A Historical Review of Military Medical Strategies for Fighting Infectious Diseases: From Battlefields to Global Health
Abstract
:1. Introduction
2. Vaccine-Preventable Infectious Diseases
2.1. Smallpox
2.2. Typhoid Fever
2.3. Tetanus
2.4. Diphtheria
2.5. Pertussis
2.6. Tuberculosis (TB)
2.7. Meningococcal Meningitis
2.8. Hepatitis A
2.9. Hepatitis B
2.10. Poliomyelitis
2.11. Measles
2.12. Mumps
2.13. Rubella
2.14. Varicella
2.15. Influenza
2.16. Adenovirus
2.17. Coronavirus Disease 2019 (COVID-19)
2.18. Pneumococcus
2.19. Rabies
2.20. Yellow Fever
2.21. Japanese Encephalitis (JE)
2.22. Tick-Borne Encephalitis (TBE)
2.23. Human Papillomavirus (HPV)
2.24. Cholera
2.25. Leptospirosis
2.26. Dengue
3. Non-Vaccine-Preventable Infectious Diseases
3.1. Epidemic Typhus
3.2. Scrub Typhus
3.3. Trench Fever
3.4. Leishmaniasis
3.5. Malaria
3.6. Lymphatic Filariasis
3.7. Schistosomiasis
3.8. Trypanosomiasis
3.9. Other Parasitic Diseases
3.10. Human Immunodeficiency Virus (HIV)
3.11. Hepatitis C
3.12. Hepatitis E
3.13. Chikungunya
3.14. Zika
3.15. Crimean–Congo Hemorrhagic Fever
3.16. Hantaviruses
3.17. Other Arboviral Diseases
3.18. Acute Respiratory Syndrome
3.19. Acute Diarrheal Syndrome
4. Biological Agents for Bio-Warfare/Bioterrorism Category A–B
4.1. Anthrax
4.2. Botulism
4.3. Plague
4.4. Tularemia
4.5. Filoviruses
4.6. Arenaviruses
4.7. Brucellosis
4.8. Q Fever
4.9. New World Viral Encephalitis
5. Aeromedical Evacuation of Patients with Highly Contagious, Severe Infectious Diseases
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spier, R.E. Vaccines and the military. Vaccine 1993, 11, 491. [Google Scholar] [CrossRef]
- Connolly, M.A.; Heymann, D.L. Deadly comrades: War and infectious diseases. Lancet 2002, 360, S23–S24. [Google Scholar] [CrossRef]
- Wax, R.G. Manipulation of human history by microbes. Clin. Microbiol. Newsl. 2007, 29, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Papagrigorakis, M.J.; Yapijakis, C.; Synodinos, P.N.; Baziotopoulou-Valavani, E. DNA examination of ancient dental pulp incriminates typhoid fever as a probable cause of the Plague of Athens. Int. J. Infect. Dis. 2006, 10, 206–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mura, M.; Haus-Cheymol, R.; Tournier, J.N. Immunization on the French Armed Forces: Impact, organization, limits and perspectives. Infect. Dis. Now 2021, 51, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Councell, C.E. War and infectious disease. Public Health Rep. 1941, 56, 547–573. [Google Scholar] [CrossRef]
- D’Amelio, R.; Heymann, D.L. Can the military contribute to global surveillance and control of infectious diseases? Emerg. Infect. Dis. 1998, 4, 704–705. [Google Scholar] [CrossRef]
- Zumla, A.; Raviglione, M.; Hafner, R.; von Reyn, C.F. Tuberculosis. N. Engl. J. Med. 2013, 368, 745–755. [Google Scholar] [CrossRef]
- Krammer, F.; Smith, G.J.D.; Fouchier, R.A.M.; Peiris, M.; Kedzierska, K.; Doherty, P.C.; Palese, P.; Shaw, M.L.; Treanor, J.; Webster, R.G.; et al. Influenza. Nat. Rev. Dis. Primers 2018, 4, 3. [Google Scholar] [CrossRef]
- Jafri, R.Z.; Ali, A.; Messonnier, N.E.; Tevi-Benissan, C.; Durrheim, D.; Eskola, J.; Fermon, F.; Klugman, K.P.; Ramsay, M.; Sow, S.; et al. Global epidemiology of invasive meningococcal disease. Popul. Health Metr. 2013, 11, 17. [Google Scholar] [CrossRef] [Green Version]
- Coughlin, M.M.; Beck, A.S.; Bankamp, B.; Rota, P.A. Perspective on Global Measles Epidemiology and Control and the Role of Novel Vaccination Strategies. Viruses 2017, 9, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://www.who.int/news-room/fact-sheets/detail/hepatitis-b (accessed on 29 May 2022).
- Confronting Inequalities. Lessons for Pandemic Responses from 40 Years of AIDS. Global AIDS Update. 2021. Available online: https://www.unaids.org/sites/default/files/media_asset/2021-global-aids-update_en.pdf (accessed on 1 May 2022).
- Available online: https://www.who.int/news-room/fact-sheets/detail/hepatitis-c (accessed on 1 May 2022).
- World Health Organization. World Malaria Report 2021. Global Malaria Programme. WHO Geneva. 2021. Available online: https://www.who.int/publications/i/item/9789240040496 (accessed on 10 March 2022).
- Available online: https://www.who.int/news-room/fact-sheets/detail/yellow-fever (accessed on 23 March 2022).
- Campbell, G.L.; Hills, S.L.; Fischer, M.; Jacobson, J.A.; Hoke, C.H.; Hombach, J.M.; Marfin, A.A.; Solomon, T.; Tsai, T.F.; Tsu, V.D.; et al. Estimated global incidence of Japanese encephalitis: A systematic review. Bull. World Health Organ. 2011, 89, 766–774, 774A–774E. [Google Scholar] [CrossRef]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [PubMed]
- DengueNet—WHO’s Internet-based System for the global surveillance of dengue fever and dengue haemorrhagic fever (dengue/DHF). Dengue/DHF—Global public health burden. Wkly. Epidemiol. Rec. 2002, 77, 300–304.
- Available online: https://www.who.int/news-room/fact-sheets/detail/typhoid (accessed on 1 June 2022).
- Harris, J.B.; LaRocque, R.C.; Qadri, F.; Ryan, E.T.; Calderwood, S.B. Cholera. Lancet 2012, 379, 2466–2476. [Google Scholar] [CrossRef] [Green Version]
- Dans, L.F.; Martínez, E.G. Amoebic dysentery. BMJ Clin. Evid. 2007, 2007, 0918. [Google Scholar] [PubMed]
- Global Hepatitis Report 2017; World Health Organization: Geneva, Switzerland, 2017.
- Cao, G.; Jing, W.; Liu, J.; Liu, M. The global trends and regional differences in incidence and mortality of hepatitis A from 1990 to 2019 and implications for its prevention. Hepatol. Int. 2021, 15, 1068–1082. [Google Scholar] [CrossRef]
- Costa, F.; Hagan, J.E.; Calcagno, J.; Kane, M.; Torgerson, P.; Martinez-Silveira, M.S.; Stein, C.; Abela-Ridder, B.; Ko, A.I. Global morbidity and mortality of leptospirosis: A systematic review. PLoS Negl. Trop. Dis. 2015, 9, e0003898. [Google Scholar] [CrossRef] [Green Version]
- Weiss, M.M.; Weiss, P.D.; Mathisen, G.; Guze, P. Rethinking smallpox. Clin. Infect. Dis. 2004, 39, 1668–1673. [Google Scholar] [CrossRef]
- Fenner, F.; Henderson, D.A.; Arita, I.; Jezek, Z.; Ladnyi, I.D. Smallpox and Its Eradication/F. Fenner... [et al.]; World Health Organization: 1988. Chapter 6. Available online: https://apps.who.int/iris/handle/10665/39485 (accessed on 28 December 2021).
- Bayne-Jones, S. The Evolution of Preventive Medicine in the United States Army, 1607–1939; Office of the Surgeon General, Department of the Army: Washington, DC, USA, 1968. [Google Scholar]
- Artenstein, A.W.; Opal, J.M.; Opal, S.M.; Tramont, E.C.; Peter, G.; Russell, P.K. History of U.S. military contributions to the study of vaccines against infectious diseases. Mil. Med. 2005, 170 (Suppl. S4), 3–11. [Google Scholar] [CrossRef] [Green Version]
- Jenner, E. An Inquiry into the Causes and Effects of the Variolae Vaccinae, Discovered in Some of the Wester Counties of England, Particularly Gloucestershire, and Known by the Name of the Cow Pox. 1798. Available online: http://resource.nlm.nih.gov/2559001R (accessed on 28 December 2021).
- Rezza, G. Mandatory vaccination for infants and children: The Italian experience. Pathog. Glob. Health 2019, 113, 291–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavallo, J.D. Des fièvres aux maladies infectieuses, trois siècles de lutte contre l’infection. Med. Armées 2008, 36, 517–526. [Google Scholar]
- Hüntelmann, A.C. Smallpox vaccination in the German Empire. Vaccination between biopolitics and moral economy. Asclepio 2020, 72, 292. [Google Scholar] [CrossRef]
- Meynell, E. French reactions to Jenner’s discovery of smallpox vaccination: The primary sources. Soc. Hist. Med. 1995, 8, 285–303. [Google Scholar] [CrossRef]
- Hopkins, R.J.; Lane, J.M. Clinical efficacy of intramuscular vaccinia immune globulin: A literature review. Clin. Infect. Dis. 2004, 39, 819–826. [Google Scholar] [CrossRef]
- Standards Related Document. SRD-7 to AJMedP-4. Vaccinations Catalogue within the Nato & PfP forces. Edition A Version 2 July 2021. Available online: https://nso.nato.int/nso (accessed on 10 January 2022).
- Voigt, E.A.; Kennedy, R.B.; Poland, G.A. Defending against smallpox: A focus on vaccines. Expert Rev. Vaccines 2016, 15, 1197–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gröschel, D.H.; Hornick, R.B. Who introduced typhoid vaccination: Almroth Write or Richard Pfeiffer? Rev. Infect. Dis. 1981, 3, 1251–1254. [Google Scholar] [CrossRef]
- Williamson, J.D.; Gould, K.G.; Brown, K. Richard Pfeiffer’s typhoid vaccine and Almroth Wright’s claim to priority. Vaccine 2021, 39, 2074–2079. [Google Scholar] [CrossRef]
- Pfeiffer, R.; Kolle, W. Experimental Investigations on Protective Inoculation of Men against Typhus Abdominalis. Ind. Med. Gaz. 1897, 32, 41–44. [Google Scholar]
- Wright, A.E. On the association of serous hæmorrhages with conditions of defective blood-coagulability. Lancet 1896, 148, 807–809. [Google Scholar] [CrossRef] [Green Version]
- Wright, A.E.; Semple, D. Remarks on vaccination against typhoid fever. BMJ 1897, 1, 256–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantlie, N. History of the Army Medical Department; Churchill Livingstone: London, UK, 1974; Volume II. [Google Scholar]
- Leishman, W.B. Enteric Fevers in the British Expeditionary Force, 1914–1918. Glasgow Med. J. 1921, 95, 81–109. [Google Scholar] [PubMed]
- Torrens, J. Enteric group of fevers. In Medical Services Diseases of the War; MacPhearson, W., Herringham, W., Elliott, T., Balfour, A., Eds.; HM Stationery Office: London, UK, 1922; pp. 11–63. [Google Scholar]
- Gradmann, C.; Harrison, M.; Rasmussen, A. Typhoid and the Military in the Early 20th Century. Clin. Infect. Dis. 2019, 69 (Suppl. S5), S385–S387. [Google Scholar] [CrossRef] [PubMed]
- Castellani, A. Typhoid-paratyphoid vaccination with mixed vaccines. BMJ 1913, 2, 1577–1578. [Google Scholar] [CrossRef] [Green Version]
- D’Amelio, R.; Biselli, R.; Natalicchio, S.; Lista, F.; Peragallo, M.S. Vaccination programmes in the Italian military. Vaccine 2003, 21, 3530–3533. [Google Scholar] [CrossRef]
- D’Amelio, R.; Tagliabue, A.; Nencioni, L.; Di Addario, A.; Villa, L.; Manganaro, M.; Boraschi, D.; Le Moli, S.; Nisini, R.; Matricardi, P.M. Comparative analysis of immunological responses to oral (Ty21a) and parenteral (TAB) typhoid vaccines. Infect. Immun. 1988, 56, 2731–2735. [Google Scholar] [CrossRef] [Green Version]
- Haus-Cheymol, R.; Kraemer, P.; Simon, F. Les risques infectieux en opérations extérieures. Med. Armées 2009, 37, 435–452. [Google Scholar]
- Rasmussen, A. A corps défendant: Vacciner les troupes contre la typhoïde pendant la Grande Guerre. Corps 2008, 2, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Grabenstein, J.D.; Pittman, P.R.; Greenwood, J.T.; Engler, R.J. Immunization to protect the US Armed Forces: Heritage, current practice, and prospects. Epidemiol. Rev. 2006, 28, 3–26. [Google Scholar] [CrossRef]
- Shanks, G.D. How World War 1 changed global attitudes to war and infectious diseases. Lancet 2014, 384, 1699–1707. [Google Scholar] [CrossRef]
- Germanier, R.; Füer, E. Isolation and characterization of Gal E mutant Ty 21a of Salmonella typhi: A candidate strain for a live, oral typhoid vaccine. J. Infect. Dis. 1975, 131, 553–558. [Google Scholar] [CrossRef]
- Szu, S.C.; Stone, A.L.; Robbins, J.D.; Schneerson, R.; Robbins, J.B. Vi capsular polysaccharide-protein conjugates for prevention of typhoid fever. Preparation, characterization, and immunogenicity in laboratory animals. J. Exp. Med. 1987, 166, 1510–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cartee, R.T.; Thanawastien, A.; Griffin Iv, T.J.; Mekalanos, J.J.; Bart, S.; Killeen, K.P. A phase 1 randomized safety, reactogenicity, and immunogenicity study of Typhax: A novel protein capsular matrix vaccine candidate for the prevention of typhoid fever. PLoS Negl. Trop. Dis. 2020, 14, e0007912. [Google Scholar] [CrossRef]
- Barras, V.; Greub, G. History of biological warfare and bioterrorism. Clin. Microbiol. Infect. 2014, 20, 497–502. [Google Scholar] [CrossRef] [Green Version]
- Hassel, B. Tetanus: Pathophysiology, treatment, and the possibility of using botulinum toxin against tetanus-induced rigidity and spasms. Toxins 2013, 5, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Von Behring, E.; Kitasato, S. Ueber das Zustandekommen der Diphtherie-Immunitat and der Tetanus-Immunitat bei Thieren. Dtsch. Med. Wochenschr. 1890, 16, 1113–1114. [Google Scholar]
- Von Behring, E. Untersuchungen uber das Zustandekommen der Diphtherie-Immunitat and der Tetanus-Immunitat bei Thieren. Dtsch. Med. Wochenschr. 1890, 16, 1145–1148. [Google Scholar]
- Bracha, A.; Tan, S.Y. Emil von Behring (1854–1917): Medicine’s first Nobel laureate. Singapore Med. J. 2011, 52, 1–2. [Google Scholar]
- Schlessinger, B.S.; Schlessinger, J.H. The Who’s Who of Nobel Prize Winners; Oryx Press: Phoenix, AZ, USA, 1986; p. 79. [Google Scholar]
- Bruce, D. Tetanus: Analysis of 1458 Cases, which occurred in Home Military Hospitals during the years 1914–1918. J. Hyg. 1920, 19, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Linton, D.S. Emil von Behring. Infectious Disease, Immunology, Serum Therapy; American Philosophical Society: Philadelphia, PA, USA, 2005; p. 357e62. [Google Scholar]
- Ferrajoli, F. Il servizio Sanitario Militare nella Guerra 1915–1918 (Nel Cinquantenario della Vittoria). G. Med. Mil. 1968, 118, 501–516. [Google Scholar]
- Editorial. Tetanus in the US Army in World War II. N. Engl. J. Med. 1947, 237, 411–413. [CrossRef] [Green Version]
- Hammarlund, E.; Thomas, A.; Poore, E.A.; Amanna, I.J.; Rynko, A.E.; Mori, M.; Chen, Z.; Slifka, M.K. Durability of vaccine-induced immunity against tetanus and diphtheria toxins: A cross-sectional analysis. Clin. Infect. Dis. 2016, 62, 1111–1118. [Google Scholar] [CrossRef]
- Ferlito, C.; Biselli, R.; Mariotti, S.; von Hunolstein, C.; Teloni, R.; Ralli, L.; Pinto, A.; Pisani, G.; Tirelli, V.; Biondo, M.I.; et al. Tetanus-diphtheria vaccination in adults: The long-term persistence of antibodies is not dependent on polyclonal B-cell activation and the defective response to diphtheria toxoid re-vaccination is associated to HLADRB1∗01. Vaccine 2018, 36, 6718–6725. [Google Scholar] [CrossRef]
- Gentili, G.; D’Amelio, R.; Wirz, M.; Matricardi, P.M.; Nisini, R.; Collotti, C.; Pasquini, P.; Stroffolini, T. Prevalence of hyperimmunization against tetanus in Italians born after the introduction of mandatory vaccination of children with tetanus toxoid in 1968. Infection 1993, 21, 80–82. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.C.; Efstratiou, A.; Mokrousov, I.; Mutreja, A.; Das, B.; Ramamurthy, T. Diphtheria. Nat. Rev. Dis. Primers 2019, 5, 81. [Google Scholar] [CrossRef]
- Hardy, I.R.; Dittmann, S.; Sutter, R.W. Current situation and control strategies for resurgence of diphtheria in newly independent states of the former Soviet Union. Lancet 1996, 347, 1739–1744. [Google Scholar] [CrossRef]
- Rappuoli, R.; Podda, A.; Giovannoni, F.; Nencioni, L.; Peragallo, M.; Francolini, P. Absence of protective immunity against diphtheria in a large proportion of young adults. Vaccine 1993, 11, 576–577. [Google Scholar] [CrossRef]
- Bordet, J.; Gengou, O. Le microbe de la coqueluche. Ann. Inst. Pasteur 1906, 20, 731. [Google Scholar]
- Kilgore, P.E.; Salim, A.M.; Zervos, M.J.; Schmitt, H.J. Pertussis: Microbiology, Disease, Treatment, and Prevention. Clin. Microbiol. Rev. 2016, 29, 449–486. [Google Scholar] [CrossRef] [Green Version]
