Inflammatory and Anti-Inflammatory Parameters in PCOS Patients Depending on Body Mass Index: A Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Study Population
2.2. Hormonal Evaluation
2.3. Biochemical Evaluation
2.4. Cytokines and Inflammatory Parameters Analysis
2.5. Statistical Analysis
3. Results
3.1. Clinical, Biochemical, and Hormonal Parameters
3.2. Comparison of the Interleukin Levels
3.3. Chemokines and Other Inflammatory Parameters
3.4. Associations of Inflammatory Parameters and Metabolic Parameters
3.5. IR and Inflammation in PCOS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teede, H.J.; Misso, M.L.; Costello, M.F.; Dokras, A.; Laven, J.; Moran, L.; Norman, R.J. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod. 2018, 33, 1602–1618. [Google Scholar] [CrossRef]
- Tosi, F.; Bonora, E.; Moghetti, P. Insulin resistance in a large cohort of women with polycystic ovary syndrome: A comparison between euglycaemic-hyperinsulinaemic clamp and surrogate indexes. Hum. Reprod. 2017, 32, 2515–2521. [Google Scholar] [CrossRef] [PubMed]
- Diamanti-Kandarakis, E.; Dunaif, A. Insulin resistance and the polycystic ovary syndrome revisited: An update on mechanisms and implications. Endocr. Rev. 2012, 33, 981–1030. [Google Scholar] [CrossRef] [PubMed]
- Moran, L.J.; Pasquali, R.; Teede, H.J.; Hoeger, K.M.; Norman, R.J. Treatment of obesity in polycystic ovary syndrome: A position statement of the Androgen Excess and Polycystic Ovary Syndrome Society. Fertil. Steril. 2009, 92, 1966–1982. [Google Scholar] [CrossRef]
- Shabbir, S.; Khurram, E.; Moorthi, V.S.; Eissa, Y.T.H.; Kamal, M.A.; Butler, A.E. The interplay between androgens and the immune response in polycystic ovary syndrome. J. Transl. Med. 2023, 21, 259. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Pang, B.; Ma, Z.; Yi, H. Immunophenotypic profiles in polycystic ovary syndrome. Mediat. Inflamm. 2020, 2020, 5894768. [Google Scholar] [CrossRef]
- Virtue, S.; Vidal-Puig, A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome—An allostatic perspective. Biochim. Biophys. Acta BBA-Mol. Cell Biol. Lipids 2010, 1801, 338–349. [Google Scholar] [CrossRef]
- Tremellen, K.; Pearce, K. Dysbiosis of Gut Microbiota (DOGMA)—A novel theory for the development of polycystic ovarian syndrome. J. Med. Hypotheses Ideas 2012, 79, 104–112. [Google Scholar] [CrossRef]
- Aboeldalyl, S.; James, C.; Seyam, E.; Ibrahim, E.M.; Shawki, H.E.D.; Amer, S. The role of chronic inflammation in polycystic ovarian syndrome—A systematic review and meta-analysis. Int. J. Mol. Sci. 2021, 22, 2734. [Google Scholar] [CrossRef] [PubMed]
- Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte chemoattractant protein-1 (MCP-1): An overview. J. Interferon Cytokine Res. 2009, 29, 313–326. [Google Scholar] [CrossRef]
- Wu, Z.; Fang, L.; Li, Y.; Yan, Y.; Thakur, A.; Cheng, J.C.; Sun, Y.P. Association of circulating monocyte chemoattractant protein-1 levels with polycystic ovary syndrome: A meta-analysis. Am. J. Reprod. Immunol. 2021, 86, e13407. [Google Scholar] [CrossRef]
