New Nitric Oxide-Releasing Compounds as Promising Anti-Bladder Cancer Drugs
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Information
2.2. Experimental Procedures and Characterization Data for the Compounds
2.3. Cell Cultures
2.4. Antiproliferative Activity
2.5. NO Release in Cell Culture Media
2.6. NO Release in Physiological Solution
2.7. Antiproliferative Activity with Hemoglobin
2.8. Clonogenic Assay
2.9. Spheroids
2.10. Scratch Assay
2.11. Comet Assay
2.12. NF-κB Pathway Inhibition
2.13. Western Blotting
3. Results
3.1. Chemistry
Chemical Synthesis
3.2. Biology
3.2.1. Antiproliferative Activity
3.2.2. Nitric-Oxide-Releasing Activity
3.2.3. Antiproliferative Activity with Hemoglobin
3.2.4. Clonogenic Assay
3.2.5. Spheroids
3.2.6. Migration Assay
3.2.7. Comet Assay
3.2.8. NF-κB Pathway Inhibition
3.2.9. Survivin Expression Inhibition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, D.S.; Shipley, W.U.; Feldman, A.S. Bladder Cancer. Lancet 2009, 374, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Ghatalia, P.; Zibelman, M.; Geynisman, D.M.; Plimack, E. Approved Checkpoint Inhibitors in Bladder Cancer: Which Drug Should Be Used When? Ther. Adv. Med. Oncol. 2018, 10, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witjes, J.A.; Bruins, H.M.; Cathomas, R.; Compérat, E.M.; Cowan, N.C.; Gakis, G.; Hernández, V.; Linares Espinós, E.; Lorch, A.; Neuzillet, Y.; et al. European Association of Urology Guidelines on Muscle-Invasive and Metastatic Bladder Cancer: Summary of the 2020 Guidelines. Eur. Urol. 2021, 79, 82–104. [Google Scholar] [CrossRef] [PubMed]
- Yoon, C.Y.; Park, M.J.; Lee, J.S.; Lee, S.C.; Oh, J.J.; Park, H.; Chung, C.W.; Abdullajanov, M.M.; Jeong, S.J.; Hong, S.K.; et al. The Histone Deacetylase Inhibitor Trichostatin a Synergistically Resensitizes a Cisplatin Resistant Human Bladder Cancer Cell Line. J. Urol. 2011, 185, 1102–1111. [Google Scholar] [CrossRef]
- Knowles, M.; Dyrskjøt, L.; Heath, E.I.; Bellmunt, J.; Siefker-Radtke, A.O. Metastatic Urothelial Carcinoma. Cancer Cell 2021, 39, 583–585. [Google Scholar] [CrossRef]
- Seabra, A.B.; Durán, N. Nitric Oxide Donors for Prostate and Bladder Cancers: Current State and Challenges. Eur. J. Pharmacol. 2018, 826, 158–168. [Google Scholar] [CrossRef]
- Huang, Z.; Fu, J.; Zhang, Y. Nitric Oxide Donor-Based Cancer Therapy: Advances and Prospects. J. Med. Chem. 2017, 60, 7617–7635. [Google Scholar] [CrossRef]
- Korde Choudhari, S.; Chaudhary, M.; Bagde, S.; Gadbail, A.R.; Joshi, V. Nitric Oxide and Cancer: A Review. World J. Surg. Oncol. 2013, 11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S.; Lowe, J.E.; Knowles, R.G.; Green, I.C.; Green, M.H.L. Factors Affecting the DNA Damaging Activity of Superoxide and Nitric Oxide. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 1998, 402, 77–84. [Google Scholar] [CrossRef]