- Jansen, D.L.; Gray, G.C.; Putnam, S.D.; Lynn, F.; Meade, B.D. Evaluation of pertussis in U.S. Marine Corps trainees. Clin. Infect. Dis. 1997, 25, 1099–1107. [Google Scholar] [CrossRef] [Green Version]
- Vincent, J.M.; Cherry, J.D.; Nauschuetz, W.F.; Lipton, A.; Ono, C.M.; Costello, C.N.; Sakaguchi, L.K.; Hsue, G.; Jackson, L.A.; Tachdjian, R.; et al. Prolonged afebrile nonproductive cough illnesses in American soldiers in Korea: A serological search for causation. Clin. Infect. Dis. 2000, 30, 534–539. [Google Scholar] [CrossRef] [Green Version]
- Klement, E.; Grotto, I.; Srugo, I.; Orr, N.; Gilad, J.; Cohent, D. Pertussis in soldiers, Israel. Emerg. Infect. Dis. 2005, 11, 506–508. [Google Scholar] [CrossRef] [PubMed]
- Aase, A.; Herstad, T.K.; Merino, S.; Brandsdal, K.T.; Berdal, B.P.; Aleksandersen, E.M.; Aaberge, I.S. Opsonophagocytic activity and other serological indications of Bordetella pertussis infection in military recruits in Norway. Clin. Vaccine Immunol. 2007, 14, 855–862. [Google Scholar] [CrossRef] [Green Version]
- Mayet, A.; Brossier, C.; Haus-Cheymol, R.; Verret, C.; Meynard, J.B.; Migliani, R.; Pommier de Santi, V.; Decam, C.; Deparis, X. Pertussis surveillance within the French armed forces: A new system showing increased incidence among young adults (2007–2009). J. Infect. 2011, 62, 322–324. [Google Scholar] [CrossRef] [PubMed]
- Rota, M.C.; Ausiello, C.M.; D’Amelio, R.; Cassone, A.; Giammanco, A.; Molica, C.; Lande, R.; Greco, D.; Salmaso, S. Prevalence of markers of exposure to Bordetella pertussis among Italian young adults. Clin. Infect. Dis. 1998, 26, 297–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zepp, F.; Heininger, U.; Mertsola, J.; Bernatowska, E.; Guiso, N.; Roord, J.; Tozzi, A.E.; Van Damme, P. Rationale for pertussis booster vaccination throughout life in Europe. Lancet Infect. Dis. 2011, 11, 557–570. [Google Scholar] [CrossRef]
- Villemin, J.A. Étude sur la Tuberculose: Preuves Rationnelles et Expérimentales de sa Spécificité et son Inoculabilité; Baillère: Paris, France, 1868. [Google Scholar]
- Koch, R. The Current State of the Struggle against Tuberculosis. Nobel Lecture December 12 1905. From Nobel lectures. Physiology or Medicine 1901–1921; Elsevier Publishing Company: Amsterdam, The Netherlands, 1967. [Google Scholar]
- Behr, M.A.; Edelstein, P.H.; Ramakrishnan, L. Revisiting the timetable of tuberculosis. BMJ 2018, 362, k2738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, S.Y.; Kwok, E. Albert Calmette (1863–1933): Originator of the BCG vaccine. Singapore Med. J. 2012, 53, 433–434. [Google Scholar]
- Kimbrough, W.; Saliba, V.; Dahab, M.; Haskew, C.; Checchi, F. The burden of tuberculosis in crisis-affected populations: A systematic review. Lancet Infect. Dis. 2012, 12, 950–965. [Google Scholar] [CrossRef]
- Mancuso, J.D. Tuberculosis Screening and Control in the US Military in War and Peace. Am. J. Public Health. 2017, 107, 60–67. [Google Scholar] [CrossRef]
- Nevin, R.L. Active tuberculosis and recent overseas deployment in the U.S. Military. Am. J. Prev. Med. 2010, 39, e39–e40, author reply e40. [Google Scholar] [CrossRef] [PubMed]
- Bergman, B.P.; Mackay, D.F.; Pell, J.P. Tuberculosis in Scottish military veterans: Evidence from a retrospective cohort study of 57,000 veterans and 173,000 matched non-veterans. J. R. Army Med. Corps 2017, 163, 53–57. [Google Scholar] [CrossRef] [Green Version]
- D’Amelio, R.; Stroffolini, T.; Biselli, R.; Molica, C.; Cotichini, R.; Bernardini, G.; Vellucci, A. Tuberculin skin reactivity in Italian military recruits tested in 1996–1997. Eur. J. Clin. Microbiol. Infect. Dis. 2000, 19, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Camarca, M.M.; Krauss, M.R. Active tuberculosis among U.S. Army personnel, 1980 to 1996. Mil. Med. 2001, 166, 452–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Amelio, E.; Salemi, S.; D’Amelio, R. Anti-Infectious Human Vaccination in Historical Perspective. Int. Rev. Immunol. 2016, 35, 260–290. [Google Scholar] [CrossRef] [PubMed]
- D’Amelio, R.; Molica, C.; Biselli, R.; Stroffolini, T. Surveillance of infectious diseases in the Italian military as pre-requisite for tailored vaccination programme. Vaccine 2001, 19, 2006–2011. [Google Scholar] [CrossRef]
- Weichselbaum, A. Ueber die Aetiologie der akuten meningitis cerebro-spinalis. Fortschr. Med. 1887, 5, 573. [Google Scholar]
- Goldschneider, I.; Gotschlich, E.C.; Artenstein, M.S. Human immunity to the meningococcus. I. The role of humoral antibodies. J. Exp. Med. 1969, 129, 1307–1326. [Google Scholar] [CrossRef]
- Goldschneider, I.; Gotschlich, E.C.; Artenstein, M.S. Human immunity to the meningococcus. II. The development of natural immunity. J. Exp. Med. 1969, 129, 1327–1348. [Google Scholar] [CrossRef]
- Gotschlich, E.C.; Liu, T.Y.; Artenstein, M.S. Human immunity to the meningococcus. III. Preparation and immunochemical properties of the group A, group B, and group C meningococcal polysaccharides. J. Exp. Med. 1969, 129, 1349–1365. [Google Scholar] [CrossRef]
- Gotschlich, E.C.; Goldschneider, I.; Artenstein, M.S. Human immunity to the meningococcus. IV. Immunogenicity of group A and group C meningococcal polysaccharides in human volunteers. J. Exp. Med. 1969, 129, 1367–1384. [Google Scholar] [CrossRef] [PubMed]
- Gotschlich, E.C.; Goldschneider, I.; Artenstein, M.S. Human immunity to the meningococcus. V. The effect of immunization with meningococcal group C polysaccharide on the carrier state. J. Exp. Med. 1969, 129, 1385–1395. [Google Scholar] [CrossRef] [PubMed]
- Savona-Ventura, C. An Outbreak of Cerebrospinal Fever in a 19th Century British Mediterranean Naval Base. J. R. Army Med. Corps 1994, 140, 155–158. [Google Scholar] [CrossRef] [Green Version]
- Brundage, J.F.; Ryan, M.A.; Feighner, B.H.; Erdtmann, F.J. Meningococcal disease among United States military service members in relation to routine uses of vaccines with different serogroup-specific components, 1964–1998. Clin. Infect. Dis. 2002, 35, 1376–1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artenstein, M.S.; Gold, R. Current status of prophylaxis of meningococcal disease. Mil. Med. 1970, 135, 735–739. [Google Scholar] [CrossRef] [PubMed]
- Artenstein, M.S.; Gold, R.; Zimmerly, J.G.; Wyle, F.A.; Schneider, H.; Harkins, C. Prevention of meningococcal disease by group C polysaccharide vaccine. N. Engl. J. Med. 1970, 282, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Biselli, R.; Fattorossi, A.; Matricardi, P.M.; Nisini, R.; Stroffolini, T.; D’Amelio, R. Dramatic reduction of meningococcal meningitis among military recruits in Italy after introduction of specific vaccination. Vaccine 1993, 11, 578–581. [Google Scholar] [CrossRef]
- Stroffolini, T.; Curianó, C.M.; Congiu, M.E.; Occhionero, M.; Mastrantonio Gianfrilli, P. Trends in meningococcal disease in Italy 1987. Public Health 1989, 103, 31–34. [Google Scholar] [CrossRef]
- Stroffolini, T. Vaccination campaign against meningococcal disease in army recruits in Italy. Epidemiol. Infect. 1990, 25, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Le Moli, S.; Matricardi, P.M.; Quinti, I.; Stroffolini, T.; D’Amelio, R. Clonotype analysis of human antibodies specific for Neisseria meningitidis polysaccharides A and C in adults. Clin. Exp. Immunol. 1991, 83, 460–465. [Google Scholar] [CrossRef]
- Ferlito, C.; Biselli, R.; Cattaruzza, M.S.; Teloni, R.; Mariotti, S.; Tomao, E.; Salerno, G.; Peragallo, M.S.; Lulli, P.; Caporuscio, S.; et al. Immunogenicity of meningococcal polysaccharide ACWY vaccine in primary immunized or revaccinated adults. Clin. Exp. Immunol. 2018, 194, 361–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferlito, C.; Visco, V.; Biselli, R.; Cattaruzza, M.S.; Carreras, G.; Salerno, G.; Lista, F.; Capobianchi, M.R.; Castilletti, C.; Lapa, D.; et al. Safety of Multiple Vaccinations and Durability of Vaccine-Induced Antibodies in an Italian Military Cohort 5 Years after Immunization. Biomedicines 2022, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, A.; Quenel, P.; Sperber, G.; Meyran, M. Evaluation de l’efficacité de la stratégie de vaccination systématique antiméningococcique chez les appelés de l’armée française [Evaluation of systematic anti-meningococcal vaccination strategy in French military recruits]. Santé 1996, 6, 383–388. [Google Scholar] [PubMed]
- Finne, J.; Leinonen, M.; Mäkelä, P.H. Antigenic similarities between brain components and bacteria causing meningitis. Implications for vaccine development and pathogenesis. Lancet 1983, 2, 355–357. [Google Scholar] [CrossRef]
- Kelly, D.F.; Rappuoli, R. Reverse vaccinology and vaccines for serogroup B Neisseria meningitidis. Adv. Exp. Med. Biol. 2005, 568, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Rappuoli, R.; Pizza, M.; Masignani, V.; Vadivelu, K. Meningococcal B vaccine (4CMenB): The journey from research to real world experience. Expert Rev. Vaccines 2018, 17, 1111–1121. [Google Scholar] [CrossRef]
- Parikh, S.R.; Andrews, N.J.; Beebeejaun, K.; Campbell, H.; Ribeiro, S.; Ward, C.; White, J.M.; Borrow, R.; Ramsay, M.E.; Ladhani, S.N. Effectiveness and impact of a reduced infant schedule of 4CMenB vaccine against group B meningococcal disease in England: A national observational cohort study. Lancet 2016, 388, 2775–2782. [Google Scholar] [CrossRef] [Green Version]
- European Centre for Disease Prevention and Control. Expert Opinion on the Introduction of the Meningococcal B (4CMenB) Vaccine in the EU/EEA; ECDC: Stockholm, Sweden, 2017. [Google Scholar]
- Millar, B.C.; Moore, P.J.A.; Moore, J.E. Meningococcal disease: Has the battle been won? J. R. Army Med. Corps 2017, 163, 235–241. [Google Scholar] [CrossRef]
- Dooley, D.P. History of U.S. military contributions to the study of viral hepatitis. Mil. Med. 2005, 170 (Suppl. S4), 71–76. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, R.E.; Malone, J.D.; Cloninger, L.A.; Rozmajzl, P.J.; Lewis, D.; Butler, J.; Cross, E.; Gray, S.; Hyams, K.C. Risk of viral hepatitis among military personnel assigned to US Navy ships. J. Infect. Dis. 1992, 165, 716–719. [Google Scholar] [CrossRef]
- D’Amelio, R.; Mele, A.; Mariano, A.; Romanò, L.; Biselli, R.; Lista, F.; Zanetti, A.; Stroffolini, T. Hepatitis A, Italy. Emerg. Infect. Dis. 2005, 11, 1155–1156. [Google Scholar] [CrossRef] [PubMed]
- Joussemet, M.; Bourin, P.; Lebot, O.; Fabre, G.; Deloince, R. Evolution of hepatitis A antibodies prevalence in young French military recruits. Eur. J. Epidemiol. 1992, 8, 289–291. [Google Scholar] [CrossRef] [PubMed]
- MacCallum, F.O. Hepatitis. Br. Med. Bull. 1953, 9, 221–225. [Google Scholar] [CrossRef]
- Sawyer, W.A.; Meyer, K.F.; Eaton, M.D.; Bauer, J.H.; Putnam, P.; Schwentker, F.F. Jaundice in Army personnel in the Western Region of the United States and its relation to vaccination against yellow fever. Parts II, III & IV. Am. J. Hyg. 1944, 40, 35–107. [Google Scholar]
- Teo, C.G. 19th-century and early 20th-century jaundice outbreaks, the USA. Epidemiol. Infect. 2018, 146, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Kitchen, L.W.; Vaughn, D.W. Role of U.S. military research programs in the development of U.S.-licensed vaccines for naturally occurring infectious diseases. Vaccine 2007, 25, 7017–7030. [Google Scholar] [CrossRef] [Green Version]
- Gellis, S.S.; Stokes, J., Jr.; Brother, G.M.; Hall, W.M.; Gilmore, H.R.; Beyer, E.; Morrissey, R.A. The use of human immune serum globulin (γ globulin) in infectious (epidemic) hepatitis in the Mediterranean theater of operations. I: Studies on prophylaxis in two epidemics of infectious hepatitis. JAMA 1945, 128, 1062–1063. [Google Scholar] [CrossRef]
- Conrad, M.E.; Lemon, S.M. Prevention of endemic icteric viral hepatitis by administration of immune serum gamma globulin. J. Infect. Dis. 1987, 156, 56–63. [Google Scholar] [CrossRef]
- Innis, B.L.; Snitbhan, R.; Kunasol, P.; Laorakpongse, T.; Poopatanakool, W.; Kozik, C.A.; Suntayakorn, S.; Suknuntapong, T.; Safary, A.; Tang, D.B.; et al. Protection against hepatitis A by an inactivated vaccine. JAMA 1994, 271, 1328–1334. [Google Scholar] [CrossRef]
- Trepò, C.; Chan, H.L.Y.; Lok, A. Hepatitis B virus infection. Lancet 2014, 384, 2053–2063. [Google Scholar] [CrossRef]
- Hrezo, R.J.; Clark, J. The walking blood bank: An alternative blood supply in military mass casualties. Disaster Manag. Response 2003, 1, 19–22. [Google Scholar] [CrossRef]
- Zanetti, A.R.; Mariano, A.; Romanò, L.; D’Amelio, R.; Chironna, M.; Coppola, R.C.; Cuccia, M.; Mangione, R.; Marrone, F.; Negrone, F.S.; et al. Long-term immunogenicity of hepatitis B vaccination and policy for booster: An Italian multicentre study. Lancet 2005, 366, 1379–1384. [Google Scholar] [CrossRef]
- Mazokopakis, E.; Vlachonikolis, J.; Philalithis, A.; Lionis, C. Seroprevalence of hepatitis A, B and C markers in Greek warship personnel. Eur. J. Epidemiol. 2000, 16, 1069–1072. [Google Scholar] [CrossRef]
- Kupcinskas, L.; Petrauskas, D.; Petrenkiene, V.; Saulius, K. Prevalence of hepatitis B virus chronic carriers and risk factors for hepatitis B virus infection among Lithuanian army soldiers. Mil. Med. 2007, 172, 625–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, P.T.; Cohen, R.L.; Brett-Major, D.M.; Hakre, S.; Malia, J.A.; Okulicz, J.F.; Beckett, C.G.; Blaylock, J.M.; Forgione, M.A.; Harrison, S.A.; et al. Hepatitis B seroprevalence in the U.S. military and its impact on potential screening strategies. Mil. Med. 2020, 185, e1654–e1661. [Google Scholar] [CrossRef]
- D’Amelio, R.; Matricardi, P.M.; Biselli, R.; Stroffolini, T.; Mele, A.; Spada, E.; Chionne, P.; Rapicetta, M.; Ferrigno, L.; Pasquini, P. Changing epidemiology of hepatitis B in Italy: Public health implications. Am. J. Epidemiol. 1992, 135, 1012–1018. [Google Scholar] [CrossRef]
- D’Amelio, R.; Stroffolini, T.; Nisini, R.; Matricardi, P.M.; Rapicetta, M.; Spada, E.; Napoli, A.; Pasquini, P. Incidence of hepatitis B virus infection among an Italian military population: Evidence of low infection spread. Eur. J. Epidemiol. 1994, 10, 105–107. [Google Scholar] [CrossRef] [PubMed]
- Kidd, D.; Williams, A.J.; Howard, R.S. Poliomyelitis. Postgrad. Med. J. 1996, 72, 641–647. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Epidemiology and prevention of vaccine preventable diseases. In Poliomyelitis, 11th ed.; Atkinson, W., Wolfe, S., Hamborsky, J., McIntyre, L., Eds.; Public Health Foundation: Washington, DC, USA, 2015; pp. 297–310. [Google Scholar]
- Ehreth, J. The Global Value of Vaccination. Vaccine 2003, 21, 596–600. [Google Scholar] [CrossRef]
- Ferlito, C.; Biselli, R.; Visco, V.; Cattaruzza, M.S.; Capobianchi, M.R.; Castilletti, C.; Lapa, D.; Nicoletti, L.; Marchi, A.; Magurano, F.; et al. Immunogenicity of Viral Vaccines in the Italian Military. Biomedicines 2021, 9, 87. [Google Scholar] [CrossRef]
- Akil, L.; Ahmad, H.A. The recent outbreaks and reemergence of poliovirus in war and conflict-affected areas. Int. J. Infect. Dis. 2016, 49, 40–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nathanson, N.; Kew, O.M. From emergence to eradication: The epidemiology of poliomyelitis deconstructed. Am. J. Epidemiol. 2010, 172, 1213–1229. [Google Scholar] [CrossRef] [PubMed]
- Bryant, J.O. The Invisible Enemy: The Effects of Polio on the American War Effort during World War II, 1941–1945. Electronic Theses and Dissertations. Paper 1404. 2012. Available online: https://dc.etsu.edu/etd/1404 (accessed on 4 February 2022).