- Popovic, M.; Sartorius, G.; Christ-Crain, M. Chronic low-grade inflammation in polycystic ovary syndrome: Is there a (patho)-physiological role for interleukin-1? In Seminars in Immunopathology; Springer: Berlin/Heidelberg, Germany, 2019; Volume 41, pp. 447–459. [Google Scholar]
- Simon, C.; Tsafriri, A.; Chun, S.Y.; Piquette, G.N.; Dang, W.; Lake Polan, M. Interleukin-1 receptor antagonist suppresses human chorionic gonadotropin-induced ovulation in the rat. Biol. Reprod. 1994, 51, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Tsafriri, A. Ovulation as a tissue remodelling process: Proteolysis and cumulus expansion. In Tissue Renin-Angiotensin Systems: Current Concepts of Local Regulators in Reproductive and Endocrine Organs; Springer: Boston, MA, USA, 1995; pp. 121–140. [Google Scholar]
- Luotola, K.; Piltonen, T.T.; Puurunen, J.; Tapanainen, J.S. IL-1 receptor antagonist levels are associated with glucose tolerance in polycystic ovary syndrome. Clin. Endocrinol. 2016, 85, 430–435. [Google Scholar] [CrossRef]
- Xing, G.; Sun, Y.; Wang, F.; Gao, G.; Zhou, X. Role of interleukin-10 polymorphisms and haplotypes in polycystic ovary syndrome risk. Int. J. Clin. Exp. Pathol. 2017, 10, 7956. [Google Scholar]
- Fiorentino, D.F.; Zlotnik, A.; Mosmann, T.R.; Howard, M.; O’Garra, A. IL-10 inhibits cytokine production by activated macrophages. J. Immunol. 1991, 147, 3815–3822. [Google Scholar] [CrossRef]
- Talaat, R.M.; Mohamed, Y.A.; Mohamad, E.H.; Elsharkawy, M.; Guirgis, A.A. Interleukin 10 (−1082 G/A) and (−819 C/T) gene polymorphisms in Egyptian women with polycystic ovary syndrome (PCOS). Meta Gene 2016, 9, 254–258. [Google Scholar] [CrossRef]
- Benson, S.; Janssen, O.E.; Hahn, S.; Tan, S.; Dietz, T.; Mann, K.; Elsenbruch, S. Obesity, depression, and chronic low-grade inflammation in women with polycystic ovary syndrome. Brain Behav. Immun. 2008, 22, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, Y.; Li, S.; Tao, Y.; Gao, R.; Xu, W.; Qin, L. The association between genetically predicted systemic inflammatory regulators and polycystic ovary syndrome: A mendelian randomization study. Front. Endocrinol. 2021, 12, 731569. [Google Scholar] [CrossRef] [PubMed]
- Dalmas, E.; Rouault, C.; Abdennour, M.; Rovere, C.; Rizkalla, S.; Bar-Hen, A.; Poitou, C. Variations in circulating inflammatory factors are related to changes in calorie and carbohydrate intakes early in the course of surgery-induced weight reduction. Am. J. Clin. Nutr. 2011, 94, 450–458. [Google Scholar] [CrossRef]
- Williams, A.; Greene, N.; Kimbro, K. Increased circulating cytokine levels in African American women with obesity and elevated HbA1c. Cytokine 2020, 128, 154989. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xia, Y.; Ji, X.; Wang, H.; Zhang, Z.; Lu, P.; Liu, M. MIG/CXCL9 exacerbates the progression of metabolic-associated fatty liver disease by disrupting Treg/Th17 balance. Exp. Cell Res. 2021, 407, 112801. [Google Scholar] [CrossRef] [PubMed]
- Maury, E.; Brichard, S.M.; Pataky, Z.; Carpentier, A.; Golay, A.; Bobbioni-Harsch, E. Effect of Obesity on Growth-related Oncogene Factor-α, Thrombopoietin, and Tissue Inhibitor Metalloproteinase-1 Serum Levels. Obesity 2010, 18, 1503–1509. [Google Scholar] [CrossRef]