- Marshall, H.E.; Stamler, J.S. Inhibition of NF-Kappa B by S-Nitrosylation. Biochemistry 2001, 40, 1688–1693. [Google Scholar] [CrossRef]
- Plenchette, S.; Romagny, S.; Laurens, V.; Bettaieb, A. S-Nitrosylation in TNF Superfamily Signaling Pathway: Implication in Cancer. Redox Biol. 2015, 6, 507–515. [Google Scholar] [CrossRef] [Green Version]
- Huber, M.A.; Azoitei, N.; Baumann, B.; Grünert, S.; Sommer, A.; Pehamberger, H.; Kraut, N.; Beug, H.; Wirth, T. NF- κ B Is Essential for Epithelial- Mesenchymal Transition and Metastasis in a Model of Breast Cancer Progression. J. Clin. Investig. 2004, 114, 569–581. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Shen, D.; Kong, C.; Zhang, Z.; Zeng, Y.; Lin, X.; Liu, X. NF-κ B Suppresses Apoptosis and Promotes Bladder Cancer Cell Proliferation by Upregulating Survivin Expression in Vitro and in Vivo. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Shariat, S.F.; Ashfaq, R.; Karakiewicz, P.I.; Saeedi, O.; Sagalowsky, A.I.; Lotan, Y. Survivin Expression Is Associated with Bladder Cancer Presence, Stage, Progression, and Mortality. Cancer 2007, 109, 1106–1113. [Google Scholar] [CrossRef]
- Altieri, D.C. Survivin, Versatile Modulation of Cell Division and Apoptosis in Cancer. Oncogene 2003, 22, 8581–8589. [Google Scholar] [CrossRef] [Green Version]
- Shariat, S.F.; Karakiewicz, P.I.; Godoy, G.; Karam, J.A.; Ashfaq, R.; Fradet, Y.; Isbarn, H.; Montorsi, F.; Jeldres, C.; Bastian, P.J.; et al. Survivin as a Prognostic Marker for Urothelial Carcinoma of the Bladder: A Multicenter External Validation Study. Clin. Cancer Res. 2009, 15, 7012–7019. [Google Scholar] [CrossRef] [Green Version]
- Pérez, F.; Varela, M.; Canclini, L.; Acosta, S.; Martínez-López, W.; López, G.V.; Hernández, P. Furoxans and Tocopherol Analogs-Furoxan Hybrids as Anticancer Agents. Anticancer. Drugs 2019, 30, 330–338. [Google Scholar] [CrossRef]
- Bubeník, J.; Barešová, M.; Viklický, V.; Jakoubková, J.; Sainerová, H.; Donner, J. Established Cell Line of Urinary Bladder Carcinoma (T24) Containing Tumour-specific Antigen. Int. J. Cancer 1973, 11, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Elliott, A.Y.; Cleveland, P.; Cervenka, J.; Castro, A.E.; Stein, N.; Hakala, T.R.; Fraley, E.E. Characterization of a Cell Line from Human Transitional Cell Cancer of the Urinary Tract. J. Natl. Cancer Inst. 1974, 53, 1341–1349. [Google Scholar] [CrossRef]
- Singh, N.; Krishnakumar, S.; Kanwar, R.K.; Cheung, C.H.A.; Kanwar, J.R. Clinical Aspects for Survivin: A Crucial Molecule for Targeting Drug-Resistant Cancers. Drug Discov. Today 2015, 20, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Rödel, F.; Hoffmann, J.; Distel, L.; Herrmann, M.; Noisternig, T.; Papadopoulos, T.; Sauer, R.; Rödel, C. Survivin as a Radioresistance Factor, and Prognostic and Therapeutic Target for Radiotherapy in Rectal Cancer. Cancer Res. 2005, 65, 4881–4887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lolli, M.L.; Cena, C.; Medana, C.; Lazzarato, L.; Morini, G.; Coruzzi, G.; Manarini, S.; Fruttero, R.; Gasco, A. A New Class of Ibuprofen Derivatives with Reduced Gastrotoxicity. J. Med. Chem. 2001, 44, 3463–3468. [Google Scholar] [CrossRef] [PubMed]