- World Health Organization. Polio vaccines: WHO position paper, March 2016. Wkly. Epidemiol. Rec. 2016, 91, 145–168. [Google Scholar]
- Keeling, M.J.; Grenfell, B.T. Disease extinction and community size: Modeling the persistence of measles. Science 1997, 275, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Moss, W.J. Measles. Lancet 2017, 390, 2490–2502. [Google Scholar] [CrossRef]
- Steffens, I.; Martin, R.; Lopalco, P.L. Spotlight on measles 2010: Measles elimination in Europe e a new commitment to meet the goal by 2015. Euro Surveill. 2010, 15, piiZ19749. [Google Scholar] [CrossRef]
- Hinman, A.R.; Orenstein, W.A.; Bloch, A.B.; Bart, K.J.; Eddins, D.L.; Amler, R.W.; Kirby, C.D. Impact of measles in the United States. Rev. Infect. Dis. 1983, 5, 439–444. [Google Scholar] [CrossRef]
- Woodward, J.J. Outlines of the Chief Camp Diseases of the United States Armies as Observed during the Present War; J B Lippincott: Philadelphia, PA, USA, 1863. [Google Scholar]
- Shanks, D.G. Epidemiological Isolation as an Infection Mortality Risk Factor in U.S. Soldiers from Late Nineteenth to Early Twentieth Centuries. Am. J. Trop. Med. Hyg. 2019, 101, 980–983. [Google Scholar] [CrossRef]
- Morens, D.M.; Taubenberger, J.K. A forgotten epidemic that changed medicine: Measles in the US Army, 1917–1918. Lancet Infect Dis. 2015, 15, 852–861. [Google Scholar] [CrossRef]
- Shanks, G.D. Measles Mortality in the Armies of the Early 20th Century. J. Mil. Veterans’ Health 2020, 28, 79–82. [Google Scholar]
- Shanks, G.D.; Hu, Z.; Waller, M.; Lee, S.E.; Terfa, D.; Howard, A.; van Heyningen, E.; Brundage, J.F. Measles epidemics of variable lethality in the early 20th century. Am. J. Epidemiol. 2014, 179, 413–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayet, A.; Genicon, C.; Duron, S.; Haus-Cheymol, R.; Ficko, C.; Bédubourg, G.; Laporal, S.; Trichereau, J.; Meynard, J.B.; Deparis, X.; et al. The measles outbreak in the French military forces—2010–2011: Results of epidemiological surveillance. J. Infect. 2013, 66, 271–277. [Google Scholar] [CrossRef] [PubMed]
- D’Ancona, F.; D’Amario, C.; Maraglino, F.; Rezza, G.; Iannazzo, S. The law on compulsory vaccination in Italy: An update 2 years after the introduction. Euro Surveill. 2019, 24, 1900371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muscat, M.; Bang, H.; Wohlfahrt, J.; Glismann, S.; Mølbak, K.; EUVAC.NET Group. Measles in Europe: An epidemiological assessment. Lancet 2009, 373, 383–389. [Google Scholar] [CrossRef]
- Glover, D.J.; DeMain, J.; Herbold, J.R.; Schneider, P.J.; Bunning, M. Comparative measles incidence among exposed military and nonmilitary persons in Anchorage, Alaska. Mil. Med. 2004, 169, 515–517. [Google Scholar] [CrossRef] [Green Version]
- Levine, H.; Zarka, S.; Ankol, O.E.; Rozhavski, V.; Davidovitch, N.; Aboudy, Y.; Balicer, R.D. Seroprevalence of measles, mumps and rubella among young adults, after 20 years of universal 2-dose MMR vaccination in Israel. Hum. Vaccin. Immunother. 2015, 11, 1400–1405. [Google Scholar] [CrossRef] [Green Version]
- Avramovich, E.; Indenbaum, V.; Haber, M.; Amitai, Z.; Tsifanski, E.; Farjun, S.; Sarig, A.; Bracha, A.; Castillo, K.; Markovich, M.P.; et al. Measles Outbreak in a Highly Vaccinated Population—Israel, July–August 2017. Morb. Mortal Wkly. Rep. 2018, 67, 1186–1188. [Google Scholar] [CrossRef] [Green Version]
- Galazka, A.M.; Robertson, S.E.; Kraigher, A. Mumps and mumps vaccine: A global review. Bull. World Health Organ. 1999, 77, 3–14. [Google Scholar]
- Hviid, A.; Rubin, S.; Mühlemann, K. Mumps. Lancet 2008, 371, 932–944. [Google Scholar] [CrossRef]
- Buynak, E.B.; Hilleman, M.R. Live attenuated mumps virus vaccine 1. Vaccine development. Proc. Soc. Exp. Biol. Med. 1966, 123, 768–775. [Google Scholar] [CrossRef]
- Hirsch, A. Mumps (Parotitis epidemica s. polymorpha). In Handbook of Geographical and Historical Pathology; New Syndenham Society: London, UK, 1886; Volume III, pp. 277–283. [Google Scholar]
- Gordon, J.E.; Kilham, L. Ten years in the epidemiology of mumps. Am. J. Med. Sci. 1949, 218, 338–359. [Google Scholar] [CrossRef] [PubMed]
- Brooks, H. Epidemic parotitis as a military disease. Med. Clin. N. Am. 1918, 2, 492–505. [Google Scholar]
- Radin, M.J. The epidemic of mumps at Camp Wheeler, October, 1917 to March, 1918. Arch. Int. Med. 1918, 22, 354–369. [Google Scholar] [CrossRef] [Green Version]
- Barskey, A.E.; Glasser, J.W.; LeBaron, C.W. Mumps resurgences in the United States: A historical perspective on unexpected elements. Vaccine 2009, 27, 6186–6195. [Google Scholar] [CrossRef] [PubMed]
- Lista, F.; Faggioni, G.; Peragallo, M.S.; Tontoli, F.; Stella, A.; Salvatori, P.; Pusino, M.; Germani, M.A.; Contreas, V.; D’Amelio, R. Molecular analysis of early postvaccine mumps-like disease in Italian military recruits. JAMA 2002, 287, 1114–1115. [Google Scholar] [CrossRef]
- D’Amelio, R.; Biselli, R.; Fascia, G.; Natalicchio, S. Measles-mumps-rubella vaccine in the Italian armed forces. JAMA 2000, 284, 2059. [Google Scholar] [CrossRef]
- Demicheli, V.; Rivetti, A.; Debalini, M.G.; Di Pietrantonj, C. Vaccines for measles, mumps and rubella in children. Cochrane Database Syst. Rev. 2012, 2, CD004407. [Google Scholar] [CrossRef]
- Gobet, A.; Mayet, A.; Journaux, L.; Dia, A.; Aigle, L.; Dubrous, P.; Michel, R. Mumps among highly vaccinated people: Investigation of an outbreak in a French Military Parachuting Unit, 2013. J. Infect. 2014, 68, 101–102. [Google Scholar] [CrossRef]
- Eick, A.A.; Hu, Z.; Wang, Z.; Nevin, R.L. Incidence of mumps and immunity to measles, mumps and rubella among US military recruits, 2000–2004. Vaccine 2008, 26, 494–501. [Google Scholar] [CrossRef]
- Connell, A.R.; Connell, J.; Leahy, T.R.; Hassan, J. Mumps Outbreaks in Vaccinated Populations—Is It Time to Re-assess the Clinical Efficacy of Vaccines? Front. Immunol. 2020, 11, 2089. [Google Scholar] [CrossRef]
- Lambert, N.; Strebel, P.; Orenstein, W.; Icenogle, J.; Poland, G.A. Rubella. Lancet 2015, 385, 2297–2307. [Google Scholar] [CrossRef] [Green Version]
- Hilleman, M.R.; Buynak, E.B.; Weibel, R.E.; Stokes, J., Jr. Live, attenuated rubella-virus vaccine. N. Engl. J. Med. 1968, 279, 300–303. [Google Scholar] [CrossRef] [PubMed]
- Parkman, P.D.; Buescher, E.L.; Artenstein, M.S. Recovery of rubella virus from army recruits. Proc. Soc. Exp. Biol. Med. 1962, 111, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.M.; May, R.M. Immunisation and herd immunity. Lancet 1990, 335, 641–645. [Google Scholar] [CrossRef]
- Gershon, A.A.; Breuer, J.; Cohen, J.I.; Cohrs, R.J.; Gershon, M.D.; Gilden, D.; Grose, C.; Hambleton, S.; Kennedy, P.G.; Oxman, M.N.; et al. Varicella zoster virus infection. Nat. Rev. Dis. Primers 2015, 1, 15016. [Google Scholar] [CrossRef] [Green Version]
- Suryam, V.; Khera, A.; Patrikar, S. Susceptibility of cadets and recruits to chickenpox: A seroprevalence study. Med. J. Armed Forces India 2021, 77, 474–478. [Google Scholar] [CrossRef]
- Takahashi, M.; Otsuka, T.; Okuno, Y.; Asano, Y.; Yazaki, T. Live vaccine used to prevent the spread of varicella in children in hospital. Lancet 1974, 2, 1288–1290. [Google Scholar] [CrossRef]
- Avrahami-Heller, Y.; Cohen, D.; Orr, N.; Slepon, R.; Ashkenazi, I.; Danon, Y.L. Immunity to varicella zoster virus in young Israeli adults. Isr. Med. Assoc. J. 2000, 2, 196–199. [Google Scholar]
- Duncan, J.R.; Witkop, C.T.; Webber, B.J.; Costello, A.A. Varicella seroepidemiology in United States air force recruits: A retrospective cohort study comparing immunogenicity of varicella vaccination and natural infection. Vaccine 2017, 35, 2351–2357. [Google Scholar] [CrossRef] [Green Version]
- Gray, G.C.; Palinkas, L.A.; Kelley, P.W. Increasing incidence of varicella hospitalizations in United States Army and Navy personnel: Are today’s teenagers more susceptible? Should recruits be vaccinated? Pediatrics 1990, 86, 867–873. [Google Scholar] [CrossRef]
- Holmes, C.N. Predictive value of a history of varicella infection. Can. Fam. Physician 2005, 51, 60–65. [Google Scholar] [PubMed]
- Gaitonde, D.Y.; Moore, F.C.; Morgan, M.K. Influenza: Diagnosis and Treatment. Am. Fam. Physician 2019, 100, 751–758. [Google Scholar] [PubMed]
- Nuwarda, R.F.; Alharbi, A.A.; Kayser, V. An Overview of Influenza Viruses and Vaccines. Vaccines 2021, 9, 1032. [Google Scholar] [CrossRef] [PubMed]
- Kosik, I.; Yewdell, J.W. Influenza Hemagglutinin and Neuraminidase: Yin⁻Yang Proteins Coevolving to Thwart Immunity. Viruses 2019, 11, 346. [Google Scholar] [CrossRef] [Green Version]
- Taubenberger, J.K.; Morens, D.M. 1918 Influenza: The mother of all pandemics. Emerg. Infect. Dis. 2006, 12, 15–22. [Google Scholar] [CrossRef]
- Liu, Y.C.; Kuo, R.L.; Shih, S.R. COVID-19: The first documented coronavirus pandemic in history. Biomed. J. 2020, 43, 328–333. [Google Scholar] [CrossRef]
- Molgaard, C.A. Military vital statistics. The Spanish flu and the First World War. Significance 2019, 16, 33–37. [Google Scholar] [CrossRef]
- Watterson, C.; Kamradt-Scott, A. Figthing flu: Securitization and the military role in combating influenza. Armed Forces Soc. 2016, 42, 145–168. [Google Scholar] [CrossRef]
- The 1918 flu virus is resurrected. Nature 2005, 437, 794–795. [CrossRef] [Green Version]
- Shanks, G.D. Simultaneous epidemics of influenza and malaria in the Australian Army in Palestine in 1918. Med. J. Aust. 2009, 191, 654–657. [Google Scholar] [CrossRef]
- Francis, T.; Salk, J.E.; Pearson, H.E.; Brown, P.N. Protective effect of vaccination against induced influenza A. J. Clin. Investig. 1945, 24, 536–546. [Google Scholar] [CrossRef] [Green Version]
- Salk, J.E.; Pearson, H.E.; Brown, P.N.; Francis, T. Protective effect of vaccination against induced influenza B. J. Clin. Investig. 1945, 24, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Meiklejohn, G.; Zajac, R.A.; Evans, M.E. Influenza at Lowry Air Force Base in Denver, 1982–1986. J. Infect. Dis. 1987, 156, 649–651. [Google Scholar] [CrossRef]
- Meiklejohn, G. Viral respiratory disease at Lowry Air Force Base in Denver, 1952–1982. J. Infect. Dis. 1983, 148, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Meiklejohn, G.; Eickhoff, T.C.; Graves, P.I.J. Antigenic drift and efficacy of influenza virus vaccines, 1976–1977. J. Infect. Dis. 1978, 138, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Meiklejohn, G.; Eickhoff, T.C.; Graves, P. Antibody response of young adults to experimental influenza A/New Jersey/76 virus vaccines. J. Infect. Dis. 1977, 136, S456–S459. [Google Scholar] [CrossRef]
- Hoke, C.H., Jr.; Hopkins, J.A.; Meiklejohn, G.; Mostow, S.R. Comparison of sevral wild-type influenza viruses in the ferret tracheal organ culture system. Rev. Infect. Dis. 1979, 1, 946–954. [Google Scholar] [CrossRef]
- Gremillion, D.H.; Meiklejohn, G.; Graves, P.I.J. Efficacy of single-dose influenza in Air Force recruits. J. Infect. Dis. 1983, 147, 1099. [Google Scholar] [CrossRef]
- D’Amelio, R.; Biselli, R.; Calì, G.; Peragallo, M.S. Vaccination policies in the military: An insight on influenza. Vaccine 2002, 20 (Suppl. S5), B36–B39. [Google Scholar] [CrossRef]
- Sanchez, J.L.; Johns, M.C.; Burke, R.L.; Vest, K.G.; Fukuda, M.M.; Yoon, I.K.; Lon, C.; Quintana, M.; Schnabel, D.C.; Pimentel, G.; et al. Capacity-building efforts by the AFHSC-GEIS program. BMC Public Health 2011, 11 (Suppl. S2), S4. [Google Scholar] [CrossRef] [Green Version]
- Duron, S.; Mayet, A.; Lienhard, F.; Haus-Cheymol, R.; Verret, C.; Védy, S.; Le Guen, P.; Berbineau, L.; Brisou, P.; Dubrous, P.; et al. The French Military influenza surveillance system (MISS): Overview of epidemiological and virological results during four influenza seasons—2008–2012. Swiss. Med. Wkly. 2013, 143, w13848. [Google Scholar] [CrossRef]
- Demicheli, V.; Jefferson, T.; Ferroni, E.; Rivetti, A.; Di Pietrantonj, C. Vaccines for preventing influenza in healthy adults. Cochrane Database Syst. Rev. 2018, 2, CD001269. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.P., 3rd; Kajon, A.E. Adenovirus: Epidemiology, Global Spread of Novel Serotypes, and Advances in Treatment and Prevention. Semin. Respir. Crit. Care Med. 2016, 37, 586–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enders, J.F.; Bell, J.A.; Dingle, J.H.; Francis, T., Jr.; Hilleman, M.R.; Huebner, R.J.; Payne, A.M. Adenoviruses: Group name proposed for new respiratory-tract viruses. Science 1956, 124, 119–120. [Google Scholar] [CrossRef] [PubMed]