- Knebel, B.; Janssen, O.E.; Hahn, S.; Jacob, S.; Gleich, J.; Kotzka, J.; Muller-Wieland, D. Increased low grade inflammatory serum markers in patients with polycystic ovary syndrome (PCOS) and their relationship to PPARγ gene variants. Exp. Clin. Endocrinol. Diabetes 2008, 116, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Aksun, S.; Ersal, E.; Portakal, O.; Yildiz, B.O. Interleukin-22/Interleukin-22 binding protein axis and oral contraceptive use in polycystic ovary syndrome. Endocrine 2023, 81, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Xu, J.; Hong, L.; Jia, Y.; Burk, L.V.; Chi, F.; Li, K. The alterations of circulating mucosal-associated invariant T cells in polycystic ovary syndrome. Front. Endocrinol. 2022, 13, 1038184. [Google Scholar] [CrossRef]
- Gutch, M.; Kumar, S.; Razi, S.M.; Gupta, K.K.; Gupta, A. Assessment of insulin sensitivity/resistance. Indian J. Endocrinol. Metab. 2015, 19, 160. [Google Scholar] [CrossRef]
- Pajulas, A.; Zhang, J.; Kaplan, M.H. The World according to IL-9. J. Immunol. 2023, 211, 7–14. [Google Scholar] [CrossRef]
- Li, J.; Chen, S.; Xiao, X.; Zhao, Y.; Ding, W.; Li, X.C. IL-9 and Th9 cells in health and diseases—From tolerance to immunopathology. Cytokine Growth Factor Rev. 2017, 37, 47–55. [Google Scholar] [CrossRef]
- Huber, J.; Kiefer, F.W.; Zeyda, M.; Ludvik, B.; Silberhumer, G.R.; Prager, G.; Stulnig, T.M. CC chemokine and CC chemokine receptor profiles in visceral and subcutaneous adipose tissue are altered in human obesity. J. Clin. Endocrinol. Metab. 2008, 93, 3215–3221. [Google Scholar] [CrossRef]
- Gerhardt, C.C.; Romero, I.A.; Cancello, R.; Camoin, L.; Strosberg, A.D. Chemokine’s control fat accumulation and leptin secretion by cultured human adipocytes. J. Mol. Endocrinol. 2001, 175, 81–92. [Google Scholar] [CrossRef]
- Qi, X.; Yun, C.; Liao, B.; Qiao, J.; Pang, Y. The therapeutic effect of interleukin-22 in high androgen-induced polycystic ovary syndrome. J. Endocrinol. 2020, 245, 281–289. [Google Scholar] [CrossRef] [PubMed]
- De Luca, C.; Olefsky, J.M. Inflammation and insulin resistance. FEBS Lett. 2008, 582, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, F.; Nair, K.S.; Basal, E.; Bearson, D.M.; Schimke, J.M.; Blair, H.E. Induction of hyperandrogenism in lean reproductive-age women stimulates proatherogenic inflammation. Horm. Metab. Res. 2015, 47, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Morreale, H.F.; Calvo, R.M.; Villuendas, G.; Sancho, J.; San Millán, J.L. Association of polymorphisms in the interleukin 6 receptor complex with obesity and hyperandrogenism. Obes. Res. 2003, 11, 987–996. [Google Scholar] [CrossRef]
- Peral, B.; San Millán, J.L.; Castello, R.; Moghetti, P.; Escobar-Morreale, H.F. The methionine 196 arginine polymorphism in exon 6 of the TNF receptor 2 gene (TNFRSF1B) is associated with the polycystic ovary syndrome and hyperandrogenism. J. Clin. Endocrinol. Metab. 2002, 87, 3977–3983. [Google Scholar] [CrossRef]
- Villuendas, G.; San Millán, J.L.; Sancho, J.; Escobar-Morreale, H.F. The −597 G→ A and −174 G→ C polymorphisms in the promoter of the IL-6 gene are associated with hyperandrogenism. J. Clin. Endocrinol. Metab. 2002, 87, 1134–1141. [Google Scholar]