- López, G.V.; Blanco, F.; Hernández, P.; Ferreira, A.; Piro, O.E.; Batthyány, C.; González, M.; Rubbo, H.; Cerecetto, H. Second Generation of α-Tocopherol Analogs-Nitric Oxide Donors: Synthesis, Physicochemical, and Biological Characterization. Bioorganic Med. Chem. 2007, 15, 6262–6272. [Google Scholar] [CrossRef] [PubMed]
- Vichai, V.; Kirtikara, K. Sulforhodamine B Colorimetric Assay for Cytotoxicity Screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef]
- Griess, P. Bemerkungen Zu Der Abhandlung Der HH. Weselsky Und Benedikt „Ueber Einige Azoverbindungen”. Ber. Der Dtsch. Chem. Ges. 1879, 12, 426–428. [Google Scholar] [CrossRef] [Green Version]
- Sodano, F.; Gazzano, E.; Rolando, B.; Marini, E.; Lazzarato, L.; Fruttero, R.; Riganti, C.; Gasco, A. Tuning NO Release of Organelle-Targeted Furoxan Derivatives and Their Cytotoxicity against Lung Cancer Cells. Bioorg. Chem. 2021, 111, 104911. [Google Scholar] [CrossRef]
- Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic Assay of Cells in Vitro. Nat. Protoc. 2006, 1, 2315–2319. [Google Scholar] [CrossRef]
- Ivanov, D.P.; Parker, T.L.; Walker, D.A.; Alexander, C.; Ashford, M.B.; Gellert, P.R.; Garnett, M.C. Multiplexing Spheroid Volume, Resazurin and Acid Phosphatase Viability Assays for High-Throughput Screening of Tumour Spheroids and Stem Cell Neurospheres. PLoS ONE 2014, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A Simple Technique for Quantitation of Low Levels of DNA Damage in Individual Cells. Exp. Cell Res. 1988, 175, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.; Yu, T.W.; Phillips, B.J.; Schmezer, P. The Effect of Various Antioxidants and Other Modifying Agents on Oxygen-Radical-Generated DNA Damage in Human Lymphocytes in the COMET Assay. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 1994, 307, 261–271. [Google Scholar] [CrossRef]
- Collins, A.R.; Ai-guo, M.; Duthie, S.J. The Kinetics of Repair of Oxidative DNA Damage (Strand Breaks and Oxidised Pyrimidines) in Human Cells. Mutat. Res. Repair 1995, 336, 69–77. [Google Scholar] [CrossRef]
- Hernández, P.; Cabrera, M.; Lavaggi, M.L.; Celano, L.; Tiscornia, I.; Rodrigues Da Costa, T.; Thomson, L.; Bollati-Fogolín, M.; Miranda, A.L.P.; Lima, L.M.; et al. Discovery of New Orally Effective Analgesic and Anti-Inflammatory Hybrid Furoxanyl N-Acylhydrazone Derivatives. Bioorganic Med. Chem. 2012, 20, 2158–2171. [Google Scholar] [CrossRef]
- Burov, O.N.; Kletskii, M.E.; Fedik, N.S.; Lisovin, A.V.; Kurbatov, S.V. Mechanism of Thiol-Induced Nitrogen(II) Oxide Donation by Furoxans: A Quantum-Chemical Study. Chem. Heterocycl. Compd. 2015, 51, 951–960. [Google Scholar] [CrossRef]
