Smolen, J.A.; Tagaev, J.A.; Torrealba, J.; Zhou, L.; Zhang, S.; Zhang, F.; Wagers, P.O.; Panzner, M.J. A novel in vitro metric predicts in vivo efficacy of inhaled silver-based antimicrobials in a murine Pseudomonas aeruginosa pneumonia model. Sci. Rep. 2018, 8, 6376. [Google Scholar] [CrossRef]
- Chan, E.W.L.; Yee, Z.Y.; Raja, I.; Yap, J.K.Y. Synergistic effect of non-steroidal anti-inflammatory drugs (NSAIDs) on antibacterial activity of cefuroxime and chloramphenicol against methicillin-resistant Staphylococcus aureus. J. Glob. Antimicrob. Resist. 2017, 10, 70–74. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standard Institute. Performance Standards for Antimicrobial Disk Susceptibility Tests, 13th ed.; CLSI standard M02; Clinical and Laboratory Standard Institute: Wayne, PA, USA, 2018; Volume 38, pp. 1–92. ISBN 1-56238-834-7. [Google Scholar]
- Chen, Q.; Shah, K.N.; Zhang, F.; Salazar, A.J.; Shah, P.N.; Li, R.; Sacchettini, J.C.; Wooley, K.L.; Cannon, C.L. Minocycline and silver dual-loaded polyphosphoester-based nanoparticles for treatment of resistant Pseudomonas aeruginosa. Mol. Pharm. 2019, 16, 1606–1619. [Google Scholar] [CrossRef]
- Meletiadis, J.; Verweij, P.E.; TeDorsthorst, D.T.; Meis, J.F.; Mouton, J.W. Assessing in vitro combinations of antifungal drugs against yeasts and filamentous fungi: Comparison of different drug interaction models. Med. Mycol. 2005, 43, 133–152. [Google Scholar] [CrossRef] [PubMed]
- Schelz, Z.; Molnar, J.; Hohmann, J. Antimicrobial and antiplasmid activities of essential oils. Fitoterapia 2006, 77, 279–285. [Google Scholar] [CrossRef] [PubMed]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). EUCAST Definitive Document E.Def 1.2, May 2000: Terminologyy relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clin. Microbiol. Infect. 2000, 6, 503–508. [Google Scholar] [CrossRef]
- Berard, X.; Stecken, L.; Pinaquy, J.B.; Cazanave, C.; Puges, M.; Pereyre, S.; Bordenave, L.; M’Zali, F. Comparison of the antimicrobial properties of silver impregnated vascular grafts with and without triclosan. Eur. J. Vasc. Endovasc. Surg. 2016, 51, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Saiman, L. Clinical utility of synergy testing for multidrug-resistant Pseudomonas aeruginosa isolated from patients with cystic fibrosis: ‘the motion for’. Paediatr. Respir. Rev. 2007, 8, 249–255. [Google Scholar] [CrossRef]
- Kahl, B.C.; Duebbers, A.; Lubritz, G.; Haeberle, J.; Koch, H.G.; Ritzerfeld, B.; Reilly, M.; Harms, E.; Proctor, R.A.; Herrmann, M. Population dynamics of persistent Staphylococcus aureus isolated from the airways of cystic fibrosis patients during a 6-year prospective study. J. Clin. Microbiol. 2003, 41, 4424–4427. [Google Scholar] [CrossRef]
- Sharp, S.E.; Searcy, C. Comparison of mannitol salt agar and blood agar plates for identification and susceptibility testing of Staphylococcus aureus in specimens from cystic fibrosis patients. J. Clin. Microbiol. 2006, 44, 4545–4546. [Google Scholar] [CrossRef]