- Mazloomi, S.; Barartabar, Z.; Pilehvari, S. The Association Between Increment of Interleukin-1 and Interleukin-6 in Women with Polycystic Ovary Syndrome and Body Mass Index. J. Reprod. Infertil. 2023, 24, 26–34. [Google Scholar] [CrossRef]
- Yang, Y.; Qiao, J.; Li, R.; Li, M.Z. Is interleukin-18 associated with polycystic ovary syndrome? Reprod. Biol. Endocrinol. 2011, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Artimani, T.; Karimi, J.; Mehdizadeh, M.; Yavangi, M.; Khanlarzadeh, E.; Ghorbani, M.; Kheiripour, N. Evaluation of pro-oxidant-antioxidant balance (PAB) and its association with inflammatory cytokines in polycystic ovary syndrome (PCOS). Gynecol. Endocrinol. 2018, 34, 148–152. [Google Scholar] [CrossRef]
- Šimková, M.; VÍTKŮ, J.; Kolatorova, L.; Vrbikova, J.; Vosatkova, M.; Včelák, J.; Dušková, M. Endocrine disruptors, obesity, and cytokines-how relevant are they to PCOS? Physiol Res. 2020, 69, S279. [Google Scholar] [CrossRef]
- Peng, Z.; Sun, Y.; Lv, X.; Zhang, H.; Liu, C.; Dai, S. Interleukin-6 levels in women with polycystic ovary syndrome: A systematic review and meta-analysis. PLoS ONE 2016, 11, e0148531. [Google Scholar]
- Nehir Aytan, A.; Bastu, E.; Demiral, I.; Bulut, H.; Dogan, M.; Buyru, F. Relationship between hyperandrogenism, obesity, inflammation and polycystic ovary syndrome. Gynecol. Endocrinol. 2016, 32, 709–713. [Google Scholar] [CrossRef]
- Mehrabani, H.H.; Salehpour, S.; Amiri, Z.; Farahani, S.J.; Meyer, B.J.; Tahbaz, F. Beneficial effects of a high-protein, low-glycemic-load hypocaloric diet in overweight and obese women with polycystic ovary syndrome: A randomized controlled intervention study. J. Am. Coll. Nutr. 2012, 31, 117–125. [Google Scholar] [CrossRef]
- Escobar-Morreale, H.F.; Luque-Ramírez, M.; González, F. Inflammatory markers in polycystic ovary syndrome: A systematic review and metaanalysis. Fertil. Steril. 2011, 95, 1048–1058. [Google Scholar] [CrossRef]
- Schuetz, P.; Muller, B.; Christ-Crain, M.; Stolz, D.; Tamm, M.; Bouadma, L.; Briel, M. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Evid.-Based Child Health A Cochrane Rev. J. 2013, 8, 1297–1371. [Google Scholar] [CrossRef]
- Rashad, N.M.; Amal, S.; Abdelaziz, A.M. Association between inflammatory biomarker serum procalcitonin and obesity in women with polycystic ovary syndrome. J. Reprod. Immunol. 2013, 97, 232–239. [Google Scholar] [CrossRef]
- O’Driscoll, J.B.; Mamtora, H.; Higginson, J.; Pollock, A.; Kane, J.; Anderson, D.C. Prospective Study of the Prevalence of Clear-Cut Endocrine Disorders and Polycystic Ovaries in 350 Patients Presenting with Hirsutism or Androgenic Alopecia. Clin. Endocrinol. 1994, 41, 231–236. [Google Scholar] [CrossRef]
- Tilg, H.; Moschen, A.R. Inflammatory Mechanisms in the Regulation of Insulin Resistance. Mol. Med. 2008, 14, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Guilherme, A.; Virbasius, J.V.; Puri, V.; Czech, M.P. Adipocyte Dysfunctions Linking Obesity to Insulin Resistance and Type 2 Diabetes. Nat. Rev. Mol. Cell Biol. 2008, 9, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Galic, S.; Oakhill, J.S.; Steinberg, G.R. Adipose tissue as an endocrine organ. Cell Endocrinol. 2010, 316, 129–139. [Google Scholar] [CrossRef]