- Hilleman, M.R.; Werner, J.H. Recovery of new agent from patients with acute respiratory illness. Proc. Soc. Exp. Biol. Med. 1954, 85, 183–188. [Google Scholar] [CrossRef]
- Dudding, B.A.; Top, F.H., Jr.; Winter, P.E.; Buescher, E.L.; Lamson, T.H.; Leibovitz, A. Acute respiratory disease in military trainees: The adenovirus surveillance program, 1966–1971. Am. J. Epidemiol. 1973, 97, 187–198. [Google Scholar] [CrossRef]
- Top, F.H., Jr.; Grossman, R.A.; Bartelloni, P.J.; Segal, H.E.; Dudding, B.A.; Russell, P.K.; Buescher, E.L. Immunization with live types 7 and 4 adenovirus vaccines. I. Safety, infectivity, antigenicity, and potency of adenovirus type 7 vaccine in humans. J. Infect. Dis. 1971, 124, 148–154. [Google Scholar] [CrossRef]
- Top, F.H., Jr.; Buescher, E.L.; Bancroft, W.H.; Russell, P.K. Immunization with live types 7 and 4 adenovirus vaccines. II. Antibody response and protective effect against acute respiratory disease due to adenovirus type 7. J. Infect. Dis. 1971, 124, 155–160. [Google Scholar] [CrossRef]
- Kuschner, R.A.; Russell, K.L.; Abuja, M.; Bauer, K.M.; Faix, D.J.; Hait, H.; Henrick, J.; Jacobs, M.; Liss, A.; Lynch, J.A.; et al. A phase 3, randomized, double-blind, placebo-controlled study of the safety and efficacy of the live, oral adenovirus type 4 and type 7 vaccine, in U.S. military recruits. Vaccine 2013, 31, 2963–2971. [Google Scholar] [CrossRef]
- Radin, J.M.; Hawksworth, A.W.; Blair, P.J.; Faix, D.J.; Raman, R.; Russell, K.L.; Gray, G.C. Dramatic decline of respiratory illness among US military recruits after the renewed use of adenovirus vaccines. Clin. Infect. Dis. 2014, 59, 962–968. [Google Scholar] [CrossRef]
- Hierholzer, J.C.; Pumarola, A.; Rodriguez-Torres, A.; Beltran, M. Occurrence of respiratory illness due to an atypical strain of adenovirus type 11 during a large outbreak in Spanish military recruits. Am. J. Epidemiol. 1974, 99, 434–442. [Google Scholar] [CrossRef]
- Chmielewicz, B.; Benzler, J.; Pauli, G.; Krause, G.; Bergmann, F.; Schweiger, B. Respiratory disease caused by a species B2 adenovirus in a military camp in Turkey. J. Med. Virol. 2005, 77, 232–237. [Google Scholar] [CrossRef]
- Jeon, K.; Kang, C.I.; Yoon, C.H.; Lee, D.J.; Kim, C.H.; Chung, Y.S.; Kang, C.; Choi, C.M. High isolation rate of adenovirus serotype 7 from South Korean military recruits with mild acute respiratory disease. Eur. J. Clin. Microbiol. Infect. Dis. 2007, 26, 481–483. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhang, Y.; Xu, S.; Yu, P.; Tian, X.; Wang, L.; Liu, Z.; Tang, L.; Mao, N.; Ji, Y.; et al. Outbreak of acute respiratory disease in China caused by B2 species of adenovirus type 11. J. Clin. Microbiol. 2009, 47, 697–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kajon, A.E.; Dickson, L.M.; Metzgar, D.; Houng, H.S.; Lee, V.; Tan, B.H. Outbreak of febrile respiratory illness associated with adenovirus 11a infection in a Singapore military training cAMP. J. Clin. Microbiol. 2010, 48, 1438–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, J.H.; Woo, H.T.; Oh, H.S.; Moon, S.M.; Choi, J.Y.; Lim, J.U.; Kim, D.; Byun, J.; Kwon, S.H. Ongoing outbreak of human adenovirus-associated acute respiratory illness in the Republic of Korea military, 2013 to 2018. Korean J. Intern. Med. 2021, 36, 205–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Yang, H.; Ji, W.; Wu, W.; Chen, S.; Zhang, W.; Duan, G. Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses 2020, 12, 372. [Google Scholar] [CrossRef] [Green Version]
- Cucinotta, D.; Vanelli, M. WHO Declares COVID-19 a Pandemic. Acta Biomed. 2020, 91, 157–160. [Google Scholar] [CrossRef]
- Fraser, C.; Cummings, D.A.; Klinkenberg, D.; Burke, D.S.; Ferguson, N.M. Influenza transmission in households during the 1918 pandemic. Am. J. Epidemiol. 2011, 174, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Weiss, R.A.; McMichael, A.J. Social and environmental risk factors in the emergence of infectious diseases. Nat. Med. 2004, 10 (Suppl. S12), S70–S76. [Google Scholar] [CrossRef]
- D’Amelio, R.; Asero, R.; Cassatella, M.A.; Laganà, B.; Lunardi, C.; Migliorini, P.; Nisini, R.; Parronchi, P.; Quinti, I.; Racanelli, V.; et al. Anti-COVID-19 Vaccination in Patients with Autoimmune-Autoinflammatory Disorders and Primary/Secondary Immunodeficiencies: The Position of the Task Force on Behalf of the Italian Immunological Societies. Biomedicines 2021, 9, 1163. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.C.; Guan, X.H.; Li, Y.H.; Huang, J.Y.; Jiang, T.; Hou, L.H.; Li, J.X.; Yang, B.F.; Wang, L.; Wang, W.J.; et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2020, 396, 479–488. [Google Scholar] [CrossRef]
- Lewis, D. China’s coronavirus vaccine shows military’s growing role in medical research. Nature 2020, 585, 494–495. [Google Scholar] [CrossRef] [PubMed]
- Fiolet, T.; Kherabi, Y.; MacDonald, C.J.; Ghosn, J.; Peiffer-Smadja, N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: A narrative review. Clin. Microbiol. Infect. 2022, 28, 202–221. [Google Scholar] [CrossRef] [PubMed]
- Gad, M.; Kazibwe, J.; Quirk, E.; Gheorghe, A.; Homan, Z.; Bricknell, M. Civil-military cooperation in the early response to the COVID-19 pandemic in six European countries. BMJ Mil. Health 2021, 167, 234–243. [Google Scholar] [CrossRef]
- Riley, P.; Ben-Nun, M.; Turtle, J.; Bacon, D.; Owens, A.N.; Riley, S. COVID-19: On the Disparity in Outcomes Between Military and Civilian Populations. Mil. Med. 2021. [Google Scholar] [CrossRef]
- Kasper, M.R.; Geibe, J.R.; Sears, C.L.; Riegodedios, A.J.; Luse, T.; Von Thun, A.M.; McGinnis, M.B.; Olson, N.; Houskamp, D.; Fenequito, R.; et al. An Outbreak of Covid-19 on an Aircraft Carrier. N. Engl. J. Med. 2020, 383, 2417–2426. [Google Scholar] [CrossRef]
- Kordsmeyer, A.C.; Mojtahedzadeh, N.; Heidrich, J.; Militzer, K.; von Münster, T.; Belz, L.; Jensen, H.J.; Bakir, S.; Henning, E.; Heuser, J.; et al. Systematic Review on Outbreaks of SARS-CoV-2 on Cruise, Navy and Cargo Ships. Int. J. Environ. Res. Public Health 2021, 18, 5195. [Google Scholar] [CrossRef]
- Servies, T.E.; Larsen, E.C.; Lindsay, R.C.; Jones, J.S.; Cer, R.Z.; Voegtly, L.J.; Lueder, M.R.; Malagon, F.; Bishop-Lilly, K.A.; Riegodedios, A.J. Notes from the Field: Outbreak of COVID-19 Among a Highly Vaccinated Population Aboard a U.S. Navy Ship After a Port Visit—Reykjavik, Iceland, July 2021. Morb. Mortal. Wkly. Rep. 2022, 71, 279–281. [Google Scholar] [CrossRef]
- Elston, R.J.S.; Pennyfather, C.; Peppin, S. COVID-19 outbreak in a vaccinated deployed military population. BMJ Mil. Health 2021. [Google Scholar] [CrossRef]
- Letizia, A.G.; Ge, Y.; Vangeti, S.; Goforth, C.; Weir, D.L.; Kuzmina, N.A.; Balinsky, C.A.; Chen, H.W.; Ewing, D.; Soares-Schanoski, A.; et al. SARS-CoV-2 seropositivity and subsequent infection risk in healthy young adults: A prospective cohort study. Lancet Respir. Med. 2021, 9, 712–720. [Google Scholar] [CrossRef]
- Letizia, A.G.; Ramos, I.; Obla, A.; Goforth, C.; Weir, D.L.; Ge, Y.; Bamman, M.M.; Dutta, J.; Ellis, E.; Estrella, L.; et al. SARS-CoV-2 Transmission among Marine Recruits during Quarantine. N. Engl. J. Med. 2020, 383, 2407–2416. [Google Scholar] [CrossRef] [PubMed]
- Escalera-Antezana, J.P.; Mariaca-Cerball, C.A.; Alvarado-Arnez, L.E.; Balderrama-Saavedra, M.A.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. Incidence of SARS-CoV-2/COVID-19 in military personnel of Bolivia. BMJ Mil. Health. 2021, 167, 215–216. [Google Scholar] [CrossRef] [PubMed]
- Pasqualotto, A.C.; Pereira, P.C.; Lana, D.F.D.; Schwarzbold, A.V.; Ribeiro, M.S.; Riche, C.V.W.; Castro, C.P.P.; Korsack, P.L.; Ferreira, P.E.B.; Domingues, G.C.; et al. COVID-19 seroprevalence in military police force, Southern Brazil. PLoS ONE 2021, 16, e0249672. [Google Scholar] [CrossRef]
- Shin, D.H.; Oh, H.S.; Jang, H.; Lee, S.; Choi, B.S.; Kim, D. Analyses of Confirmed COVID-19 Cases Among Korean Military Personnel After Mass Vaccination. J. Korean Med. Sci. 2022, 37, e23. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Zheng, T.; Xu, K.; Han, Y.; Xu, L.; Huang, E.; An, Y.; Cheng, Y.; Li, S.; Liu, M.; et al. A Universal Design of Betacoronavirus Vaccines against COVID-19, MERS, and SARS. Cell 2020, 182, 722–733.e11. [Google Scholar] [CrossRef]
- Madsen, A.; Cox, R.J. Prospects and Challenges in the Development of Universal Influenza Vaccines. Vaccines 2020, 8, 361. [Google Scholar] [CrossRef]
- Taquet, M.; Dercon, Q.; Luciano, S.; Geddes, J.R.; Husain, M.; Harrison, P.J. Incidence, co-occurrence, and evolution of long-COVID features: A 6-month retrospective cohort study of 273,618 survivors of COVID-19. PLoS Med. 2021, 18, e1003773. [Google Scholar] [CrossRef]
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 2021, 38, 101019. [Google Scholar] [CrossRef]
- Kalkman, J.P. Military crisis responses to COVID-19. J. Contingencies Crisis Manag. 2021, 29, 99–103. [Google Scholar] [CrossRef]
- Sternberg, G.M. A fatal form of septicaemia in the rabbit, produced by the subcutaneous injection of human saliva. Annu. Rep. Natl. Board Health 1881, 3, 87–108. [Google Scholar]
- Sternberg, G.M. A fatal form of septicaemia in the rabbit, produced by the subcutaneous injection of human saliva. Natl. Board Health Bull. 1881, 2, 781–783. [Google Scholar]
- Pasteur, L. Note sur la maladie nouvelle provoqué par la salive d’un enfant mort de la rage. Bull. I’Acad. Med. (Paris) 1881, 10, 94–103. [Google Scholar]
- Pasteur, L.; Chamberland, M.M.; Roux. Sur une maladie nouvelle, provoqué par la salive d’un enfant mort de la rage. C. R. Acad. Sci. 1881, 92, 156–159. [Google Scholar]
- Pichichero, M.E. Pneumococcal whole-cell and protein-based vaccines: Changing the paradigm. Expert Rev. Vaccines 2017, 16, 1181–1190. [Google Scholar] [CrossRef]
- Moffitt, K.L.; Yadav, P.; Weinberger, D.M.; Anderson, P.W.; Malley, R. Broad antibody and T cell reactivity induced by a pneumococcal whole-cell vaccine. Vaccine 2012, 30, 4316–4322. [Google Scholar] [CrossRef] [Green Version]
- Drijkoningen, J.J.; Rohde, G.G. Pneumococcal infection in adults: Burden of disease. Clin. Microbiol. Infect. 2014, 20 (Suppl. S5), 45–51. [Google Scholar] [CrossRef] [Green Version]
- Austrian, R. Some observations on the pneumococcus and on the current status of pneumococcal disease and its prevention. Rev. Infect. Dis. 1981, 3, S1–S17. [Google Scholar] [CrossRef]
- Watson, D.A.; Musher, D.M.; Jacobson, J.W.; Verhoef, J. A brief history of the pneumococcus in biomedical research: A panoply of scientific discovery. Clin. Infect. Dis. 1993, 17, 913–924. [Google Scholar] [CrossRef] [Green Version]
- Russell, K.L.; Baker, C.I.; Hansen, C.; Poland, G.A.; Ryan, M.A.; Merrill, M.M.; Gray, G.C. Lack of effectiveness of the 23-valent polysaccharide pneumococcal vaccine in reducing all-cause pneumonias among healthy young military recruits: A randomized, double-blind, placebo-controlled trial. Vaccine 2015, 33, 1182–1187. [Google Scholar] [CrossRef]
- Jackson, A.C. Update on rabies. Res. Rep. Trop. Med. 2011, 2, 31–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. WHO Expert Consultation on Rabies: First Report; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Salemi, S.; Markovic, M.; Martini, G.; D’Amelio, R. The expanding role of therapeutic antibodies. Int. Rev. Immunol. 2015, 34, 202–264. [Google Scholar] [CrossRef] [PubMed]
- Moe, C.D.; Keiser, P.B. Should U.S. troops routinely get rabies pre-exposure prophylaxis? Mil. Med. 2014, 179, 702–703. [Google Scholar] [CrossRef] [Green Version]
- Hoke, C.H., Jr. History of U.S. military contributions to the study of viral encephalitis. Mil. Med. 2005, 170 (Suppl. S4), 92–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, V.F.; Taubman, S.B.; Stahlman, S. Animal bites and rabies post-exposure prophylaxis, active and reserve components, U.S. Armed Forces, 2011–2018. MSMR 2019, 26, 13–20. [Google Scholar] [PubMed]
- Dehner, L.P. Human rabies encephalitis in Vietnam. Ann. Intern. Med. 1970, 72, 375–378. [Google Scholar] [CrossRef]