- Branger, C.; Gardye, C.; Lambert-Zechovsky, N. Persistence of Staphylococcus aureus strains among cystic fibrosis patients over extended periods of time. J. Med. Microbiol. 1996, 45, 294–301. [Google Scholar] [CrossRef]
- Dasenbrook, E.C.; Merlo, C.A.; Diener-West, M.; Lechtzin, N.; Boyle, M.P. Persistent methicillin-resistant Staphylococcus aureus and rate of FEV1 decline in cystic fibrosis. Am. J. Respir. Crit. Care Med. 2008, 178, 814–821. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standard Institute. Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.; CLSI supplement M100; Clinical and Laboratory Standard Institute: Wayne, PA, USA, 2023; pp. 1–402. ISBN 978-1-68440-170-3. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- CDC. Antibiotic Resistance Threats in the United States, 2019; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019. [Google Scholar]
- Shinha, T.; Ahuja, R. Bacteremia due to Elizabethkingia meningoseptica. IDCases 2015, 2, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Ratnamani, M.S.; Rao, R. Elizabethkingia meningoseptica: Emerging nosocomial pathogen in bedside hemodialysis patients. Indian. J. Crit. Care Med. 2013, 17, 304–307. [Google Scholar] [CrossRef] [PubMed]
- Laudy, A.E.; Mrowka, A.; Krajewska, J.; Tyski, S. The influence of efflux pump inhibitors on the activity of non-antibiotic NSAIDS against gram-negative rods. PLoS ONE 2016, 11, e0147131. [Google Scholar] [CrossRef] [PubMed]
- Leao, C.; Borges, A.; Simoes, M. NSAIDs as a drug repurposing strategy for biofilm control. Antibiotics 2020, 9, 591. [Google Scholar] [CrossRef]
- Kang, D.; Kirienko, D.R.; Webster, P.; Fisher, A.L.; Kirienko, N.V. Pyoverdine, a siderophore from Pseudomonas aeruginosa, translocates into C. elegans, removes iron, and activates a distinct host response. Virulence 2018, 9, 804–817. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.N.; Marshall-Batty, K.R.; Smolen, J.A.; Tagaev, J.A.; Chen, Q.; Rodesney, C.A.; Le, H.H.; Gordon, V.D.; Greenberg, D.E.; Cannon, C.L. Antimicrobial activity of ibuprofen against cystic fibrosis-associated gram-negative pathogens. Antimicrob. Agents Chemother. 2018, 62, e01574-17. [Google Scholar] [CrossRef] [PubMed]
- Altaf, M.; Ijaz, M.; Ghaffar, A.; Rehman, A.; Avais, M. Antibiotic susceptibility profile and synergistic effect of non-steroidal anti-inflammatory drugs on antibacterial activity of resistant antibiotics (oxytetracycline and gentamicin) against methicillin resistant Staphylococcus aureus (MRSA). Microb. Pathog. 2019, 137, 103755. [Google Scholar] [CrossRef]
- Lyczak, J.B.; Cannon, C.L.; Pier, G.B. Lung infections associated with cystic fibrosis. Clin. Microbiol. Rev. 2002, 15, 194–222. [Google Scholar] [CrossRef]
- Moore, L.S.; Owens, D.S.; Jepson, A.; Turton, J.F.; Ashworth, S.; Donaldson, H.; Holmes, A.H. Waterborne Elizabethkingia meningoseptica in Adult Critical Care. Emerg. Infect. Dis. 2016, 22, 9–17. [Google Scholar] [CrossRef]
- Bellio, P.; Fagnani, L.; Nazzicone, L.; Celenza, G. New and simplified method for drug combination studies by checkerboard assay. MethodsX 2021, 8, 101543. [Google Scholar] [CrossRef]