- Torres-Leal, F.L.; Fonseca-Alaniz, M.H.; Rogero, M.M.; Tirapegui, J. The role of inflamed adipose tissue in the insulin resistance. Cell Biochem. Funct. 2010, 28, 623–631. [Google Scholar]
- Senn, J.J.; Klover, P.J.; Nowak, I.A.; Zimmers, T.A.; Koniaris, L.G.; Furlanetto, R.W.; Mooney, R.A. Suppressor of Cytokine Signaling-3 (SOCS-3), a Potential Mediator of Interleukin-6-Dependent Insulin Resistance in Hepatocytes. J. Biol. Chem. 2003, 278, 13740–13746. [Google Scholar] [PubMed]
- Ruscitti, P.; Ursini, F.; Cipriani, P.; Greco, M.; Alvaro, S.; Vasiliki, L.; Giacomelli, R. IL-1 inhibition improves insulin resistance and adipokines in rheumatoid arthritis patients with comorbid type 2 diabetes: An observational study. Medicine 2019, 98, e14587. [Google Scholar] [PubMed]
- Shorakae, S.; Ranasinha, S.; Abell, S.; Lambert, G.; Lambert, E.; de Courten, B.; Teede, H. Inter-Related Effects of Insulin Resistance, Hyperandrogenism, Sympathetic Dysfunction and Chronic Inflammation in PCOS. Clin. Endocrinol. 2018, 89, 628–633. [Google Scholar]
BMI < 25 | p | BMI ≥ 25 | p | PCOS (n = 44) | Control (n = 45) | p | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
PCOS (n = 19) | Controls (n = 22) | PCOS (n = 25) | Controls (n = 23) | ||||||||
Age, years | 27 (24–30) | 27 (25–29) | 0.981 | 27 (22.5–30.5) | 30 (28–30.5) | 0.062 | 28 (24–31) | 26 (26–30) | 0.898 | ||
BMI | 21.9 (20–23.8) | 21.5 (20–22.5) | 0.231 | 33.9 (28.2–37.9) | 28.7 (27.3–33.1) | 0.065 | 25.3 (21.7–32.5) | 26 (21.6–28.7) | 0.407 | ||
Average duration of MC, days | 30 (28–37) | 28 (28–29) | 0.007 | 30 (28–50) | 28 (28–29) | 0.007 | 55 (32–90) | 28 (28–29) | <0.001 | ||
Dieting before inclusion in the study | 0% | 0% | 48% | 0% | 0.001 | ||||||
FPG, mmol/L | 4.7 (4.5–5.1) | 4.9 (4.6–5.1) | 0.690 | 5.0 (4.8–5.2) | 5.3 (5.0–5.5) | 0.037 | 4.8 (4.5–5.2) | 5.0 (4.8–5.3) | 0.020 | ||
Insulin, μIU/mL | 7.0 (4.3–8.7) | 6.4 (4.8–8.8) | 0.888 | 18.2 (12.4–23.7) | 9.5 (6.7–17.0) | 0.001 | 9.4 (6.4–18.6) | 8.0 (5.9–10.6) | 0.042 | ||
Leptin, ng/mL | 18.4 (11.3–35.6) | 16.3 (9.3–48.7) | 0.606 | 40.2 (30–89.7) | 37.6 (25.2–48.8) | 0.318 | 31.5 (13.3–47) | 26 (9.4–44.7) | 0.341 | ||
HOMA-IR index | 1.4 (1–1.8) | 1.4 (0.9–2) | 0.925 | 4.3 (2.7–5.4) | 2.1 (1.5–3.8) | 0.003 | 2.1 (1.4–4.3) | 1.8 (1.3–2.3) | 0.117 | ||
Total cholesterol, mg/d | 4.9 (4.3–5.4) | 4.2 (0.6–4.9) | 0.003 | 4.4 (3.8–5.3) | 4.7 (4.3–5.1) | 0.606 | 4.8 (4.2–5.3) | 4.4 (3.7–5) | 0.009 | ||
LDL-C, mg/dL | 2.9 (2.7–3.4) | 2.5 (1.7–2.9) | 0.008 | 2.9 (2.1–3.6) | 2.8 (2.5–3.1) | 0.818 | 2.9 (2.2–3.3) | 2.6 (2.2–3) | 0.099 | ||
HDL-C, mg/dL | 1.5 (1.3–1.8) | 1.3 (0.3–1.6) | 0.046 | 1.1 (1–1.4) | 1.4 (1.1–1.5) | 0.114 | 1.4 (1.1–1.7) | 1.4 (1.1–1.6) | 0.365 | ||
Triglycerides, mg/dL | 0.62 (0.6–0.8) | 0.70 (0.4–1.3) | 0.324 | 1.0 (0.9–1.4) | 0.86 (0.6–1.2) | 0.065 | 0.9 (0.6–1.2) | 0.7 (0.6–1.1) | 0.146 | ||