- Dembert, M.L.; Lawrence, W.B.; Weinberg, W.G.; Granger, D.D.; Sanderson, R.D.; Garst, P.D.; Eighmy, J.J.; Wells, T.E. Epidemiology of human rabies post-exposure prophylaxis at the US Naval Facility, Subic Bay, Philippines. Am. J. Public Health 1985, 75, 1440–1441. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, M. A century of the US Army yellow fever research. Lancet 2001, 357, 1772. [Google Scholar] [CrossRef]
- Clements, A.N.; Harbach, R.E. History of the discovery of the mode of transmission of yellow fever virus. J. Vector Ecol. 2017, 42, 208–222. [Google Scholar] [CrossRef] [Green Version]
- Theiler, M.; Smith, H.H. The use of yellow fever virus by in vitro cultivation for human immunization. J. Exp. Med. 1937, 65, 787–800. [Google Scholar] [CrossRef] [Green Version]
- Poland, J.D.; Calisher, C.H.; Monath, T.P.; Downs, W.G.; Murphy, K. Persistence of neutralizing antibody 30–35 years after immunization with 17D yellow fever vaccine. Bull. World Health Organ. 1981, 59, 895–900. [Google Scholar] [PubMed]
- Erlanger, T.E.; Weiss, S.; Keiser, J.; Utzinger, J.; Wiedenmayer, K. Past, present, and future of Japanese encephalitis. Emerg. Infect. Dis. 2009, 15, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sabin, A.B. Epidemic encephalitis in military personnel; isolation of Japanese B virus on Okinawa in 1945: Serologic diagnosis, clinical manifestations, epidemic aspects and use of mouse brain vaccine. JAMA 1947, 133, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Sabin, A.B.; Tigertt, W.D. Evaluation of Japanese B encephalitis vaccine. I. General background and methods. Am. J. Hyg. 1956, 63, 217–227. [Google Scholar] [CrossRef]
- Pages, F.; Faulde, M.; Orlandi-Pradines, E.; Parola, P. The past and present threat of vector-borne diseases in deployed troops. Clin. Microbiol. Infect. 2010, 16, 209–224. [Google Scholar] [CrossRef] [Green Version]
- Buescher, E.L.; Scherer, W.F. The ecology of Japanese encephalitis virus in Japan. In Proceedings of the Sixth International Congresses on Tropical Medicine and Malaria, Lisbon, Portugal, 5–13 September 1958. [Google Scholar]
- Hoke, C.H.; Nisalak, A.; Sangawhipa, N.; Jatanasen, S.; Laorakapongse, T.; Innis, B.L.; Kotchasenee, S.; Gingrich, J.B.; Latendresse, J.; Fukai, K.; et al. Protection against Japanese encephalitis by inactivated vaccines. N. Engl. J. Med. 1988, 319, 608–614. [Google Scholar] [CrossRef]
- Sanchez, J.L.; Hoke, C.H.; McCown, J.; DeFraites, R.F.; Takafuji, E.T.; Diniega, B.M.; Pang, L.W. Further experience with Japanese encephalitis vaccine. Lancet 1990, 335, 972–973. [Google Scholar] [CrossRef]
- Burke, D.S.; Nisalak, A. Detection of Japanese encephalitis virus immunoglobulin M antibodies in serum by antibody capture radioimmunoassay. J. Clin. Microbiol. 1982, 15, 353–361. [Google Scholar] [CrossRef] [Green Version]
- Burke, D.S.; Nisalak, A.; Ussery, M.A. Antibody capture immunoassay detection of japanese encephalitis virus immunoglobulin m and g antibodies in cerebrospinal fluid. J. Clin. Microbiol. 1982, 16, 1034–1042. [Google Scholar] [CrossRef] [Green Version]
- Defraites, R.F.; Gambel, J.M.; Hoke, C.H., Jr.; Sanchez, J.L.; Withers, B.G.; Karabatsos, N.; Shope, R.E.; Tirrell, S.; Yoshida, I.; Takagi, M.; et al. Japanese encephalitis vaccine (inactivated, BIKEN) in U.S. soldiers: Immunogenicity and safety of vaccine administered in two dosing regimens. Am. J. Trop. Med. Hyg. 1999, 61, 288–293. [Google Scholar] [CrossRef] [Green Version]
- Hegde, N.R.; Gore, M.M. Japanese encephalitis vaccines: Immunogenicity, protective efficacy, effectiveness, and impact on the burden of disease. Hum. Vaccines Immunother. 2017, 13, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hills, S.L.; Walter, E.B.; Atmar, R.L.; Fischer, M.; ACIP Japanese Encephalitis Vaccine Work Group. Japanese Encephalitis Vaccine: Recommendations of the Advisory Committee on Immunization Practices. MMWR Recomm. Rep. 2019, 68, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Peragallo, M.S.; Nicoletti, L.; Lista, F.; D’Amelio, R.; East Timor Dengue Study Group. Probable dengue virus infection among Italian troops, East Timor, 1999–2000. Emerg. Infect. Dis. 2003, 9, 876–880. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Epidemiological Situation of Tick-Borne Encephalitis in the European Union and European Free Trade Association Countries; ECDC: Stockholm, Sweden, 2012. [Google Scholar]
- Haglund, M.; Gunther, G. Tick-borne encephalitis—Pathogenesis, clinical course and long-term follow-up. Vaccine 2003, 21 (Suppl. S1), S11–S18. [Google Scholar] [CrossRef]
- Zavadska, D.; Anca, I.; Andre, F.; Bakir, M.; Chlibek, R.; Cizman, M.; Ivaskeviciene, I.; Mangarov, A.; Meszner, Z.; Pokorn, M.; et al. Recommendations for tick-borne encephalitis vaccination from the Central European Vaccination Awareness Group (CEVAG). Hum. Vaccin. Immunother. 2013, 9, 362–374. [Google Scholar] [CrossRef] [Green Version]
- Lindquist, L.; Vapalahti, O. Tick-borne encephalitis. Lancet 2008, 371, 1861–1871. [Google Scholar] [CrossRef]
- World Health Organization. Vaccines against tick-borne encephalitis: WHO position paper. Wkly. Epidemiol. Rec. 2011, 86, 241–256. [Google Scholar]
- Rampa, J.E.; Askling, H.H.; Lang, P.; Zens, K.D.; Gültekin, N.; Stanga, Z.; Schlagenhauf, P. Immunogenicity and safety of the tick-borne encephalitis vaccination (2009–2019): A systematic review. Travel Med. Infect. Dis. 2020, 37, 101876. [Google Scholar] [CrossRef]
- McNeil, J.G.; Lednar, W.M.; Stansfield, S.K.; Prier, R.E.; Miller, R.N. Central European tick-borne encephalitis: Assessment of risk for persons in the armed services and vacationers. J. Infect. Dis. 1985, 152, 650–651. [Google Scholar] [CrossRef]
- Craig, S.C.; Pittman, P.R.; Lewis, T.E.; Rossi, C.A.; Henchal, E.A.; Kuschner, R.A.; Martinez, C.; Kohlhase, K.F.; Cuthie, J.C.; Welch, G.E.; et al. An accelerated schedule for tick-borne encephalitis vaccine: The American Military experience in Bosnia. Am. J. Trop. Med. Hyg. 1999, 61, 874–878. [Google Scholar] [CrossRef] [Green Version]
- Luria, L.; Cardoza-Favarato, G. Human Papillomavirus. [Updated 24 January 2022]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Duron, S.; Panjo, H.; Bohet, A.; Bigaillon, C.; Sicard, S.; Bajos, N.; Meynard, J.B.; Mérens, A.; Moreau, C. Prevalence and risk factors of sexually transmitted infections among French service members. PLoS ONE 2018, 13, e0195158. [Google Scholar] [CrossRef] [PubMed]
- Agan, B.K.; Macalino, G.E.; Nsouli-Maktabi, H.; Wang, X.; Gaydos, J.C.; Ganesan, A.; Kortepeter, M.G.; Sanchez, J.L. Human papillomavirus seroprevalence among men entering military service and seroincidence after ten years of service. MSMR 2013, 20, 21–24. [Google Scholar]
- Update: Sexually Transmitted Infections, Active Component, U.S. Armed Forces, 2012–2020. MSMR 2021, 28, 13–22.
- Spayne, J.; Hesketh, T. Estimate of global human papillomavirus vaccination coverage: Analysis of country-level indicators. BMJ Open 2021, 11, e052016. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.T.; Simms, K.T.; Lew, J.B.; Smith, M.A.; Brotherton, J.M.; Saville, M.; Frazer, I.H.; Canfell, K. The projected timeframe until cervical cancer elimination in Australia: A modelling study. Lancet Public Health. 2019, 4, e19–e27. [Google Scholar] [CrossRef] [Green Version]
- Collins, M.K.; Tarney, C.; Craig, E.R.; Beltran, T.; Han, J. Human Papillomavirus Vaccination Rates of Military and Civilian Male Respondents to the Behavioral Risk Factors Surveillance System Between 2013 and 2015. Mil. Med. 2019, 184 (Suppl. S1), 121–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seay, J.; Matsuno, R.; Buechel, J.; Tannenbaum, K.; Wells, N. HPV-Related Cancers: A Growing Threat to U.S. Military Health and Readiness. Mil. Med. 2021. [Google Scholar] [CrossRef]
- Sitler, C.A.; Weir, L.F.; Keyser, E.A.; Casablanca, Y.; Hope, E. Mandatory HPV Vaccination; Opportunity to Save Lives, Improve Readiness and Cut Costs. Mil. Med. 2021, 186, 305–308. [Google Scholar] [CrossRef]
- Chesson, H.W.; Meites, E.; Ekwueme, D.U.; Saraiya, M.; Markowitz, L.E. Updated medical care cost estimates for HPV-associated cancers: Implications for cost-effectiveness analyses of HPV vaccination in the United States. Hum. Vaccin. Immunother. 2019, 15, 1942–1948. [Google Scholar] [CrossRef]
- Ali, M.; Nelson, A.R.; Lopez, A.L.; Sack, D.A. Updated global burden of cholera in endemic countries. PLoS Negl. Trop. Dis. 2015, 9, e0003832. [Google Scholar] [CrossRef] [Green Version]
- Lim, M.L.; Murphy, G.S.; Calloway, M.; Tribble, D. History of U.S. military contributions to the study of diarrheal diseases. Mil. Med. 2005, 170 (Suppl. S4), 30–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giunchi, G. Alcune osservazioni, interpretazioni ed ipotesi in tema di storiografia medica degli eventi bellici [Observations, interpretations and hypotheses concerning medical historiography of war events]. Riv. Med. Aeronaut. Spaz. 1983, 48, 49–68. [Google Scholar] [PubMed]
- Parish, H.J. A History of Immunization; E & S Livingstone: Edinburgh, UK, 1965. [Google Scholar]
- Hajj Hussein, I.; Chams, N.; Chams, S.; El Sayegh, S.; Badran, R.; Raad, M.; Gerges-Geagea, A.; Leone, A.; Jurjus, A. Vaccines through Centuries: Major Cornerstones of Global Health. Front. Public Health 2015, 3, 269. [Google Scholar] [CrossRef] [PubMed]
- De Filippi, F. On some Special Problems of the Italian Medical War Services. Proc. R. Soc. Med. 1918, 11, 40–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, R.A.; Van Slyke, D.D.; Hamilton, P.B.; Dole, V.P.; Emerson, K.; Archibald, R.M. Measurement of specific gravity of whole blood and plasma by standard copper sulfate solutions. J. Biol. Chem. 1950, 183, 305. [Google Scholar] [CrossRef]
- Watten, R.H.; Morgan, F.M.; Songkhla, Y.N.; Vanikiati, B.; Phillips, R.A. Water and electrolyte studies in cholera. J. Clin. Investig. 1959, 38, 1879–1889. [Google Scholar] [CrossRef]
- Finkelstein, R.A.; Norris, H.T.; Dutta, N.K. Pathogenesis of experimental cholera in infant rabbits. 1. Observations on the intraintestinal infective and experimental cholera produced with cell-free products. J. Infect. Dis. 1964, 1124, 203–216. [Google Scholar] [CrossRef]
- Sanchez, J.L.; Trofa, A.F.; Taylor, D.N.; Kuschner, R.A.; DeFraites, R.F.; Craig, S.C.; Rao, M.R.; Clemens, J.D.; Svennerholm, A.M.; Sadoff, J.C.; et al. Safety and immunogenicity of the oral, whole cell/recombinant B subunit cholera vaccine in North American volunteers. J. Infect. Dis. 1993, 167, 1446–1449. [Google Scholar] [CrossRef]
- Sanchez, J.L.; Vasquez, B.; Begue, R.E.; Meza, R.; Castellares, G.; Cabezas, C.; Watts, D.M.; Svennerholm, A.M.; Sadoff, J.C.; Taylor, D.N. Protective efficacy of oral whole-cell/recombinant-B-subunit cholera vaccine in Peruvian military recruits. Lancet 1994, 344, 1273–1276. [Google Scholar] [CrossRef]
- Taylor, D.N.; Killeen, K.P.; Hack, D.C.; Kenner, J.R.; Coster, T.S.; Beattie, D.T.; Ezzell, J.; Hyman, T.; Trofa, A.; Sjogren, M.H.; et al. Development of a live, oral, attenuated vaccine against El Tor cholera. J. Infect. Dis. 1994, 170, 1518–1523. [Google Scholar] [CrossRef]
- Coster, T.S.; Killeen, K.P.; Waldor, M.K.; Beattie, D.T.; Spriggs, D.R.; Kenner, J.R.; Trofa, A.; Sadoff, J.C.; Mekalanos, J.J.; Taylor, D.N. Safety, immunogenicity, and efficacy of live attenuated Vibrio cholerae O139 vaccine prototype. Lancet 1995, 345, 949–952. [Google Scholar] [CrossRef] [PubMed]
- Su-Arehawaratana, P.; Singharaj, P.; Taylor, D.N.; Hoge, C.; Trofa, A.; Kuvanont, K.; Migasena, S.; Pitisuttitham, P.; Lim, Y.L.; Losonsky, G.; et al. Safety and immunogenicity of different immunization regimens of CVD 103-HgR live oral cholera vaccine in soldiers and civilians in Thailand. J. Infect. Dis. 1992, 165, 1042–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richie, E.E.; Punjabi, N.H.; Sidharta, Y.Y.; Peetosutan, K.K.; Sukandar, M.M.; Wasserman, S.S.; Lesmana, M.M.; Wangsasaputra, F.F.; Pandam, S.S.; Levine, M.M.; et al. Efficacy trial of single-dose live oral cholera vaccine CVD 103-HgR in North Jakarta, Indonesia, a cholera-endemic area. Vaccine 2000, 18, 2399–2410. [Google Scholar] [CrossRef]
- Cholera vaccines: WHO position paper—August 2017. Wkly. Epidemiol. Rec. 2017, 92, 477–498.
