Kidney Renin Release under Hypoxia and Its Potential Link with Nitric Oxide: A Narrative Review
Abstract
:1. Introduction
2. Renin Expression in Kidneys
3. The Change in Renin under Hypoxia
Change in Renin Activity/Expression | Reference | |||
---|---|---|---|---|
Acute hypoxemic hypoxia | ||||
20 min | Beagle dogs | 5 and 8% O2 | Increased | [25] |
20 min | SD rats | 12% O2 | Increased | [26] |
Chronic sustained hypoxemic hypoxia | ||||
2/4 w | Wistar rats | 10% O2 | Decreased | [27,28] |
Chronic intermit hypoxemic hypoxia | ||||
35 d | Wistar rats | 2–3% O2 2 min/cycle | Increased | [30] |
1 d | SD rats | 10% O2 6 min/cycle | Increased | [31] [31] |
7 d | SD rats | 10% O2 6 min/cycle | Increased | |
Special type of hypoxemic hypoxia | ||||
Obstructive sleep apnea | Increased | [33] | ||
High altitude natives (vs sea level natives) | Higher | [37] | ||
6 days stay at high altitude (vs basal at sea level) | Decreased | [35] | ||
Acute exposure to high altitudes (vs basal at sea level) | Decreased | [36] | ||
2 weeks stay at high altitudes (vs basal at sea level) | Decreased | [36] | ||
Anemic hypoxia | ||||
Inherited super anemic mutant mice | Increased | [39] | ||
Histotoxic hypoxia | ||||
6 h | SD rats | 0.1% Carbon monoxide | Increased | [40] |
4. Sources of Renin under Hypoxia
5. Potential Mechanisms Regulating Renin under Hypoxia
6. Renin in Renal Local RASs under Hypoxia
7. Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mirabito Colafella, K.M.; Bovée, D.M.; Danser, A.H.J. The renin-angiotensin-aldosterone system and its therapeutic targets. Exp. Eye Res. 2019, 186, 107680. [Google Scholar] [CrossRef] [PubMed]
- Vargas Vargas, R.A.; Varela Millán, J.M.; Fajardo Bonilla, E. Renin–angiotensin system: Basic and clinical aspects-A general perspective. Endocrinol. Diabetes Nutr. 2022, 69, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Ardaillou, R. Angiotensin II receptors. J. Am. Soc. Nephrol. 1999, 10 (Suppl. S11), S30–S39. [Google Scholar]
- Santos, R.A.S.; Sampaio, W.O.; Alzamora, A.C.; Motta-Santos, D.; Alenina, N.; Bader, M.; Campagnole-Santos, M.J. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin–angiotensin system: Focus on Angiotensin-(1-7). Physiol. Rev. 2018, 98, 505–553. [Google Scholar] [CrossRef]
- Paul, M.; Poyan Mehr, A.; Kreutz, R. Physiology of local renin–angiotensin systems. Physiol. Rev. 2006, 86, 747–803. [Google Scholar] [CrossRef] [PubMed]
- Shu, S.; Wang, Y.; Zheng, M.; Liu, Z.; Cai, J.; Tang, C.; Dong, Z. Hypoxia and Hypoxia-Inducible Factors in Kidney Injury and Repair. Cells 2019, 8, 207. [Google Scholar] [CrossRef]
- Zhou, T.-B.; Ou, C.; Rong, L.; Drummen, G.P. Effect of all-trans retinoic acid treatment on prohibitin and renin-angiotensin-aldosterone system expression in hypoxia-induced renal tubular epithelial cell injury. J. Renin-Angiotensin-Aldosterone Syst. 2014, 15, 243–249. [Google Scholar] [CrossRef]
- Nicholl, D.; Hanly, P.; Zalucky, A.; Handley, G.; Sola, D.; Ahmed, S.J.S. Nocturnal hypoxemia severity influences the effect of CPAP therapy on renal renin-angiotensin-aldosterone system activity in humans with obstructive sleep apnea. Sleep 2021, 44, zsaa228. [Google Scholar] [CrossRef]