FSH, mIU/mL | 6.0 (5.0–6.9) | 6.7 (5.8–8.1) | 0.058 | 4.8 (4.4–5.7) | 6.5 (5.6–7.7) | <0.001 | 6.3 (5.2–7.1) | 6.7 (5.8–8.4) | 0.020 | ||
LH, mIU/mL | 11.1 (6.7–14.6) | 5.9 (4.8–7.3) | <0.001 | 7.4 (6.6–12.1) | 6.3 (4.6–7.6) | 0.050 | 9.6 (6.5–12.9) | 6.2 (4.7–7.8) | <0.001 | ||
Total testosterone, nmol/L | 1.5 (1.2–2.1) | 0.8 (0.7–1.2) | <0.001 | 1.8 (1.4–2.3) | 1.1 (0.7–1.3) | <0.001 | 1.6 (1.1–2.1) | 0.9 (0.7–1.2) | <0.001 | ||
Androstenedion, ng/mL | 3.0 (2.3–4.9) | 2.1 (1.3–2.7) | 0.005 | 3.5 (2.2–4.6) | 2.2 (1.8–3.4) | 0.018 | 3.4 (2.7–5.0) | 2.2 (1.7–2.9) | <0.001 | ||
SHBG, nmol/L | 57.0 (40.6–80.1) | 82.4 (55.9–102.4) | 0.062 | 26.7 (15.9–41.8) | 59.0 (40.3–78.4) | 0.001 | 46.9 (29.7–75) | 67.5 (51.4–95.4) | <0.001 | ||
FAI, % | 2.8 (1.8–3.8) | 1.0 (0.9–1.4) | 0.003 | 5.0 (3.4–9.5) | 1.7 (1.4–2.9) | <0.001 | 3.3 (1.9–5.5) | 1.4 (0.9–2.1) | <0.001 |
Interleukins | BMI < 25 | p | BMI ≥ 25 | p | PCOS (n = 44) | Control (n = 45) | p ** | p *** | ||
---|---|---|---|---|---|---|---|---|---|---|
PCOS (n = 19) | Controls (n = 22) | PCOS (n = 25) | Controls (n = 23) | |||||||
IL-1a | 1.3 (0.5–6.9) | 0 (0–3.2) | 0.006 | 2.56 (0.0–5.92) | 0.51 (0.0–5.92) | 0.358 | 1.3 (0.5–5.9) | 0 (0–2.5) | 0.014 | 0.723 |
IL-1b | 11.7 (5.8–21.7) | 5.2 (0.7–16.9) | 0.124 | 13.27 (3.62–21.54) | 5.86 (1.74–17.41) | 0.230 | 13.2 (5.2–21.7) | 5.8 (1.7–16.9) | 0.052 | 0.776 |
IL-1 RA | 1.0 (0.9–1.9) | 0.5 (0.3–0.8) | 0.001 | 1.95 (1.34–2.75) | 0.96 (0.69–1.12) | <0.001 | 1.5 (0.9–2.2) | 0.8 (0.4–1.0) | <0.001 | 0.004 |
IL-2 | 0.28 (0–1.5) | 0 (0–0.6) | 0.004 | 0.43 (0.0–0.85) | 0.0 (0.0–0.14) | 0.012 | 0.43 (0–1.14) | 0 (0–0.11) | <0.001 | 0.711 |
IL-3 | 0.7 (0–0.2) | 0.0 (0.0–0.0) | 0.030 | 0.09 (0.0–0.29) | 0.05 (0.0–0.22) | 0.484 | 0.05 (0–0.6) | 0 (0–0.09) | 0.053 | 0.814 |
IL-4 | 0.5 (0–0.6) | 0.0 (0.0–0.0) | 0.008 | 0.05 (0.0–0.54) | 0.0 (0.0–0.0) | 0.094 | 0.05 (0–0.6) | 0 (0.0–0.0) | 0.002 | 0.719 |
IL-5 | 1.99 (1.24–3.35) | 1.29 (0.84–3.1) | 0.184 | 1.94 (1.39–3.99) | 1.59 (0.94–4.05) | 0.448 | 1.9 (1.3–3.6) | 1.4 (0.9–3.5) | 0.144 | 0.937 |
IL-6 | 0.48 (0.24–1.12) | 0.0 (0.0–0.24) | 0.004 | 1.2 (0.58–2.17) | 0.32 (0.0–0.64) | 0.002 | 0.7 (0.4–1.2) | 0.07 (0–0.48) | <0.001 | 0.009 |
IL-7 | 0.75 (0.08–1.05) | 0.08 (0.0–0.75) | 0.050 | 0.33 (0.07–0.81) | 0.27 (0.21–1.19) | 0.644 | 0.4 (0.08–0.99) | 0.2 (0–0.87) | 0.268 | 0.345 |
IL-8 | 1.56 (1.12–2.63) | 0.98 (0.66–1.56) | 0.034 | 1.43 (0.95–1.83) | 1.77 (1.08–2.23) | 0.116 | 1.5 (1.0–2.1) | 1.5 (0.8–1.97) | 0.534 | 0.146 |
IL-9 | 6.71 (0.0–12.01) | 0.0 (0.0–3.99) | 0.048 | 5.26 (0.0–11.35) | 0.0 (0.0–2.56) | 0.060 | 5.7 (0–11.4) | 0 (0–3.9) | 0.007 | 0.800 |
IL-10 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.555 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.669 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.967 | 0.963 |
IL-12 | 22.53 (13.62–31.02) | 14.84 (7.27–19.62) | 0.012 | 21.95 (17.25–25.4) | 18.44 (9.87–27.09) | 0.176 | 21.9 (16–28.7) | 16 (9.8–20.7) | 0.005 | 0.883 |
IL-13 | 75.93 (54.9–194.96) | 19.64 (1.22–54.9) | <0.001 | 58.98 (31.58–128.68) | 46.26 (7.6–106.89) | 0.373 | 74.1 (43.9–143.5) | 36.7 (3–81.2) | 0.001 | 0.117 |