- Levett, P.N. Leptospirosis. Clin. Microbiol. Rev. 2001, 14, 296–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haake, D.A.; Levett, P.N. Leptospirosis in humans. Curr. Top. Microbiol. Immunol. 2015, 387, 65–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McBride, A.J.; Athanazio, D.A.; Reis, M.G.; Ko, A.I. Leptospirosis. Curr. Opin. Infect. Dis. 2005, 18, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Inada, R.; Ido, Y.; Hoki, R.; Kaneko, R.; Ito, H. The etiology, mode of infection, and specific therapy of Weil’s disease (spirochaetosis icterohaemorrhagica). J. Exp. Med. 1916, 23, 377–402. [Google Scholar] [CrossRef]
- Uhlenhuth, P.; Fromme, W. Experimentelle Untersuchungen über die sogenannte Weilsche Krankheit (ansteckende Gelbsucht). Med. Klin. 1915, 44, 1202–1203. [Google Scholar]
- Hübener, E.A.; Reiter, H. Beiträge zur Aetiologie der Weilschen Krankheit. Dtsch. Med. Wochenschr. 1915, 41, 1275–1277. [Google Scholar]
- Weil, A. Ueber eine eigentümliche, mit Milztumor, Icterus und Nephritis einhergehende akute Infektionskrankheit. Dtsch. Arch. Klin. Med. 1886, 39, 209–232. [Google Scholar]
- Tarantola, A.; Goarant, C. Leptospirosis in French Historical Medical Literature: Weil’s Disease or Kelsch’s Disease? Am. J. Trop. Med. Hyg. 2018, 99, 1366–1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christopher, G.W.; Agan, M.B.; Cieslak, T.J.; Olson, P.E. History of U.S. military contributions to the study of bacterial zoonoses. Mil. Med. 2005, 170 (Suppl. S4), 39–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gochenour, W.S., Jr.; Smadel, J.E.; Jackson, E.B.; Evans, L.B.; Yager, R.H. Leptospiral etiology of Fort Bragg fever. Public Health Rep. 1952, 67, 811–813. [Google Scholar]
- Gauld, R.L.; Crouch, W.L.; Kaminsky, A.L.; Hullinghorst, R.L.; Gochenour, W.S., Jr.; Yager, R.H. Leptospiral meningitis: Report of outbreak among American troops on Okinawa. J. Am. Med. Assoc. 1952, 149, 229–231. [Google Scholar] [CrossRef] [PubMed]
- Takafuji, E.T.; Kirkpatrick, J.W.; Miller, R.N.; Karwacki, J.J.; Kelley, P.W.; Gray, M.R.; McNeill, K.M.; Timboe, H.L.; Kane, R.E.; Sanchez, J.L. An efficacy trial of doxycycline chemoprophylaxis against leptospirosis. N. Engl. J. Med. 1984, 310, 497–500. [Google Scholar] [CrossRef] [Green Version]
- Gentile, G.; Tong, C.; Renaud, C.; Menoud, N.; Casanova, L.; Blatteau, J.E.; Christen, J.R.; Texier, G.; Mayet, A.; Simon, F. Incidence of leptospirosis in the French armed forces from 2004 to 2018: Retrospective analysis. Travel Med. Infect. Dis. 2021, 39, 101951. [Google Scholar] [CrossRef]
- Katzelnick, L.C.; Harris, E. Participants in the Summit on Dengue Immune Correlates of Protection. Immune correlates of protection for dengue: State of the art and research agenda. Vaccine 2017, 35, 4659–4669. [Google Scholar] [CrossRef]
- Malavige, G.N.; Fernando, S.; Fernando, D.J.; Seneviratne, S.L. Dengue viral infections. Postgrad. Med. J. 2004, 80, 588–601. [Google Scholar] [CrossRef]
- Kabra, S.K.; Jain, Y.; Pandey, R.M.; Madhulika; Singhal, T.; Tripathi, P.; Broor, S.; Seth, P.; Seth, V. Dengue haemorrhagic fever in children in the 1996 Delhi epidemic. Trans. R. Soc. Trop. Med. Hyg. 1999, 93, 294–298. [Google Scholar] [CrossRef]
- Burnette, W.N.; Hoke, C.H., Jr.; Scovill, J.; Clark, K.; Abrams, J.; Kitchen, L.W.; Hanson, K.; Palys, T.J.; Vaughn, D.W. Infectious diseases investment decision evaluation algorithm: A quantitative algorithm for prioritization of naturally occurring infectious disease threats to the U.S. military. Mil. Med. 2008, 173, 174–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vannice, K.S.; Durbin, A.; Hombach, J. Status of vaccine research and development of vaccines for dengue. Vaccine 2016, 34, 2934–2938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Innis, B.L.; Eckels, K.H. Progress in development of a live-attenuated, tetravalent dengue virus vaccine by the United States Army Medical Research and Materiel Command. Am. J. Trop. Med. Hyg. 2003, 69 (Suppl. S6), 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dussupt, V.; Modjarrad, K.; Krebs, S.J. Landscape of Monoclonal Antibodies Targeting Zika and Dengue: Therapeutic Solutions and Critical Insights for Vaccine Development. Front. Immunol. 2021, 11, 621043. [Google Scholar] [CrossRef]
- Izurieta, R.O.; Macaluso, M.; Watts, D.M.; Tesh, R.B.; Guerra, B.; Cruz, L.M.; Galwankar, S.; Vermund, S.H. Anamnestic immune response to dengue and decreased severity of yellow Fever. J. Glob. Infect. Dis. 2009, 1, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Dussupt, V.; Sankhala, R.S.; Gromowski, G.D.; Donofrio, G.; De La Barrera, R.A.; Larocca, R.A.; Zaky, W.; Mendez-Rivera, L.; Choe, M.; Davidson, E.; et al. Potent Zika and dengue cross-neutralizing antibodies induced by Zika vaccination in a dengue-experienced donor. Nat. Med. 2020, 26, 228–235. [Google Scholar] [CrossRef]
- Imrie, A.; Meeks, J.; Gurary, A.; Sukhbaatar, M.; Truong, T.T.; Cropp, C.B.; Effler, P. Antibody to dengue 1 detected more than 60 years after infection. Viral Immunol. 2007, 20, 672–675. [Google Scholar] [CrossRef] [Green Version]
- Burke, D.S.; Nisalak, A.; Johnson, D.E.; Scott, R.M. A prospective study of dengue infections in Bangkok. Am. J. Trop. Med. Hyg. 1988, 38, 172–180. [Google Scholar] [CrossRef]
- Gibbons, R.V.; Streitz, M.; Babina, T.; Fried, J.R. Dengue and US military operations from the Spanish-American War through today. Emerg. Infect. Dis. 2012, 18, 623–630. [Google Scholar] [CrossRef]
- Kuno, G. Research on dengue and dengue-like illness in East Asia and the Western Pacific during the First Half of the 20th century. Rev. Med. Virol. 2007, 17, 327–341. [Google Scholar] [CrossRef]
- Smallman-Raynor, M.R.; Cliff, A.D. Impact of infectious diseases on war. Infect. Dis. Clin. N. Am. 2004, 18, 341–368. [Google Scholar] [CrossRef] [PubMed]
- de Laval, F.; Dia, A.; Plumet, S.; Decam, C.; Leparc Goffart, I.; Deparis, X. Dengue surveillance in the French armed forces: A dengue sentinel surveillance system in countries without efficient local epidemiological surveillance. J. Travel Med. 2013, 20, 259–261. [Google Scholar] [CrossRef] [Green Version]
- Ratto-Kim, S.; Yoon, I.K.; Paris, R.M.; Excler, J.L.; Kim, J.H.; O’Connell, R.J. The US Military Commitment to Vaccine Development: A Century of Successes and Challenges. Front. Immunol. 2018, 9, 1397. [Google Scholar] [CrossRef]
- Angelakis, E.; Bechah, Y.; Raoult, D. The History of Epidemic Typhus. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [PubMed]
- Bavaro, M.F.; Kelly, D.J.; Dasch, G.A.; Hale, B.R.; Olson, P. History of U.S. military contributions to the study of rickettsial diseases. Mil. Med. 2005, 170 (Suppl. S4), 49–60. [Google Scholar] [CrossRef] [Green Version]
- Duma, R.J.; Sonenshine, D.E.; Bozeman, F.M.; Veazey, J.M., Jr.; Elisberg, B.L.; Chadwick, D.P.; Stocks, N.I.; McGill, T.M.; Miller, G.B., Jr.; MacCormack, J.N. Epidemic typhus in the United States associated with flying squirrels. JAMA 1981, 245, 2318–2323. [Google Scholar] [CrossRef] [PubMed]
- Raoult, D.; Roux, V. Rickettsioses as paradigms of new or emerging infectious diseases. Clin. Microbiol. Rev. 1997, 10, 694–719. [Google Scholar] [CrossRef]
- Parola, P.; Raoult, D. Tropical rickettsioses. Clin. Dermatol. 2006, 24, 191–200. [Google Scholar] [CrossRef]
- Zinsser, R. Rats, Lice and History; Little, Brown & Co.: Boston, MA, USA, 1963. [Google Scholar]
- Weigl, R. Untersuchungen und Experimente an Fleckfieberläuse, Die Technik der Rickettsia-Forschung, Beitr. z. Klin. Infektionskr. 1920, 8, 353–376. [Google Scholar]
- Sadusk, J.F., Jr. The immunization of troops with typhus vaccine and the characteristics of typhus in immunized individuals. Yale J. Biol. Med. 1949, 21, 211–232. [Google Scholar]
- Cox, H.R. Use of Yolk Sac for Developing Chick Embryo as Medium for Growing Rickettsiae of Rocky Mountain Spotted Fever and Typhus Groups. Public Health Rep. 1938, 53, 2241–2247. [Google Scholar] [CrossRef]
- Cox, H.R.; Bell, E.J. Epidemic and Endemic Typhus: Protective Value for Guinea Pigs of Vaccines Prepared from Infected Tissues of the Developing Chick Embryo. Public Health Rep. 1940, 55, 110–115. [Google Scholar] [CrossRef]
- Woodward, T.E. A historical account of the rickettsial diseases with a discussion of the unsolved problems. J. Infect. Dis. 1973, 127, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Allen, B.M. The Effects of Infectious Disease on Napoleon’s Russian Campaign. A Research Report Submitted to the Faculty in Partial Fulfillment of the Graduation Requirements; Air University: Maxwell Air Force Base, AL, USA, 1998. [Google Scholar]
- Tschanz, D.W. Typhus Fever on the Eastern Front in World War I. Insects, Disease and History Website, Entomology Group of Montana State University. 2008. Available online: https://www.montana.edu/historybug/wwi-tef.html (accessed on 11 April 2022).
- Patterson, K.D. Typhus and its control in Russia, 1870–1940. Med. Hist. 1993, 37, 361–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pennington, H. The impact of infectious disease in war time: A look back at WW1. Future Microbiol. 2019, 14, 165–168. [Google Scholar] [CrossRef]
- Raoult, D.; Ndihokubwayo, J.B.; Tissot-Dupont, H.; Roux, V.; Faugere, B.; Abegbinni, R.; Birtles, R.J. Outbreak of epidemic typhus associated with trench fever in Burundi. Lancet 1998, 352, 353–358. [Google Scholar] [CrossRef]
- Tarasevich, I.; Rydkina, E.; Raoult, D. Outbreak of epidemic typhus in Russia. Lancet 1998, 352, 1151. [Google Scholar] [CrossRef]
- Osterloh, A. Vaccine Design and Vaccination Strategies against Rickettsiae. Vaccines 2021, 9, 896. [Google Scholar] [CrossRef]
- Graham, J.H.P. A note on a relapsing febrile illness of unknown origin. Lancet 1915, 186, 703–704. [Google Scholar] [CrossRef] [Green Version]
- Anstead, G.M. The centenary of the discovery of trench fever, an emerging infectious disease of World War 1. Lancet Infect. Dis. 2016, 16, e164–e172. [Google Scholar] [CrossRef]
- Bruce, D. Trench fever. Final report of the War Office Trench Fever Investigation Committee. J. Hyg. 1921, 20, 258–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osler, W. Trench fever: A critical analysis of the report of the American Commission. Lancet 1918, 192, 496–498. [Google Scholar] [CrossRef]
- Töpfer, H. Zur aetiologie de “Febris Wolhynica”. Berl. Klin. Wochen. 1916, 53, 323–324. [Google Scholar]
- Arkwright, J.A.; Bacot, A.W.; Martin Duncan, F. The association of Rickettsial Bodies in lice with trench fever. BMJ 1918, 2, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinson, J.W.; Fuller, H.S. Studies on trench fever. I. Propagation of rickettsia-like from a patient’s blood. Pathol. Microbiol. 1961, 24, 152–166. [Google Scholar]
- Mai, B.H.; Barbieri, R.; Chenal, T.; Castex, D.; Jonvel, R.; Tanasi, D.; Georges-Zimmermann, P.; Dutour, O.; Peressinotto, D.; Demangeot, C.; et al. Five millennia of Bartonella quintana bacteraemia. PLoS ONE 2020, 15, e0239526. [Google Scholar] [CrossRef]
- Foucault, C.; Brouqui, P.; Raoult, D. Bartonella quintana characteristics and clinical management. Emerg. Infect. Dis. 2006, 12, 217–223. [Google Scholar] [CrossRef]
- Crum, N.F.; Aronson, N.E.; Lederman, E.R.; Rusnak, J.M.; Cross, J.H. History of U.S. military contributions to the study of parasitic diseases. Mil. Med. 2005, 170 (Suppl. S4), 17–29. [Google Scholar] [CrossRef] [Green Version]
- Ross, R. Note on the Bodies Recently Described by Leishman and Donovan. Br. Med. J. 1903, 2, 1261–1262. [Google Scholar] [CrossRef] [Green Version]
- Ross, R. Further Notes on Leishman’s Bodies. Br. Med. J. 1903, 2, 1401. [Google Scholar] [CrossRef] [Green Version]
- Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet 2018, 392, 951–970. [Google Scholar] [CrossRef]
- Desjeux, P. Leishmaniasis. Nat. Rev. Microbiol. 2004, 2, 692. [Google Scholar] [CrossRef] [PubMed]
- Berman, J. Current treatment approaches to leishmaniasis. Curr. Opin. Infect. Dis. 2003, 16, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Coutinho De Oliveira, B.; Duthie, M.S.; Alves Pereira, V.R. Vaccines for leishmaniasis and the implications of their development for American tegumentary leishmaniasis. Hum. Vaccin. Immunother. 2020, 16, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Soto, J.; Medina, F.; Dember, N.; Berman, J. Efficacy of permethrin-impregnated uniforms in the prevention of malaria and leishmaniasis in Columbian soldiers. Clin. Infect. Dis. 1995, 21, 599–602. [Google Scholar] [CrossRef]
- Beiter, K.J.; Wentlent, Z.J.; Hamouda, A.R.; Thomas, B.N. Nonconventional opponents: A review of malaria and leishmaniasis among United States Armed Forces. Peer J. 2019, 7, e6313. [Google Scholar] [CrossRef]
- Kitchen, L.W.; Lawrence, K.L.; Coleman, R.E. The role of the United States military in the development of vector control products, including insect repellents, insecticides, and bed nets. J. Vector Ecol. 2009, 34, 50–61. [Google Scholar] [CrossRef]
- Stahlman, S.; Williams, V.F.; Taubman, S.B. Incident diagnoses of leishmaniasis, active and reserve components, U.S. Armed Forces, 2001–2016. MSMR 2017, 24, 2–7. [Google Scholar]
- Harman, D.R.; Hooper, T.I.; Gackstetter, G.D. Aeromedical evacuations from Operation Iraqi Freedom: A descriptive study. Mil. Med. 2005, 170, 521–527. [Google Scholar] [CrossRef] [Green Version]
- Beaumier, C.M.; Gomez-Rubio, A.M.; Hotez, P.J.; Weina, P.J. United States military tropical medicine: Extraordinary legacy, uncertain future. PLoS Negl. Trop. Dis. 2013, 7, e2448. [Google Scholar] [CrossRef]
- Alawieh, A.; Musharrafieh, U.; Jaber, A.; Berry, A.; Ghosn, N.; Bizri, A.R. Revisiting leishmaniasis in the time of war: The Syrian conflict and the Lebanese outbreak. Int. J. Infect. Dis. 2014, 29, 115–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henry, K.; Mayet, A.; Hernandez, M.; Frechard, G.; Blanc, P.A.; Schmitt, M.; André, N.; Loreau, J.M.; Ginouves, M.; Prévot, G.; et al. Outbreak of Cutaneous Leishmaniasis among military personnel in French Guiana, 2020: Clinical, phylogenetic, individual and environmental aspects. PLoS Negl. Trop. Dis. 2021, 15, e0009938. [Google Scholar] [CrossRef] [PubMed]
- Oré, M.; Sáenz, E.; Cabrera, R.; Sanchez, J.F.; De Los Santos, M.B.; Lucas, C.M.; Núñez, J.H.; Edgel, K.A.; Sopan, J.; Fernández, J.; et al. Outbreak of Cutaneous Leishmaniasis in Peruvian Military Personnel Undertaking Training Activities in the Amazon Basin, 2010. Am. J. Trop. Med. Hyg. 2015, 93, 340–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Thiel, P.P.; Zeegelaar, J.E.; van Gool, T.; Faber, W.R.; Kager, P.A. Cutaneous leishmaniasis in three Dutch military cohorts following jungle training in Belize. Travel Med. Infect. Dis. 2011, 9, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Bailey, M.S. Cutaneous leishmaniasis in British troops following jungle training in Belize. Travel Med. Infect. Dis. 2011, 9, 253–254. [Google Scholar] [CrossRef] [PubMed]
- Patino, L.H.; Mendez, C.; Rodriguez, O.; Romero, Y.; Velandia, D.; Alvarado, M.; Pérez, J.; Duque, M.C.; Ramírez, J.D. Spatial distribution, Leishmania species and clinical traits of Cutaneous Leishmaniasis cases in the Colombian army. PLoS Negl. Trop. Dis. 2017, 11, e0005876. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, B.M.; Bojang, K.; Whitty, C.J.; Targett, G.A. Malaria. Lancet 2005, 365, 1487–1498. [Google Scholar] [CrossRef]
- Plewes, K.; Leopold, S.J.; Kingston, H.W.F.; Dondorp, A.M. Malaria: What’s New in the Management of Malaria? Infect. Dis. Clin. N. Am. 2019, 33, 39–60. [Google Scholar] [CrossRef]
- Ockenhouse, C.F.; Magill, A.; Smith, D.; Milhous, W. History of U.S. military contributions to the study of malaria. Mil. Med. 2005, 170 (Suppl. S4), 12–16. [Google Scholar] [CrossRef] [Green Version]
- Ross, R. On some Peculiar Pigmented Cells Found in Two Mosquitos Fed on Malarial Blood. Br. Med. J. 1897, 2, 1786–1788. [Google Scholar] [CrossRef]
- Tan, S.Y.; Ahana, A. Charles Laveran (1845–1922): Nobel laureate pioneer of malaria. Singapore Med. J. 2009, 50, 657–658. [Google Scholar] [PubMed]
- Birkett, A.J. Status of vaccine research and development of vaccines for malaria. Vaccine 2016, 34, 2915–2920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maher, B. Malaria: The end of the beginning. Nature 2008, 451, 1042–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurens, M.B. RTS,S/AS01 vaccine (Mosquirix™): An overview. Hum. Vaccin. Immunother. 2020, 16, 480–489. [Google Scholar] [CrossRef]
- Balakrishnan, V.S. WHO recommends malaria vaccine for children. Lancet Infect. Dis. 2021, 21, 1634. [Google Scholar] [CrossRef]
- Teneza-Mora, N.; Lumsden, J.; Villasante, E. A malaria vaccine for travelers and military personnel: Requirements and top candidates. Vaccine 2015, 33, 7551–7558. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.L.; Idris, A.H.; Berkowitz, N.M.; Happe, M.; Gaudinski, M.R.; Buettner, C.; Strom, L.; Awan, S.F.; Holman, L.A.; Mendoza, F.; et al. Low-Dose Subcutaneous or Intravenous Monoclonal Antibody to Prevent Malaria. N. Engl. J. Med. 2022, 387, 397–407. [Google Scholar] [CrossRef]
- Brabin, B.J. Malaria’s contribution to World War One—The unexpected adversary. Malar. J. 2014, 13, 497. [Google Scholar] [CrossRef] [Green Version]
- Mackie, T.T. Tropical Disease Problems Among Veterans of World War II: Preliminary Report. Trans Am. Clin. Climatol. Assoc. 1947, 59, 108–121. [Google Scholar]
- Beadle, C.; Hoffman, S.L. History of malaria in the United States Naval Forces at war: World War I through the Vietnam conflict. Clin. Infect. Dis. 1993, 16, 320–329. [Google Scholar] [CrossRef]
- Aubry, P. L’expédition française de Madagascar de 1895. Un désastre sanitaire. Pourquoi? Med. Armees 1979, 7, 745e51. [Google Scholar]
- Sergent, E. L’armée d’Orient délivrée du paludisme; Charles-Lavauzelle: Paris, France, 1932; p. 91. [Google Scholar]
- Migliani, R.; Pradines, B.; Michel, R.; Aoun, O.; Dia, A.; Deparis, X.; Rapp, C. Malaria control strategies in French armed forces. Travel Med. Infect. Dis. 2014, 12, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, R.; Fritz, R.F.; Hollister, A.C., Jr. An outbreak of malaria in California, 1952–1953. Am. J. Trop. Med. Hyg. 1954, 3, 779–792. [Google Scholar] [CrossRef] [PubMed]
- Coatney, G.R.; Alving, A.S.; Jones, R., Jr.; Hankey, D.D.; Robinson, D.H.; Garrison, P.L.; Coker, W.G.; Donovan, W.N.; Di Lorenzo, A.; Marx, R.L.; et al. Korean vivax malaria. V. Cure of the infection by primaquine administered during long-term latency. Am. J. Trop. Med. Hyg. 1953, 2, 985–988. [Google Scholar] [CrossRef]
- Schultz, M.G. Imported malaria. Bull. World Health Organ. 1974, 50, 329–336. [Google Scholar]
- Sergiev, V.P.; Baranova, A.M.; Orlov, V.S.; Mihajlov, L.G.; Kouznetsov, R.L.; Neujmin, N.I.; Arsenieva, L.P.; Shahova, M.A.; Glagoleva, L.A.; Osipova, M.M. Importation of malaria into the USSR from Afghanistan, 1981–1989. Bull. World Health Organ. 1993, 71, 385–388. [Google Scholar]
- Leggat, P.A.; Melrose, W. Lymphatic filariasis: Disease outbreaks in military deployments from World War II. Mil. Med. 2005, 170, 585–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melrose, W.D.; Leggat, P.A. Acute Lymphatic Filariasis Infection in United States Armed Forces Personnel Deployed to the Pacific Area of Operations during World War II Provides Important Lessons for Today. Trop. Med. Infect. Dis. 2020, 5, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://www.who.int/news-room/fact-sheets/detail/lymphatic-filariasis (accessed on 24 April 2022).