- Raff, H.; Sandri, R.B.; Segerson, T.P. Renin, ACTH, and adrenocortical function during hypoxia and hemorrhage in conscious rats. Am. J. Physiol. 1986, 250, R240–R244. [Google Scholar] [CrossRef]
- Feng, M.G.; Navar, L.G. Angiotensin II-mediated constriction of afferent and efferent arterioles involves T-type Ca2+ channel activation. Am. J. Nephrol. 2004, 24, 641–648. [Google Scholar] [CrossRef]
- Nangaku, M.; Fujita, T. Activation of the renin–angiotensin system and chronic hypoxia of the kidney. Hypertens. Res. 2008, 31, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Chaszczewska-Markowska, M.; Sagan, M.; Bogunia-Kubik, K. The renin-angiotensin-aldosterone system (RAAS)—Physiology and molecular mechanisms of functioning. Postep. Hig. I Med. Dosw. 2016, 70, 917–927. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, A. Renin release: Sites, mechanisms, and control. Annu. Rev. Physiol. 2011, 73, 377–399. [Google Scholar] [CrossRef]
- Castrop, H.; Höcherl, K.; Kurtz, A.; Schweda, F.; Todorov, V.; Wagner, C. Physiology of kidney renin. Physiol. Rev. 2010, 90, 607–673. [Google Scholar] [CrossRef] [PubMed]
- Damkjær, M.; Isaksson, G.L.; Stubbe, J.; Jensen, B.L.; Assersen, K.; Bie, P. Renal renin secretion as regulator of body fluid homeostasis. Pflug. Arch. Eur. J. Physiol. 2013, 465, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, A. Control of renin synthesis and secretion. Am. J. Hypertens. 2012, 25, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Gomez, R.A.; Sequeira-Lopez, M.L.S. Renin cells in homeostasis, regeneration and immune defence mechanisms. Nat. Rev. Nephrol. 2018, 14, 231–245. [Google Scholar] [CrossRef]
- Guessoum, O.; de Goes Martini, A.; Sequeira-Lopez, M.L.S.; Gomez, R.A. Deciphering the Identity of Renin Cells in Health and Disease. Trends Mol. Med. 2021, 27, 280–292. [Google Scholar] [CrossRef]
- Assmus, A.M.; Mullins, J.J.; Brown, C.M.; Mullins, L.J. Cellular plasticity: A mechanism for homeostasis in the kidney. Acta Physiol. 2020, 229, e13447. [Google Scholar] [CrossRef]
- Kurtz, A. How can juxtaglomerular renin-producing cells support the integrity of glomerular endothelial cells? Pflug. Arch. Eur. J. Physiol. 2019, 471, 1161–1162. [Google Scholar] [CrossRef]
- Pippin, J.W.; Sparks, M.A.; Glenn, S.T.; Buitrago, S.; Coffman, T.M.; Duffield, J.S.; Gross, K.W.; Shankland, S.J. Cells of renin lineage are progenitors of podocytes and parietal epithelial cells in experimental glomerular disease. Am. J. Pathol. 2013, 183, 542–557. [Google Scholar] [CrossRef] [PubMed]
- Samanta, D.; Prabhakar, N.R.; Semenza, G.L. Systems biology of oxygen homeostasis. Wiley Interdiscip. Rev. Syst. Biol. Med. 2017, 9, e1382. [Google Scholar] [CrossRef] [PubMed]
- Persson, P.B.; Bondke Persson, A. Oxygen-to little, too much or just right. Acta Physiol. 2018, 223, e13076. [Google Scholar] [CrossRef] [PubMed]
- Mallat, J.; Rahman, N.; Hamed, F.; Hernandez, G.; Fischer, M.O. Pathophysiology, mechanisms, and managements of tissue hypoxia. Anaesth. Crit. Care Pain Med. 2022, 41, 101087. [Google Scholar] [CrossRef]
- Liang, C.S.; Gavras, H. Renin–angiotensin system inhibition in conscious dogs during acute hypoxemia. Effects on systemic hemodynamics, regional blood flows, and tissue metabolism. J. Clin. Investig. 1978, 62, 961–970. [Google Scholar] [CrossRef]