IL-15 | 7.8 (4.98–8.61) | 4.8 (3.23–6.32) | 0.006 | 7.64 (6.49–9.96) | 7.31 (5.32–8.12) | 0.235 | 7.6 (5.6–9.5) | 6.3 (4.2–7.6) | 0.004 | 0.509 |
IL-17A | 5.33 (1.57–8.82) | 0.57 (0.29–4.43) | 0.002 | 5.62 (1.98–8.82) | 1.57 (0.29–5.03) | 0.033 | 5.6 (1.5–8.8) | 0.5 (0.2–4.4) | <0.001 | 0.882 |
IL-17E/IL-25 | 310.25 (172.63–529.23) | 154.83 (52.69–205.93) | 0.007 | 352.69 (221.73–676.94) | 172.63 (117.52–366.08) | 0.013 | 352.6 (205.9–643.9) | 172.6 (52.6–325) | <0.001 | 0.547 |
IL-17F | 3.43 (1.13–7.21) | 0.73 (0.0–3.65) | 0.066 | 3.0 (1.33–7.21) | 1.13 (0.35–4.54) | 0.083 | 3.2 (1.1–7.2) | 0.7 (0–3.6) | 0.011 | 0.856 |
IL-18 | 14.93 (9.82–20.5) | 8.84 (3.51–13.92) | 0.025 | 16.29 (10.37–24.37) | 10.18 (5.78–17.41) | 0.049 | 14.9 (10.1–22.9) | 9.7 (4.5–16.4) | 0.003 | 0.570 |
IL-22 | 0.0 (0.0–121.66) | 0.0 (0.0–0.0) | 0.060 | 0.0 (0.0–26.1) | 0.0 (0.0–0.0) | 0.097 | 0.0 (0.0–29.1) | 0.0 (0.0–0.0) | 0.012 | 0.458 |
IL-27 | 1478.66 (1190.23–1763.21) | 1320.66 (1070.85–1529.68) | 0.205 | 1073.96 (772.69–1476.52) | 1303.77 (1022.43–1803.25) | 0.124 | 1266 (967.7–1703.3) | 1303.7 (1058–1652.4) | 0.768 | 0.051 |
Analytes | BMI < 25 | p | BMI ≥ 25 | p | PCOS (n = 44) | Control (n = 45) | p ** | p *** | ||
---|---|---|---|---|---|---|---|---|---|---|
PCOS (n = 19) | Controls (n = 22) | PCOS (n = 25) | Controls (n = 23) | |||||||
SCD40L | 246.1 (158.6–451.6) | 124.4 (91.5–206) | 0.009 | 252.66 (154.75–400.17) | 146.92 (113.75–364.25) | 0.170 | 252.6 (158.6–428) | 134.8 (109.3–337.5) | 0.004 | 0.901 |
TNF-a | 16.5 (12.1–45) | 7.2 (5.2–11.5) | <0.001 | 12.73 (10.32–18.59) | 9.71 (8.62–13.62) | 0.066 | 15.6 (11.5–21.4) | 9.4 (5.9–12.1) | <0.001 | 0.020 |
TNF-b | 8.8 (5.2–24) | 2.5 (0.6–7.2) | 0.004 | 6.11 (2.23–12.11) | 3.04 (1.72–9.59) | 0.230 | 8.4 (2.7–16.1) | 3 (0.6–7.8) | 0.003 | 0.173 |
FKN | 153.61 (130.79–266.05) | 89.67 (72.1–120.33) | <0.001 | 134.18 (105.58–168.95) | 113.08 (81.14–150.5) | 0.202 | 140.8 (113–216.4) | 97.8 (81.1–134.1) | <0.001 | 0.061 |
MIG | 656.81 (497.31–825.76) | 470.75 (427.05–740.17) | 0.067 | 689.96 (590.98–784.09) | 1047.81 (687.13–1238.94) | 0.025 | 687 (562–808) | 695.5 (433–1152) | 0.878 | 0.910 |
GRO-α | 1.27 (0.28–3.05) | 0.51 (0.0–1.95) | 0.166 | 0.6 (0.24–1.59) | 0.42 (0.0–3.22) | 0.973 | 0.8 (0.2–1.8) | 0.5 (0–2.8) | 0.381 | 0.189 |
MCP-1 | 180.19 (141.11–192.8) | 132.52 (112.04–158.57) | 0.006 | 153.7 (106.37–183.32) | 168.61 (153.07–199.03) | 0.059 | 161 (123.8–191) | 153 (121.4–181.7) | 0.732 | 0.109 |
MCP-3 | 9.64 (6.83–37.35) | 2.77 (0.0–7.38) | <0.001 | 8.44 (4.95–18.02) | 6.26 (1.03–14.18) | 0.165 | 8.4 (6.2–21.8) | 5 (0.6–8.4) | <0.001 | 0.328 |
MIP-1 α | 15.93 (8.59–29.14) | 4.3 (0.77–14.07) | 0.018 | 16.98 (10.64–25.47) | 6.12 (0.77–16.2) | 0.026 | 16.2 (8.5–26.2) | 6 (0.7–14) | 0.001 | 0.919 |
MIP-1 β | 17.51 (14.06–22.05) | 10.98 (8.84–14.37) | 0.003 | 16.63 (14.97–19.88) | 13.07 (11.6–17.84) | 0.097 | 17.1 (14.3–20.5) | 12.3 (10.5–16.6) | 0.001 | 0.946 |
Eotaxin | 54.17 (45.8–64.28) | 44.05 (31.55–48.9) | 0.010 | 37.71 (30.14–44.33) | 43.28 (30.03–63.13) | 0.097 | 45.3 (37.7–61.6) | 43.9 (30.8–60.7) | 0.654 | <0.001 |
Interleukins | HOMA < 2.5 (n = 24) | HOMA ≥ 2.5 (n = 20) | p |