- Humphries, R.M.; Simner, P.J. Broth Microdilution Test. In Clinical Microbiology Procedures Handbook, 5th ed.; Leber, A.L., Burham, C.D., Eds.; ASM Press: Washington, DC, USA, 2023. [Google Scholar]
- White, R.L.; Burgess, D.S.; Manduru, M.; Bosso, J.A. Comparison of three different in vitro methods of detecting synergy: Time-kill, checkerboard, and E test. Antimicrob. Agents Chemother. 1996, 40, 1914–1918. [Google Scholar] [CrossRef] [PubMed]
- Bremmer, D.N.; Bauer, K.A.; Pouch, S.M.; Thomas, K.; Smith, D.; Goff, D.A.; Pancholi, P.; Balada-Llasat, J.M. Correlation of checkerboard synergy testing with time-kill analysis and clinical outcomes of extensively drug-resistant Acinetobacter baumannii respiratory infections. Antimicrob. Agents Chemother. 2016, 60, 6892–6895. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, R.J.; Young, L.S.; Hewitt, W.L. Comparison of methods for assessing in vitro antibiotic synergism against Pseudomonas and Serratia. J. Lab. Clin. Med. 1975, 86, 853–862. [Google Scholar] [PubMed]
- Bayer, A.S.; Morrison, J.O. Disparity between timed-kill and checkerboard methods for determination of in vitro bactericidal interactions of vancomycin plus rifampin versus methicillin-susceptible and -resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 1984, 26, 220–223. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.L.; Zabransky, R.J. Determination of synergy by two methods with eight antimicrobial combinations against tobramycin-susceptible and tobramycin-resistant strains of Pseudomonas. Diagn. Microbiol. Infect. Dis. 1987, 6, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Zobell, J.T.; Waters, C.D.; Young, D.C.; Stockmann, C.; Ampofo, K.; Sherwin, C.M.; Spigarelli, M.G. Optimization of anti-pseudomonal antibiotics for cystic fibrosis pulmonary exacerbations: II. cephalosporins and penicillins. Pediatr. Pulmonol. 2013, 48, 107–122. [Google Scholar] [CrossRef]
- Konstan, M.W.; Krenicky, J.E.; Finney, M.R.; Kirchner, H.L.; Hilliard, K.A.; Hilliard, J.B.; Davis, P.B.; Hoppel, C.L. Effect of ibuprofen on neutrophil migration in vivo in cystic fibrosis and healthy subjects. J. Pharmacol. Exp. Ther. 2003, 306, 1086–1091. [Google Scholar] [CrossRef]
- Lehtopolku, M.; Kotilainen, P.; Puukka, P.; Nakari, U.M.; Siitonen, A.; Eerola, E.; Huovinen, P.; Hakanen, A.J. Inaccuracy of the disk diffusion method compared with the agar dilution method for susceptibility testing of Campylobacter spp. J. Clin. Microbiol. 2012, 50, 52–56. [Google Scholar] [CrossRef]
- Saini, V.; Goyal, N.; Singh, N.P.; Goswami, M. Evaluation of errors during susceptibility reporting of glycopeptide antibiotics for enterococcal isolates on sole basis of widely used disk diffusion test. Healthc. Low-Resour. Settings 2022, 10, 10806. [Google Scholar] [CrossRef]
- Uwizeyimana, J.D.; Kim, D.; Lee, H.; Byun, J.H.; Yong, D. Determination of colistin resistance by simple disk diffusion test using modified Mueller-Hinton agar. Ann. Lab. Med. 2020, 40, 306–311. [Google Scholar] [CrossRef]
Definition | FIC |
---|---|
Synergistic | FIC ≤ 0.5 |