- Neylon, M.; Marshall, J.; Johns, E.J. The role of the renin–angiotensin system in the renal response to moderate hypoxia in the rat. J. Physiol. 1996, 491 Pt 2, 479–488. [Google Scholar] [CrossRef]
- Schweda, F.; Schweda, A.; Pfeifer, M.; Blumberg, F.C.; Kammerl, M.C.; Holmer, S.R.; Riegger, G.A.; Krämer, B.K. Role of endothelins for the regulation of renal renin gene expression. J. Cardiovasc. Pharmacol. 2000, 36, S187–S190. [Google Scholar] [CrossRef]
- Schweda, F.; Blumberg, F.C.; Schweda, A.; Kammerl, M.; Holmer, S.R.; Riegger, G.A.; Pfeifer, M.; Krämer, B.K. Effects of chronic hypoxia on renal renin gene expression in rats. Nephrol. Dial. Transplant. 2000, 15, 11–15. [Google Scholar] [CrossRef]
- Da Silva, M.P.; Magalhães, K.S.; de Souza, D.P.; Moraes, D.J.A. Chronic intermittent hypoxia increases excitability and synaptic excitation of protrudor and retractor hypoglossal motoneurones. J. Physiol. 2021, 599, 1917–1932. [Google Scholar] [CrossRef]
- Fletcher, E.C.; Bao, G.; Li, R. Renin activity and blood pressure in response to chronic episodic hypoxia. Hypertension 1999, 34, 309–314. [Google Scholar] [CrossRef]
- Saxena, A.; Little, J.T.; Nedungadi, T.P.; Cunningham, J.T. Angiotensin II type 1a receptors in subfornical organ contribute towards chronic intermittent hypoxia-associated sustained increase in mean arterial pressure. Am. J. Physiol. Heart Circ. Physiol. 2015, 308, H435–H446. [Google Scholar] [CrossRef] [PubMed]
- Loh, H.H.; Lim, Q.H.; Chai, C.S.; Goh, S.L.; Lim, L.L.; Yee, A.; Sukor, N. Influence and implications of the renin-angiotensin-aldosterone system in obstructive sleep apnea: An updated systematic review and meta-analysis. J. Sleep Res. 2023, 32, e13726. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.N.; Wei, Y.X. Meta-analysis of effects of obstructive sleep apnea on the renin-angiotensin-aldosterone system. J. Geriatr. Cardiol. 2016, 13, 333–343. [Google Scholar] [CrossRef]
- Sharma, V.; Varshney, R.; Sethy, N.K. Human adaptation to high altitude: A review of convergence between genomic and proteomic signatures. Hum. Genom. 2022, 16, 21. [Google Scholar] [CrossRef] [PubMed]
- Keynes, R.J.; Smith, G.W.; Slater, J.D.; Brown, M.M.; Brown, S.E.; Payne, N.N.; Jowett, T.P.; Monge, C.C. Renin and aldosterone at high altitude in man. J. Endocrinol. 1982, 92, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Revera, M.; Salvi, P.; Faini, A.; Giuliano, A.; Gregorini, F.; Bilo, G.; Lombardi, C.; Mancia, G.; Agostoni, P.; Parati, G. Renin-Angiotensin-Aldosterone System Is Not Involved in the Arterial Stiffening Induced by Acute and Prolonged Exposure to High Altitude. Hypertension 2017, 70, 75–84. [Google Scholar] [CrossRef]
- Antezana, A.M.; Richalet, J.P.; Noriega, I.; Galarza, M.; Antezana, G. Hormonal changes in normal and polycythemic high-altitude natives. J. Appl. Physiol. 1995, 79, 795–800. [Google Scholar] [CrossRef]
- Mistry, N.; Mazer, C.D.; Sled, J.G.; Lazarus, A.H.; Cahill, L.S.; Solish, M.; Zhou, Y.Q.; Romanova, N.; Hare, A.G.M.; Doctor, A.; et al. Red blood cell antibody-induced anemia causes differential degrees of tissue hypoxia in kidney and brain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 314, R611–R622. [Google Scholar] [CrossRef]