---|---|---|---|
IL-1a | 1.3 (0.5–7.5) | 2.5 (0–5.3) | 0.593 |
IL-1b | 11.7 (5.5–22.3) | 13.2 (3.6–20.4) | 0.706 |
IL-1 RA | 1.2 (0.9–2.0) | 1.8 (1.3–2.9) | 0.024 |
IL-2 | 0.36 (0–0.9) | 0.55 (0–1.7) | 0.755 |
IL-3 | 0.09 (0–0.25) | 0.05 (0–0.36) | 0.893 |
IL-4 | 0.05 (0–0.76) | 0 (0–0.34) | 0.375 |
IL-5 | 1.99 (1.34–3.75) | 1.89 (1.0–3.7) | 0.663 |
IL-6 | 0.48 (0.28–1.0) | 1.2 (0.6–2.7) | 0.004 |
IL-7 | 0.63 (0.17–1.0) | 0.39 (0.01–0.81) | 0.636 |
IL-8 | 1.39 (1.0–2.5) | 1.56 (0.98–2.0) | 0.604 |
IL-9 | 4.3 (0–13) | 5.4 (0.0–9.7) | 0.649 |
IL-10 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.706 |
IL-12 | 20.78 (16.65–27) | 22.5 (15.7–33.5) | 0.494 |
IL-13 | 89 (50.5–142.2) | 56.9 (31.5–143.5) | 0.340 |
IL-15 | 7.9 (5.8–9.7) | 7.6 (5.9–9.3) | 0.841 |
IL-17A | 5.6 (1.57–10.39) | 5.6 (2.1–6.8) | 0.456 |
IL-17E/IL-25 | 296.5 (172.6–552.6) | 391.9 (221.7–698.7) | 0.243 |
IL-17F | 3.43 (1.13–6.76) | 3.0 (1.5–7.6) | 0.777 |
IL-18 | 15.1 (11.03–20.21) | 15.5 (9.5–28.3) | 0.604 |
IL-22 | 0.0 (0.0–43.51) | 0.0 (0.0–45.30) | 0.956 |
IL-27 | 1478.65 (1049.6–1733.2) | 1136.88 (922.5–1598.8) | 0.423 |
Analytes | HOMA < 2.5 (n = 24) | HOMA ≥ 2.5 (n = 20) | p |
---|---|---|---|
SCD40L | 193.5 (156.6–439.8) | 271.6 (170.4–400) | 0.494 |
TNF-α | 16.5 (12.4–22.5) | 11.5 (10–20.3) | 0.069 |
TNF-β | 9.4 (5.2–16.3) | 4.9 (1.8–16.9) | 0.268 |
FKN | 147.3 (130.7–241.2) | 130.7 (101.6–204.8) | 0.140 |
MIG | 685.7 (535.7–842.3) | 693.7 (574.5–772.1) | 0.786 |
GRO-α | 1.14 (0.42–2.94) | 0.42 (0.12–1.81) | 0.126 |
MCP-1 | 166.2 (139.5–189.3) | 154 (101.5–191) | 0.258 |
MCP-3 | 11.9 (6.5–20.8) | 8.4 (4.9–20.4) | 0.457 |
MIP-1α | 15.9 (8.0–29.6) | 18.2 (10.6–25.9) | 0.972 |
MIP-1β | 16.7 (12.5–20.4) | 18.6 (14.9–22.5) | 0.216 |
Eotaxin | 53.9 (44.9–63.9) | 37.4 (30–45) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasyukova, E.; Zaikova, E.; Kalinina, O.; Gorelova, I.; Pyanova, I.; Bogatyreva, E.; Vasilieva, E.; Grineva, E.; Popova, P. Inflammatory and Anti-Inflammatory Parameters in PCOS Patients Depending on Body Mass Index: A Case-Control Study. Biomedicines 2023, 11, 2791. https://doi.org/10.3390/biomedicines11102791
Vasyukova E, Zaikova E, Kalinina O, Gorelova I, Pyanova I, Bogatyreva E, Vasilieva E, Grineva E, Popova P. Inflammatory and Anti-Inflammatory Parameters in PCOS Patients Depending on Body Mass Index: A Case-Control Study. Biomedicines. 2023; 11(10):2791. https://doi.org/10.3390/biomedicines11102791
Chicago/Turabian StyleVasyukova, Elena, Ekaterina Zaikova, Olga Kalinina, Inga Gorelova, Irina Pyanova, Elena Bogatyreva, Elena Vasilieva, Elena Grineva, and Polina Popova. 2023. "Inflammatory and Anti-Inflammatory Parameters in PCOS Patients Depending on Body Mass Index: A Case-Control Study" Biomedicines 11, no. 10: 2791. https://doi.org/10.3390/biomedicines11102791
APA StyleVasyukova, E., Zaikova, E., Kalinina, O., Gorelova, I., Pyanova, I., Bogatyreva, E., Vasilieva, E., Grineva, E., & Popova, P. (2023). Inflammatory and Anti-Inflammatory Parameters in PCOS Patients Depending on Body Mass Index: A Case-Control Study. Biomedicines, 11(10), 2791. https://doi.org/10.3390/biomedicines11102791