Additive | 0.5 < FIC ≤ 1 |
Indifferent | 1 < FIC ≤ 4 |
Antagonistic | 4 < FIC |
Median Zone of Inhibition Diameter (Unit: mm) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Strain | AMK | ATM | CAZ | CST | TOB | GEN | LVX | VAN | |
PA HP3 | 19 | 18 | 13 | 16 | 6 | - | - | - | |
EM 2-18 | 11 | 6 | 6 | 6 | 6 | - | - | - | |
AX 2-79 | 8 | 7 | 23 | 9 | 6 | - | - | - | |
HI 2501 | 14 | 24 | 24 | 14 | 15 | - | - | - | |
SA LL06 | - | - | - | - | - | 22 | 9 | 14 |
Median Zone of Inhibition Diameter (mm) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AMK | ATM | CAZ | CST | TOB | GEN | LVX | VAN | |||||||||
DMSO+/− IBU | − | + | − | + | − | + | − | + | − | + | − | + | − | + | − | + |
PA HP3 | 19 | 21 | 24 | 28 | 13 | 18 * | 14 | 16 | 6 | 6 | - | - | - | - | - | - |
EM 2-18 | 10 | 15 * | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | - | - | - | - | - | - |
AX 2-79 | 7 | 9 | 6 | 7 | 22 | 22 | 9 | 9 | 6 | 6 | - | - | - | - | - | - |
HI 2501 | 14 | 14 | 24 | 29 * | 24 | 26 | 14 | 16 | 15 | 15 | - | - | - | - | - | - |
SA LL06 | - | - | - | - | - | - | - | - | - | - | 21 | 23 | 7 | 9 | 14 | 15 |
MIC µg/mL Strain | Ibuprofen | Naproxen | Aspirin |
---|---|---|---|
PA HP3 | 512 | ND | ND |
EM 2-18 | 256 | 1024 | ND |
Drug Combination | MIC of Single Drug (μg/mL) | MIC in Combination (μg/mL) | FICI |
---|---|---|---|
Aztreonam and Ibuprofen (PA HP3) | 4/512 | 2/50 | 0.60 |
Ceftazidime and Ibuprofen (PA HP3) | 16/512 | 4/50 | 0.35 |
Amikacin and Ibuprofen (EM 2-18) | 16/256 | 12/50 | 0.95 |
Aztreonam and Naproxen (PA HP3) | 4/>1024 | 2/50 | 0.55 |
Ceftazidime and Naproxen (PA HP3) | 16/>1024 | 4/50 | 0.30 |
Amikacin and Naproxen (EM 2-18) | 16/>1024 | 12/50 | 0.80 |
Aztreonam and Aspirin (PA HP3) | 4/>1024 | 4/100 | 1.10 |
Ceftazidime and Aspirin (PA HP3) | 16/>1024 | 16/100 | 1.10 |
Amikacin and Aspirin (EM 2-18) | 16/1024 | 16/100 | 1.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Ilanga, M.; Simbassa, S.B.; Chirra, B.; Shah, K.N.; Cannon, C.L. Synergistic Antimicrobial Effects of Ibuprofen Combined with Standard-of-Care Antibiotics against Cystic Fibrosis Pathogens. Biomedicines 2023, 11, 2936. https://doi.org/10.3390/biomedicines11112936
Chen Q, Ilanga M, Simbassa SB, Chirra B, Shah KN, Cannon CL. Synergistic Antimicrobial Effects of Ibuprofen Combined with Standard-of-Care Antibiotics against Cystic Fibrosis Pathogens. Biomedicines. 2023; 11(11):2936. https://doi.org/10.3390/biomedicines11112936
Chicago/Turabian StyleChen, Qingquan, Marleini Ilanga, Sabona B. Simbassa, Bhagath Chirra, Kush N. Shah, and Carolyn L. Cannon. 2023. "Synergistic Antimicrobial Effects of Ibuprofen Combined with Standard-of-Care Antibiotics against Cystic Fibrosis Pathogens" Biomedicines 11, no. 11: 2936. https://doi.org/10.3390/biomedicines11112936
APA StyleChen, Q., Ilanga, M., Simbassa, S. B., Chirra, B., Shah, K. N., & Cannon, C. L. (2023). Synergistic Antimicrobial Effects of Ibuprofen Combined with Standard-of-Care Antibiotics against Cystic Fibrosis Pathogens. Biomedicines, 11(11), 2936. https://doi.org/10.3390/biomedicines11112936