- Miyauchi, K.; Nakai, T.; Saito, S.; Yamamoto, T.; Sato, K.; Kato, K.; Nezu, M.; Miyazaki, M.; Ito, S.; Yamamoto, M.; et al. Renal interstitial fibroblasts coproduce erythropoietin and renin under anaemic conditions. EBioMedicine 2021, 64, 103209. [Google Scholar] [CrossRef]
- Kramer, B.K.; Ritthaler, T.; Schweda, F.; Kees, F.; Schricker, K.; Holmer, S.R.; Kurtz, A. Effects of hypoxia on renin secretion and renal renin gene expression. Kidney Int. Suppl. 1998, 67, S155–S158. [Google Scholar] [CrossRef]
- Berka, J.L.; Alcorn, D.; Coghlan, J.P.; Fernley, R.T.; Morgan, T.O.; Ryan, G.B.; Skinner, S.L.; Weaver, D.A. Granular juxtaglomerular cells and prorenin synthesis in mice treated with enalapril. J. Hypertens. 1990, 8, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Goldfarb, B.; Tobian, L. The interrelationship of hypoxia, erythropoietin, and the renal juxtaglomerular cell. Proc. Soc. Exp. Biol. Med. 1962, 111, 510–511. [Google Scholar] [CrossRef]
- Oliver, W.J.; Brody, G.L. Effect of prolonged hypoxia upon granularity of rneal juxtaglomerular cells. Circ. Res. 1965, 16, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Czyzyk-Krzeska, M.F.; Trzebski, A. Respiratory-related discharge pattern of sympathetic nerve activity in the spontaneously hypertensive rat. J. Physiol. 1990, 426, 355–368. [Google Scholar] [CrossRef]
- Riquier-Brison, A.D.M.; Sipos, A.; Prókai, Á.; Vargas, S.L.; Toma, L.; Meer, E.J.; Villanueva, K.G.; Chen, J.C.M.; Gyarmati, G.; Yih, C.; et al. The macula densa prorenin receptor is essential in renin release and blood pressure control. Am. J. Physiol. Ren. Physiol. 2018, 315, F521–F534. [Google Scholar] [CrossRef] [PubMed]
- Haase, M.; Dringenberg, T.; Allelein, S.; Willenberg, H.S.; Schott, M. Excessive Catecholamine Secretion and the Activation of the Renin-Angiotensin-Aldosterone-System in Patients with Pheochromocytoma: A Single Center Experience and Overview of the Literature. Horm. Metab. Res. 2017, 49, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Rico, A.J.; Prieto-Lloret, J.; Gonzalez, C.; Rigual, R. Hypoxia and acidosis increase the secretion of catecholamines in the neonatal rat adrenal medulla: An in vitro study. Am. J. Physiol. Cell Physiol. 2005, 289, C1417–C1425. [Google Scholar] [CrossRef] [PubMed]
- Steele, S.L.; Ekker, M.; Perry, S.F. Interactive effects of development and hypoxia on catecholamine synthesis and cardiac function in zebrafish (Danio rerio). J. Comp. Physiol. B 2011, 181, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, P.; Sigmund, C.D. Under Pressure: A Baroreceptor Mechanism in the Renal Renin Cell Controlling Renin. Circ. Res. 2021, 129, 277–279. [Google Scholar] [CrossRef]
- Hickmann, L.; Steglich, A.; Gerlach, M.; Al-Mekhlafi, M.; Sradnick, J.; Lachmann, P.; Sequeira-Lopez, M.L.S.; Gomez, R.A.; Hohenstein, B.; Hugo, C.; et al. Persistent and inducible neogenesis repopulates progenitor renin lineage cells in the kidney. Kidney Int. 2017, 92, 1419–1432. [Google Scholar] [CrossRef]
- Gomez, R.A.; Belyea, B.; Medrano, S.; Pentz, E.S.; Sequeira-Lopez, M.L. Fate and plasticity of renin precursors in development and disease. Pediatr. Nephrol. 2014, 29, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Klimova, E.; Aparicio-Trejo, O.E.; Tapia, E.; Pedraza-Chaverri, J. Unilateral Ureteral Obstruction as a Model to Investigate Fibrosis-Attenuating Treatments. Biomolecules 2019, 9, 141. [Google Scholar] [CrossRef] [PubMed]