- Colley, D.G.; Bustinduy, A.L.; Secor, W.E.; King, C.H. Human schistosomiasis. Lancet 2014, 383, 2253–2264. [Google Scholar] [CrossRef]
- McManus, D.P.; Bergquist, R.; Cai, P.; Ranasinghe, S.; Tebeje, B.M.; You, H. Schistosomiasis-from immunopathology to vaccines. Semin. Immunopathol. 2020, 42, 355–371. [Google Scholar] [CrossRef]
- Bruce, D. Preliminary Report on the Tsetse Fly Disease or Nagana in Zululand Durban: Bennett and Davis. 1895. Available online: https://iiif.wellcomecollection.org/pdf/b21364655 (accessed on 10 March 2022).
- Forde, R.M. Some clinical notes on a European patient in whose blood a trypanosome was observed. J. Trop. Med. 1902, 5, 261–263. [Google Scholar]
- Dutton, J.E. Preliminary note upon a trypanosome occurring in the blood of man. Thompson Yates Lab. Rep. 1902, 4, 455–468. [Google Scholar]
- Castellani, A. On the discovery of a species of Trypanosoma in the cerebro-spinal fluid of cases of sleeping sickness. Proc. R. Soc. Lond. 1903, 71, 501–508. [Google Scholar]
- Available online: https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness) (accessed on 26 April 2022).
- Steverding, D. The history of African trypanosomiasis. Parasit Vectors 2008, 1, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steverding, D. The history of Chagas disease. Parasit Vectors 2014, 7, 317. [Google Scholar] [CrossRef]
- Shirley, D.T.; Watanabe, K.; Moonah, S. Significance of amebiasis: 10 reasons why neglecting amebiasis might come back to bite us in the gut. PLoS Negl. Trop. Dis. 2019, 13, e0007744. [Google Scholar] [CrossRef]
- Kasper, M.R.; Lescano, A.G.; Lucas, C.; Gilles, D.; Biese, B.J.; Stolovitz, G.; Reaves, E.J. Diarrhea outbreak during U.S. military training in El Salvador. PLoS ONE 2012, 7, e40404. [Google Scholar] [CrossRef] [Green Version]
- Craig, C.F. Amebiasis and amebic dysentery. Proc. Inst. Med. Chic. 1934, 10, 21–38. [Google Scholar] [CrossRef] [Green Version]
- Craig, C.F. The complications of amoebic and specific dysentery, as observed at autopsy. Am. J. Med. Sci. 1904, 128, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Craig, C.F. Amebiasis and Amebic Dysentery; Charles C Thomas: Springfield, IL, USA, 1934; pp. 267–304. [Google Scholar]
- Vedder, E.B. Origin and present status of the emetine treatment of amebic dysentery. JAMA 1914, 62, 501–506. [Google Scholar] [CrossRef]
- Brooker, S.; Bethony, J.; Hotez, P.J. Human hookworm infection in the 21st century. Adv. Parasitol. 2004, 58, 197–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashford, B.K.; Igaravidez, P.G. Summary of 10 years’ campaign against hookworm disease in Puerto Rico. JAMA 1910, 54, 1757–1761. [Google Scholar] [CrossRef]
- Takafuji, E.T.; Kelley, P.W.; Weiner, H.; Milhous, N.; Miller, R. An Outbreak of Hookworm Infection in the 82nd Airborne Division following Operation Urgent Fury in Grenada, November 1983 to January 1984; Epidemiology Consultant Service (EPICON): Washington, DC, USA, 1984. [Google Scholar]
- Lee, V.J.; Ong, A.; Lee, N.G.; Lee, W.T.; Fong, K.L.; Lim, P.L. Hookworm infections in Singaporean soldiers after jungle training in Brunei Darussalam. Trans. R. Soc. Trop. Med. Hyg. 2007, 101, 1214–1218. [Google Scholar] [CrossRef] [PubMed]
- Barré-Sinoussi, F.; Chermann, J.C.; Rey, F.; Nugeyre, M.T.; Chamaret, S.; Gruest, J.; Dauguet, C.; Axler-Blin, C.; Vézinet-Brun, F.; Rouzioux, C.; et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 1983, 220, 868–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CDC. Pneumocystis pneumonia—Los Angeles. MMWR 1981, 30, 250–252. [Google Scholar]
- Gallo, R.C.; Salahuddin, S.Z.; Popovic, M.; Shearer, G.M.; Kaplan, M.; Haynes, B.F.; Palker, T.J.; Redfield, R.; Oleske, J.; Safai, B.; et al. Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science 1984, 224, 500–503. [Google Scholar] [CrossRef]
- Ledford, H. Obituary. Luc Montagnier (1932–2022). Virologist who won a Nobel prize for discovering HIV. Nature 2022, 603, 223. [Google Scholar] [CrossRef]
- Sheppard, H.W.; Ascher, M.S. The natural history and pathogenesis of HIV infection. Annu. Rev. Microbiol. 1992, 46, 533–564. [Google Scholar] [CrossRef]
- Gulick, R.M.; Mellors, J.W.; Havlir, D.; Eron, J.J.; Gonzalez, C.; McMahon, D.; Richman, D.D.; Valentine, F.T.; Jonas, L.; Meibohm, A.; et al. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N. Engl. J. Med. 1997, 337, 734–739. [Google Scholar] [CrossRef] [Green Version]
- Govender, R.D.; Hashim, M.J.; Khan, M.A.; Mustafa, H.; Khan, G. Global Epidemiology of HIV/AIDS: A Resurgence in North America and Europe. J. Epidemiol. Glob. Health 2021, 11, 296–301. [Google Scholar] [CrossRef]
- Agan, B.K.; Ganesan, A.; Byrne, M.; Deiss, R.; Schofield, C.; Maves, R.C.; Okulicz, J.; Chu, X.; O’Bryan, T.; Lalani, T.; et al. The US Military HIV Natural History Study: Informing Military HIV Care and Policy for Over 30 Years. Mil. Med. 2019, 184 (Suppl. S2), 6–17. [Google Scholar] [CrossRef] [PubMed]
- Redfield, R.R.; Wright, D.C.; James, W.D.; Jones, T.S.; Brown, C.; Burke, D.S. Disseminated vaccinia in a military recruit with human immunodeficiency virus (HIV) disease. N. Engl. J. Med. 1987, 316, 673–676. [Google Scholar] [CrossRef] [PubMed]
- D’Amelio, R.; Tuerlings, E.; Perito, O.; Biselli, R.; Natalicchio, S.; Kingma, S. A global review of legislation on HIV/AIDS: The issue of HIV testing. J. Acquir. Immune Defic. Syndr. (1988) 2001, 28, 173–179. [Google Scholar] [CrossRef]
- Burke, D.S.; Brundage, J.F.; Herbold, J.R.; Berner, W.; Gardner, L.I.; Gunzenhauser, J.D.; Voskovitch, J.; Redfield, R.R. Human immunodeficiency virus infections among civilian applicants for United States military service, October 1985 to March 1986. Demographic factors associated with seropositivity. N. Engl. J. Med. 1987, 317, 131–136. [Google Scholar] [CrossRef]
- McNeil, J.G.; Brundage, J.F.; Wann, Z.F.; Burke, D.S.; Miller, R.N. Direct measurement of human immunodeficiency virus seroconversions in a serially tested population of young adults in the United States Army, October 1985 to October 1987. Walter Reed Retrovirus Research Group. N. Engl. J. Med. 1989, 320, 1581–1585. [Google Scholar] [CrossRef] [PubMed]
- Birx, D.L.; Redfield, R.R.; Tosato, G. Defective regulation of Epstein-Barr virus infection in patients with acquired immunodeficiency syndrome (AIDS) or AIDS-related disorders. N. Engl. J. Med. 1986, 314, 874–879. [Google Scholar] [CrossRef]
- Birx, D.L.; Rhoads, J.L.; Wright, J.C.; Burke, D.S.; Redfield, R.R. Immunologic parameters in early-stage HIV-seropositive subjects associated with vaccine responsiveness. J. Acquir. Immune Defic. Syndr. (1988) 1991, 4, 188–196. [Google Scholar]
- Birx, D.L.; Redfield, R.R.; Tencer, K.; Fowler, A.; Burke, D.S.; Tosato, G. Induction of interleukin-6 during human immunodeficiency virus infection. Blood 1990, 76, 2303–2310. [Google Scholar] [CrossRef]
- Redfield, R.R.; Wright, D.C.; Tramont, E.C. The Walter Reed staging classification for HTLV-III/LAV infection. N. Engl. J. Med. 1986, 314, 131–132. [Google Scholar] [CrossRef]
- Brundage, J.F.; McNeil, J.G.; Miller, R.N.; Gardner, L.I., Jr.; Harrison, S.M.; Hawkes, C.; Craig, D.B.; Redfield, R.; Burke, D.S. The current distribution of CD4+ T-lymphocyte counts among adults in the United States with human immunodeficiency virus infections: Estimates based on the experience of the U.S. Army. U.S. Army Retrovirus Research Group. J. Acquir. Immune Defic. Syndr. (1988) 1990, 3, 92–94. [Google Scholar]
- Rerks-Ngarm, S.; Pitisuttithum, P.; Nitayaphan, S.; Kaewkungwal, J.; Chiu, J.; Paris, R.; Premsri, N.; Namwat, C.; de Souza, M.; Adams, E.; et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 2009, 361, 2209–2220. [Google Scholar] [CrossRef]
- Alving, C.R. Walter Reed Army Institute of Research (WRAIR): Fifty Years of Achievements That Impact Science and Society. Mil. Med. 2021, 186, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Choo, Q.L.; Kuo, G.; Weiner, A.J.; Overby, L.R.; Bradley, D.W.; Houghton, M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 1989, 244, 359–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, G.; Choo, Q.L.; Alter, H.J.; Gitnick, G.L.; Redeker, A.G.; Purcell, R.H.; Miyamura, T.; Dienstag, J.L.; Alter, M.J.; Stevens, C.E.; et al. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science 1989, 244, 362–364. [Google Scholar] [CrossRef]
- Cecil, B. Why 88% of US military veterans with HCV are not treated. J. Hepatol. 2012, 57, 924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyams, K.C.; Riddle, J.; Rubertone, M.; Trump, D.; Alter, M.J.; Cruess, D.F.; Han, X.; Nainam, O.V.; Seeff, L.B.; Mazzuchi, J.F.; et al. Prevalence and incidence of hepatitis C virus infection in the US military: A seroepidemiologic survey of 21,000 troops. Am. J. Epidemiol. 2001, 153, 764–770. [Google Scholar] [CrossRef] [Green Version]
- D’Amelio, R.; Mele, A.; Mariano, A.; Romanò, L.; Biselli, R.; Lista, F.; Zanetti, A.; Stroffolini, T. Stable low levels of hepatitis C virus infection among Italian young males over the past decade. Dig. Liver Dis. 2006, 38, 64–65. [Google Scholar] [CrossRef]
- Vučetić, D.; Kecman, G.; Ilić, V.; Balint, B. Blood donors’ positivity for transfusion-transmissible infections: The Serbian Military Medical Academy experience. Blood Transfus. 2015, 13, 569–575. [Google Scholar] [CrossRef]
- Uwingabiye, J.; Zahid, H.; Unyendje, L.; Hadef, R. Séroprévalence des marqueurs viraux sur les dons du sang au Centre de Transfusion Sanguine, Hôpital Militaire d’Instruction Mohammed V de Rabat [Seroprevalence of viral markers among blood donors at the Blood Donor Center of Mohammed V Military Teaching Hospital of Rabat, Morocco]. Pan Afr. Med. J. 2016, 25, 185. [Google Scholar] [CrossRef]
- Singh, M.; Kotwal, A.; Gupta, R.M.; Adhya, S.; Chatterjee, K.; Jayaram, J. Sero-Epidemiological and Behavioural Survey of HIV, HBV and HCV amongst Indian Armed Forces Trainees. Med. J. Armed Forces India 2010, 66, 50–54. [Google Scholar] [CrossRef] [Green Version]
- Villar, L.M.; do Ó, K.M.; Scalioni, L.P.; Cruz, H.M.; Portilho, M.M.; Mendonça, A.C.; Miguel, J.C.; Figueiredo, A.S.; Almeida, A.J.; Lampe, E. Prevalence of hepatitis B and C virus infections among military personnel. Braz. J. Infect. Dis. 2015, 19, 285–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tognon, F.; Sevalie, S.; Gassimu, J.; Sesay, J.; Hann, K.; Sheku, M.; Bearse, E.; Di Gennaro, F.; Marotta, C.; Pellizzer, G.; et al. Seroprevalence of hepatitis B and hepatitis C among blood donors in Sierra Leone: A multi-year retrospective study. Int. J. Infect. Dis. 2020, 99, 102–107. [Google Scholar] [CrossRef]
- Umumararungu, E.; Ntaganda, F.; Kagira, J.; Maina, N. Prevalence of Hepatitis C Virus Infection and Its Risk Factors among Patients Attending Rwanda Military Hospital, Rwanda. Biomed. Res. Int. 2017, 2017, 5841272. [Google Scholar] [CrossRef] [PubMed]
- Polaris Observatory HCV Collaborators. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: A modelling study. Lancet Gastroenterol. Hepatol. 2017, 2, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Frank, C.; Mohamed, M.K.; Strickland, G.T.; Lavanchy, D.; Arthur, R.R.; Magder, L.S.; El Khoby, T.; Abdel-Wahab, Y.; Aly Ohn, E.S.; Anwar, W.; et al. The role of parenteral antischistosomal therapy in the spread of hepatitis C virus in Egypt. Lancet 2000, 355, 887–891. [Google Scholar] [CrossRef]
- Waked, I.; Esmat, G.; Elsharkawy, A.; El-Serafy, M.; Abdel-Razek, W.; Ghalab, R.; Elshishiney, G.; Salah, A.; Abdel Megid, S.; Kabil, K.; et al. Screening and Treatment Program to Eliminate Hepatitis C in Egypt. N. Engl. J. Med. 2020, 382, 1166–1174. [Google Scholar] [CrossRef]