- Kanai, K.; Kikuchi, E.; Mikami, S.; Suzuki, E.; Uchida, Y.; Kodaira, K.; Miyajima, A.; Ohigashi, T.; Nakashima, J.; Oya, M. Vitamin E Succinate Induced Apoptosis and Enhanced Chemosensitivity to Paclitaxel in Human Bladder Cancer Cells in Vitro and in Vivo. Cancer Sci. 2010, 101, 216–223. [Google Scholar] [CrossRef]
- Yang, C.S.; Luo, P.; Zeng, Z.; Wang, H.; Malafa, M.; Suh, N. Vitamin E and Cancer Prevention: Studies with Different Forms of Tocopherols and Tocotrienols. Mol. Carcinog. 2020, 59, 365–389. [Google Scholar] [CrossRef]
- Capalbo, G.; Dittmann, K.; Weiss, C.; Reichert, S.; Hausmann, E.; Rödel, C.; Rödel, F. Radiation-Induced Survivin Nuclear Accumulation Is Linked to DNA Damage Repair. Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 226–234. [Google Scholar] [CrossRef]
Compound | T24 | 253J | HaCaT | ||
---|---|---|---|---|---|
IC50 (µM) | SI | IC50 (µM) | SI | IC50 (µM) | |
1 | 2.48 ± 1.15 | 8.04 | 3.59 ± 1.11 | 5.55 | 19.93 ± 1.12 |
2 | 4.97 ± 1.08 | 0.90 | 2.27 ± 1.08 | 1.86 | 4.49 ± 1.11 |
3 | 2.57 ± 1.10 | 6.48 | 2.01 ± 1.13 | 8.28 | 16.65 ± 1.12 |
SAHA | 14.65 ± 1.25 | 0.37 | 11.83 ± 1.20 | 0.46 | 5.39 ± 1.10 |
Cisplatin | 12.38 ± 1.11 | 2.11 | 63.84 ± 1.09 | 0.41 | 26.18 ± 1.17 |
Cell Line | Clonogenic Score | DMSO | 1 | 2 | 3 | Cisplatin |
---|---|---|---|---|---|---|
T24 | CF | 221 | 0 | 56 | 0 | 0 |
PE (%) | 44 | 0 | 11 | 0 | 0 | |
SF | 100 | 0 | 25 | 0 | 0 | |
253J | CF | 271 | 0 | 0 | 0 | 0 |
PE (%) | 54 | 0 | 0 | 0 | 0 | |
SF | 1 | 0 | 0 | 0 | 0 |
253J | T24 | ||||
---|---|---|---|---|---|
Compound | IC50 | SI | Compound | IC50 | SI |
1 | 3.59 ± 1.11 | 5.55 | 12.26 ± 1.26 * | 2.81 * | |
4 | 4.94 ± 1.22 * | 5.09 * | 5 | 3.69 ± 1.12 * | 1.31 * |
2 | 2.27 ± 1.08 | 1.86 | 3 | 2.57 ± 1.10 | 6.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varela, M.; López, M.; Ingold, M.; Alem, D.; Perini, V.; Perelmuter, K.; Bollati-Fogolín, M.; López, G.V.; Hernández, P. New Nitric Oxide-Releasing Compounds as Promising Anti-Bladder Cancer Drugs. Biomedicines 2023, 11, 199. https://doi.org/10.3390/biomedicines11010199
Varela M, López M, Ingold M, Alem D, Perini V, Perelmuter K, Bollati-Fogolín M, López GV, Hernández P. New Nitric Oxide-Releasing Compounds as Promising Anti-Bladder Cancer Drugs. Biomedicines. 2023; 11(1):199. https://doi.org/10.3390/biomedicines11010199
Chicago/Turabian StyleVarela, María, Miriam López, Mariana Ingold, Diego Alem, Valentina Perini, Karen Perelmuter, Mariela Bollati-Fogolín, Gloria V. López, and Paola Hernández. 2023. "New Nitric Oxide-Releasing Compounds as Promising Anti-Bladder Cancer Drugs" Biomedicines 11, no. 1: 199. https://doi.org/10.3390/biomedicines11010199
APA StyleVarela, M., López, M., Ingold, M., Alem, D., Perini, V., Perelmuter, K., Bollati-Fogolín, M., López, G. V., & Hernández, P. (2023). New Nitric Oxide-Releasing Compounds as Promising Anti-Bladder Cancer Drugs. Biomedicines, 11(1), 199. https://doi.org/10.3390/biomedicines11010199