- Stefanska, A.; Eng, D.; Kaverina, N.; Pippin, J.W.; Gross, K.W.; Duffield, J.S.; Shankland, S.J. Cells of renin lineage express hypoxia inducible factor 2alpha following experimental ureteral obstruction. BMC Nephrol. 2016, 17, 5. [Google Scholar] [CrossRef] [PubMed]
- Broeker, K.A.E.; Fuchs, M.A.A.; Schrankl, J.; Lehrmann, C.; Schley, G.; Todorov, V.T.; Hugo, C.; Wagner, C.; Kurtz, A. Prolyl-4-hydroxylases 2 and 3 control erythropoietin production in renin-expressing cells of mouse kidneys. J. Physiol. 2022, 600, 671–694. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, S.F. Immunometabolism and Sepsis: A Role for HIF? Front. Mol. Biosci. 2019, 6, 85. [Google Scholar] [CrossRef]
- Suzuki, N.; Gradin, K.; Poellinger, L.; Yamamoto, M. Regulation of hypoxia-inducible gene expression after HIF activation. Exp. Cell Res. 2017, 356, 182–186. [Google Scholar] [CrossRef]
- Choudhry, H.; Harris, A.L. Advances in Hypoxia-Inducible Factor Biology. Cell Metab. 2018, 27, 281–298. [Google Scholar] [CrossRef]
- Fallah, J.; Rini, B.I. HIF Inhibitors: Status of Current Clinical Development. Curr. Oncol. Rep. 2019, 21, 6. [Google Scholar] [CrossRef]
- Nicholson, H.E.; Tariq, Z.; Housden, B.E.; Jennings, R.B.; Stransky, L.A.; Perrimon, N.; Signoretti, S.; Kaelin, W.G., Jr. HIF-independent synthetic lethality between CDK4/6 inhibition and VHL loss across species. Sci. Signal. 2019, 12, eaay0482. [Google Scholar] [CrossRef]
- Malkov, M.I.; Lee, C.T.; Taylor, C.T. Regulation of the Hypoxia-Inducible Factor (HIF) by Pro-Inflammatory Cytokines. Cells 2021, 10, 2304. [Google Scholar] [CrossRef]
- Urrutia, A.A.; Guan, N.; Mesa-Ciller, C.; Afzal, A.; Davidoff, O.; Haase, V.H. Inactivation of HIF-prolyl 4-hydroxylases 1, 2 and 3 in NG2-expressing cells induces HIF2-mediated neurovascular expansion independent of erythropoietin. Acta Physiol. 2021, 231, e13547. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, P.H.; Eckardt, K.U. HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond. Nat. Rev. Nephrol. 2016, 12, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Sakashita, M.; Tanaka, T.; Nangaku, M. Hypoxia-Inducible Factor-Prolyl Hydroxylase Domain Inhibitors to Treat Anemia in Chronic Kidney Disease. Contrib. Nephrol. 2019, 198, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Kurt, B.; Paliege, A.; Willam, C.; Schwarzensteiner, I.; Schucht, K.; Neymeyer, H.; Sequeira-Lopez, M.L.; Bachmann, S.; Gomez, R.A.; Eckardt, K.U.; et al. Deletion of von Hippel-Lindau protein converts renin-producing cells into erythropoietin-producing cells. J. Am. Soc. Nephrol. JASN 2013, 24, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Gerl, K.; Miquerol, L.; Todorov, V.T.; Hugo, C.P.; Adams, R.H.; Kurtz, A.; Kurt, B. Inducible glomerular erythropoietin production in the adult kidney. Kidney Int. 2015, 88, 1345–1355. [Google Scholar] [CrossRef] [PubMed]
- Gerl, K.; Steppan, D.; Fuchs, M.; Wagner, C.; Willam, C.; Kurtz, A.; Kurt, B. Activation of Hypoxia Signaling in Stromal Progenitors Impairs Kidney Development. Am. J. Pathol. 2017, 187, 1496–1511. [Google Scholar] [CrossRef]
- Monticone, G.; Miele, L. Notch Pathway: A Journey from Notching Phenotypes to Cancer Immunotherapy. Adv. Exp. Med. Biol. 2021, 1287, 201–222. [Google Scholar] [CrossRef]
- Sprinzak, D.; Blacklow, S.C. Biophysics of Notch Signaling. Annu. Rev. Biophys. 2021, 50, 157–189. [Google Scholar] [CrossRef]
- Zhang, Y.; He, K.; Wang, F.; Li, X.; Liu, D. Notch-1 signaling regulates astrocytic proliferation and activation after hypoxia exposure. Neurosci. Lett. 2015, 603, 12–18. [Google Scholar] [CrossRef]
- Castellanos Rivera, R.M.; Monteagudo, M.C.; Pentz, E.S.; Glenn, S.T.; Gross, K.W.; Carretero, O.; Sequeira-Lopez, M.L.; Gomez, R.A. Transcriptional regulator RBPJ regulates the number and plasticity of renin cells. Physiol. Genom. 2011, 43, 1021–1028. [Google Scholar] [CrossRef]
- Castellanos-Rivera, R.M.; Pentz, E.S.; Lin, E.; Gross, K.W.; Medrano, S.; Yu, J.; Sequeira-Lopez, M.L.; Gomez, R.A. Recombination signal binding protein for Ig-κJ region regulates juxtaglomerular cell phenotype by activating the myo-endocrine program and suppressing ectopic gene expression. J. Am. Soc. Nephrol. JASN 2015, 26, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Brunskill, E.W.; Sequeira-Lopez, M.L.; Pentz, E.S.; Lin, E.; Yu, J.; Aronow, B.J.; Potter, S.S.; Gomez, R.A. Genes that confer the identity of the renin cell. J. Am. Soc. Nephrol. JASN 2011, 22, 2213–2225. [Google Scholar] [CrossRef] [PubMed]
- Grochowski, C.M.; Loomes, K.M.; Spinner, N.B. Jagged1 (JAG1): Structure, expression, and disease associations. Gene 2016, 576, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Belyea, B.C.; Xu, F.; Sequeira-Lopez, M.L.; Ariel Gomez, R. Loss of Jagged1 in renin progenitors leads to focal kidney fibrosis. Physiol. Rep. 2015, 3, e12544. [Google Scholar] [CrossRef]
- Pappas, G.; Wilkinson, M.L.; Gow, A.J. Nitric oxide regulation of cellular metabolism: Adaptive tuning of cellular energy. Nitric Oxide 2023, 131, 8–17. [Google Scholar] [CrossRef]
- Förstermann, U.; Sessa, W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2012, 33, 829–837. [Google Scholar] [CrossRef]
- Gambaryan, S.; Mohagaonkar, S.; Nikolaev, V.O. Regulation of the renin-angiotensin-aldosterone system by cyclic nucleotides and phosphodiesterases. Front. Endocrinol. 2023, 14, 1239492. [Google Scholar] [CrossRef]
- Neubauer, B.; Machura, K.; Kettl, R.; Lopez, M.L.; Friebe, A.; Kurtz, A. Endothelium-derived nitric oxide supports renin cell recruitment through the nitric oxide-sensitive guanylate cyclase pathway. Hypertension 2013, 61, 400–407. [Google Scholar] [CrossRef]
- Jeffrey Man, H.S.; Tsui, A.K.; Marsden, P.A. Nitric oxide and hypoxia signaling. Vitam. Horm. 2014, 96, 161–192. [Google Scholar] [CrossRef]
- Oza, P.P.; Kashfi, K. The Triple Crown: NO, CO, and H(2)S in cancer cell biology. Pharmacol. Ther. 2023, 249, 108502. [Google Scholar] [CrossRef]
- Feng, J.; Lu, X.; Li, H.; Wang, S. The roles of hydrogen sulfide in renal physiology and disease states. Ren. Fail. 2022, 44, 1289–1308. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Liu, Y.H.; Goh, H.S.; Wang, J.J.; Yong, Q.C.; Wang, R.; Bian, J.S. Hydrogen sulfide inhibits plasma renin activity. J. Am. Soc. Nephrol. JASN 2010, 21, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; Lu, M.; Xie, Z.Z.; Hua, F.; Xie, L.; Gao, J.H.; Koh, Y.H.; Bian, J.S. Hydrogen sulfide prevents heart failure development via inhibition of renin release from mast cells in isoproterenol-treated rats. Antioxid. Redox Signal. 2014, 20, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Gallo, G.; Rubattu, S.; Autore, C.; Volpe, M. Natriuretic Peptides: It Is Time for Guided Therapeutic Strategies Based on Their Molecular Mechanisms. Int. J. Mol. Sci. 2023, 24, 5131. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.F. Atrial natriuretic peptide in hypoxia. Peptides 2005, 26, 1068–1077. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, A. Transmembrane signalling of atrial natriuretic peptide in rat renal juxtaglomerular cells. Klin. Wochenschr. 1986, 64 (Suppl. S6), 37–41. [Google Scholar]
- MacFarland, R.T.; Zelus, B.D.; Beavo, J.A. High concentrations of a cGMP-stimulated phosphodiesterase mediate ANP-induced decreases in cAMP and steroidogenesis in adrenal glomerulosa cells. J. Biol. Chem. 1991, 266, 136–142. [Google Scholar] [CrossRef]
- Nangaku, M. Chronic hypoxia and tubulointerstitial injury: A final common pathway to end-stage renal failure. J. Am. Soc. Nephrol. 2006, 17, 17–25. [Google Scholar] [CrossRef]
- Mitani, S.; Yabuki, A.; Taniguchi, K.; Yamato, O. Association between the intrarenal renin–angiotensin system and renal injury in chronic kidney disease of dogs and cats. J. Vet. Med. Sci. 2013, 75, 127–133. [Google Scholar] [CrossRef]
- Pimentel, J.L., Jr.; Montero, A.; Wang, S.; Yosipiv, I.; El-Dahr, S.; Martínez-Maldonado, M. Sequential changes in renal expression of renin–angiotensin system genes in acute unilateral ureteral obstruction. Kidney Int. 1995, 48, 1247–1253. [Google Scholar] [CrossRef]
- Ishidoya, S.; Morrissey, J.; McCracken, R.; Reyes, A.; Klahr, S. Angiotensin II receptor antagonist ameliorates renal tubulointerstitial fibrosis caused by unilateral ureteral obstruction. Kidney Int. 1995, 47, 1285–1294. [Google Scholar] [CrossRef] [PubMed]
- Curnow, A.C.; Gonsalez, S.R.; Gogulamudi, V.R.; Visniauskas, B.; Simon, E.E.; Gonzalez, A.A.; Majid, D.S.A.; Lara, L.S.; Prieto, M.C. Low Nitric Oxide Bioavailability Increases Renin Production in the Collecting Duct. Front. Physiol. 2020, 11, 559341. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, W.; Liao, Y.; Zhao, L.; Hall, N.; Zhou, H.; Liu, R.; Persson, P.B.; Lai, E. Kidney Renin Release under Hypoxia and Its Potential Link with Nitric Oxide: A Narrative Review. Biomedicines 2023, 11, 2984. https://doi.org/10.3390/biomedicines11112984
Kong W, Liao Y, Zhao L, Hall N, Zhou H, Liu R, Persson PB, Lai E. Kidney Renin Release under Hypoxia and Its Potential Link with Nitric Oxide: A Narrative Review. Biomedicines. 2023; 11(11):2984. https://doi.org/10.3390/biomedicines11112984
Chicago/Turabian StyleKong, Weiwei, Yixin Liao, Liang Zhao, Nathan Hall, Hua Zhou, Ruisheng Liu, Pontus B. Persson, and Enyin Lai. 2023. "Kidney Renin Release under Hypoxia and Its Potential Link with Nitric Oxide: A Narrative Review" Biomedicines 11, no. 11: 2984. https://doi.org/10.3390/biomedicines11112984
APA StyleKong, W., Liao, Y., Zhao, L., Hall, N., Zhou, H., Liu, R., Persson, P. B., & Lai, E. (2023). Kidney Renin Release under Hypoxia and Its Potential Link with Nitric Oxide: A Narrative Review. Biomedicines, 11(11), 2984. https://doi.org/10.3390/biomedicines11112984