- Brett-Major, D.M.; Frick, K.D.; Malia, J.A.; Hakre, S.; Okulicz, J.F.; Beckett, C.G.; Jagodinski, L.L.; Forgione, M.A.; Gould, P.L.; Harrison, S.A.; et al. Costs and consequences: Hepatitis C seroprevalence in the military and its impact on potential screening strategies. Hepatology 2016, 63, 398–407. [Google Scholar] [CrossRef] [Green Version]
- Khuroo, M.S. Study of an epidemic of non-A, non-B hepatitis. Possibility of another human hepatitis virus distinct from post-transfusion non-A, non-B type. Am. J. Med. 1980, 68, 818–824. [Google Scholar] [CrossRef]
- Tam, A.W.; Smith, M.M.; Guerra, M.E.; Huang, C.C.; Bradley, D.W.; Fry, K.E.; Reyes, G.R. Hepatitis E virus (HEV): Molecular cloning and sequencing of the full-length viral genome. Virology 1991, 185, 120–131. [Google Scholar] [CrossRef]
- Khuroo, M.S. Discovery of hepatitis E: The epidemic non-A, non-B hepatitis 30 years down the memory lane. Virus Res. 2011, 161, 3–14. [Google Scholar] [CrossRef]
- Li, Y.; Huang, X.; Zhang, Z.; Li, S.; Zhang, J.; Xia, N.; Zhao, Q. Prophylactic Hepatitis E Vaccines: Antigenic Analysis and Serological Evaluation. Viruses 2020, 12, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrestha, M.P.; Scott, R.M.; Joshi, D.M.; Mammen, M.P., Jr.; Thapa, G.B.; Thapa, N.; Myint, K.S.; Fourneau, M.; Kuschner, R.A.; Shrestha, S.K.; et al. Safety and efficacy of a recombinant hepatitis E vaccine. N. Engl. J. Med. 2007, 356, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Innis, B.L.; Lynch, J.A. Immunization against Hepatitis E. Cold Spring Harb. Perspect. Med. 2018, 8, a032573. [Google Scholar] [CrossRef] [PubMed]
- Balayan, M.S.; Andjaparidze, A.G.; Savinskaya, S.S.; Ketiladze, E.S.; Braginsky, D.M.; Savinov, A.P.; Poleschuk, V.F. Evidence for a virus in non-A, non-B hepatitis transmitted via the fecal-oral route. Intervirology 1983, 20, 23–31. [Google Scholar] [CrossRef]
- Ticehurst, J.; Popkin, T.J.; Bryan, J.P.; Innis, B.L.; Duncan, J.F.; Ahmed, A.; Iqbal, M.; Malik, I.; Kapikian, A.Z.; Legters, L.J.; et al. Association of hepatitis E virus with an outbreak of hepatitis in Pakistan: Serologic responses and pattern of virus excretion. J. Med. Virol. 1992, 36, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Burans, J.P.; Sharp, T.; Wallace, M.; Longer, C.; Thornton, S.; Batchelor, R.; Clemens, V.; Hyams, K.C. Threat of hepatitis E virus infection in Somalia during Operation Restore Hope. Clin. Infect. Dis. 1994, 18, 100–102. [Google Scholar] [CrossRef] [Green Version]
- Clayson, E.T.; Vaughn, D.W.; Innis, B.L.; Shrestha, M.P.; Pandey, R.; Malla, D.B. Association of hepatitis E virus with an outbreak of hepatitis at a military training camp in Nepal. J. Med. Virol. 1998, 54, 178–182. [Google Scholar] [CrossRef]
- Drabick, J.J.; Gambel, J.M.; Gouvea, V.S.; Caudill, J.D.; Sun, W.; Hoke, C.H., Jr.; Innis, B.L. A cluster of acute hepatitis E infection in United Nations Bangladeshi peacekeepers in Haiti. Am. J. Trop. Med. Hyg. 1997, 57, 449–454. [Google Scholar] [CrossRef]
- Bryan, J.P.; Iqbal, M.; Tsarev, S.; Malik, I.A.; Duncan, J.F.; Ahmed, A.; Khan, A.; Khan, A.; Rafiqui, A.R.; Purcell, R.H.; et al. Epidemic of hepatitis E in a military unit in Abbotrabad, Pakistan. Am. J. Trop. Med. Hyg. 2002, 67, 662–668. [Google Scholar] [CrossRef] [Green Version]
- Eick, A.; Ticehurst, J.; Tobler, S.; Nevin, R.; Lindler, L.; Hu, Z.; MacIntosh, V.; Jarman, R.; Gibbons, R.; Myint, K.; et al. Hepatitis E seroprevalence and seroconversion among US military service members deployed to Afghanistan. J. Infect. Dis. 2010, 202, 1302–1308. [Google Scholar] [CrossRef] [Green Version]
- Pialoux, G.; Gaüzère, B.A.; Jauréguiberry, S.; Strobel, M. Chikungunya, an epidemic arbovirosis. Lancet Infect. Dis. 2007, 7, 319–327. [Google Scholar] [CrossRef]
- Borgherini, G.; Poubeau, P.; Jossaume, A.; Gouix, A.; Cotte, L.; Michault, A.; Arvin-Berod, C.; Paganin, F. Persistent arthralgia associated with chikungunya virus: A study of 88 adult patients on reunion island. Clin. Infect. Dis. 2008, 47, 469–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezza, G.; Nicoletti, L.; Angelini, R.; Romi, R.; Finarelli, A.C.; Panning, M.; Cordioli, P.; Fortuna, C.; Boros, S.; Magurano, F.; et al. CHIKV study group. Infection with chikungunya virus in Italy: An outbreak in a temperate region. Lancet 2007, 370, 1840–1846. [Google Scholar] [CrossRef]
- Hoke, C.H., Jr.; Pace-Templeton, J.; Pittman, P.; Malinoski, F.J.; Gibbs, P.; Ulderich, T.; Mathers, M.; Fogtman, B.; Glass, P.; Vaughn, D.W. US Military contributions to the global response to pandemic chikungunya. Vaccine 2012, 30, 6713–6720. [Google Scholar] [CrossRef] [PubMed]
- Frickmann, H.; Herchenröder, O. Chikungunya Virus Infections in Military Deployments in Tropical Settings-A Narrative Minireview. Viruses 2019, 11, 550. [Google Scholar] [CrossRef] [Green Version]
- Queyriaux, B.; Simon, F.; Grandadam, M.; Michel, R.; Tolou, H.; Boutin, J.P. Clinical burden of chikungunya virus infection. Lancet Infect. Dis. 2008, 8, 2–3. [Google Scholar] [CrossRef]
- Plourde, A.R.; Bloch, E.M. A Literature Review of Zika Virus. Emerg. Infect. Dis. 2016, 22, 1185–1192. [Google Scholar] [CrossRef] [Green Version]
- Portillo, A.; Palomar, A.M.; Santibáñez, P.; Oteo, J.A. Epidemiological Aspects of Crimean-Congo Hemorrhagic Fever in Western Europe: What about the Future? Microorganisms 2021, 9, 649. [Google Scholar] [CrossRef]
- Bodur, H.; Akinci, E.; Ascioglu, S.; Öngürü, P.; Uyar, Y. Subclinical infections with Crimean-Congo hemorrhagic fever virus, Turkey. Emerg. Infect. Dis. 2012, 18, 640–642. [Google Scholar] [CrossRef]
- Sidwell, R.W.; Smee, D.F. Viruses of the Bunya- and Togaviridae families: Potential as bioterrorism agents and means of control. Antivir. Res. 2003, 57, 101–111. [Google Scholar] [CrossRef]
- Shahhosseini, N.; Wong, G.; Babuadze, G.; Camp, J.V.; Ergonul, O.; Kobinger, G.P.; Chinikar, S.; Nowotny, N. Crimean-Congo Hemorrhagic Fever Virus in Asia, Africa and Europe. Microorganisms 2021, 9, 1907. [Google Scholar] [CrossRef] [PubMed]
- Kubar, A.; Haciomeroglu, M.; Ozkul, A.; Bagriacik, U.; Akinci, E.; Sener, K.; Bodur, H. Prompt administration of Crimean-Congo hemorrhagic fever (CCHF) virus hyperimmunoglobulin in patients diagnosed with CCHF and viral load monitorization by reverse transcriptase-PCR. Jpn. J. Infect. Dis. 2011, 64, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Avšič-Županc, T.; Saksida, A.; Korva, M. Hantavirus infections. Clin. Microbiol. Infect. 2019, 21S, e6–e16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clement, J.; Heyman, P.; McKenna, P.; Colson, P.; Avšič-Županc, T. The hantaviruses of Europe: From the bedside to the bench. Emerg. Infect. Dis. 1997, 3, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Markotić, A.; LeDuc, J.W.; Hlaca, D.; Rabatić, S.; Sarcević, A.; Dasić, G.; Gagro, A.; Kuzman, I.; Barac, V.; Avšič-Županc, T.; et al. Hantaviruses are likely threat to NATO forces in Bosnia and Herzegovina and Croatia. Nat. Med. 1996, 2, 269–270. [Google Scholar] [CrossRef]
- Bui-Mansfield, L.T.; Cressler, D.K. Imaging of hemorrhagic fever with renal syndrome: A potential bioterrorism agent of military significance. Mil. Med. 2011, 176, 1327–1334. [Google Scholar] [CrossRef] [Green Version]
- Clement, J.; Underwood, P.; Ward, D.; Pilaski, J.; LeDuc, J. Hantavirus outbreak during military manoeuvres in Germany. Lancet 1996, 347, 336. [Google Scholar] [CrossRef]
- Clement, J.; Maes, P.; Saegeman, V.; Lagrou, K.; Van Ranst, M.; Lundkvist, Å. Comment on “A Cluster of Three Cases of Hantavirus Pulmonary Syndrome among Canadian Military Personnel”. Can. J. Infect. Dis. Med. Microbiol. 2016, 2016, 7458409. [Google Scholar] [CrossRef]
- Yi, Y.; Park, H.; Jung, J. Effectiveness of inactivated hantavirus vaccine on the disease severity of hemorrhagic fever with renal syndrome. Kidney Res. Clin. Pract. 2018, 37, 366–372. [Google Scholar] [CrossRef] [Green Version]
- Hooper, J.; Paolino, K.M.; Mills, K.; Kwilas, S.; Josleyn, M.; Cohen, M.; Somerville, B.; Wisniewski, M.; Norris, S.; Hill, B.; et al. A Phase 2a Randomized, Double-Blind, Dose-Optimizing Study to Evaluate the Immunogenicity and Safety of a Bivalent DNA Vaccine for Hemorrhagic Fever with Renal Syndrome Delivered by Intramuscular Electroporation. Vaccines 2020, 8, 377. [Google Scholar] [CrossRef]
- Brandt, A.L.; Martyak, N.; Westhoff, J.; Kang, C. West Nile virus. Mil. Med. 2004, 169, 261–264. [Google Scholar] [CrossRef] [Green Version]
- Mushtaq, A.; El-Azizi, M.; Khardori, N. Category C potential bioterrorism agents and emerging pathogens. Infect. Dis. Clin. N. Am. 2006, 20, 423–441. [Google Scholar] [CrossRef] [PubMed]
- Javelle, E.; Lesueur, A.; Pommier de Santi, V.; de Laval, F.; Lefebvre, T.; Holweck, G.; Durand, G.A.; Leparc-Goffart, I.; Texier, G.; Simon, F. The challenging management of Rift Valley Fever in humans: Literature review of the clinical disease and algorithm proposal. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 4. [Google Scholar] [CrossRef] [PubMed]
- Durand, J.P.; Bouloy, M.; Richecoeur, L.; Peyrefitte, C.N.; Tolou, H. Rift Valley fever virus infection among French troops in Chad. Emerg. Infect. Dis. 2003, 9, 751–752. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, J.L.; Cooper, M.J.; Myers, C.A.; Cummings, J.F.; Vest, K.G.; Russell, K.L.; Sanchez, J.L.; Hiser, M.J.; Gaydos, C.A. Respiratory Infections in the U.S. Military: Recent Experience and Control. Clin. Microbiol. Rev. 2015, 28, 743–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Malanoski, A.P.; Lin, B.; Long, N.C.; Leski, T.A.; Blaney, K.M.; Hansen, C.J.; Brown, J.; Broderick, M.; Stenger, D.A.; et al. Broad spectrum respiratory pathogen analysis of throat swabs from military recruits reveals interference between rhinoviruses and adenoviruses. Microb. Ecol. 2010, 59, 623–634. [Google Scholar] [CrossRef]
- O’Shea, M.K.; Ryan, M.A.; Hawksworth, A.W.; Alsip, B.J.; Gray, G.C. Symptomatic respiratory syncytial virus infection in previously healthy young adults living in a crowded military environment. Clin. Infect. Dis. 2005, 41, 311–317. [Google Scholar] [CrossRef]
- O’Shea, M.K.; Pipkin, C.; Cane, P.A.; Gray, G.C. Respiratory syncytial virus: An important cause of acute respiratory illness among young adults undergoing military training. Influenza Other Respir. Viruses 2007, 1, 193–197. [Google Scholar] [CrossRef]
- Hers, J.F.; Masurel, N.; Gans, J.C. Acute respiratory disease associated with pulmonary involvement in military servicemen in The Netherlands. A serologic and bacteriologic survey, January 1967 to January 1968. Am. Rev. Respir. Dis. 1969, 100, 499–506. [Google Scholar] [CrossRef]
- Hyams, K.C.; Bourgeois, A.L.; Merrell, B.R.; Rozmajzl, P.; Escamilla, J.; Thornton, S.A.; Wasserman, G.M.; Burke, A.; Echeverria, P.; Green, K.Y.; et al. Diarrheal disease during Operation Desert Shield. N. Engl. J. Med. 1991, 325, 1423–1428. [Google Scholar] [CrossRef]
- Sanders, J.W.; Putnam, S.D.; Riddle, M.S.; Tribble, D.R. Military importance of diarrhea: Lessons from the Middle East. Curr. Opin. Gastroenterol. 2005, 21, 9–14. [Google Scholar] [PubMed]
- Jansen, H.J.; Breeveld, F.J.; Stijnis, C.; Grobusch, M.P. Biological warfare, bioterrorism, and biocrime. Clin. Microbiol. Infect. 2014, 20, 488–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biological and chemical terrorism: Strategic plan for preparedness and response. Recommendations of the CDC Strategic Planning Workgroup. MMWR Recomm. Rep. 2000, 49, 1–14.
- Kimmel, S.R.; Mahoney, M.C.; Zimmerman, R.K. Vaccines and bioterrorism: Smallpox and anthrax. J. Fam. Pract. 2003, 52 (Suppl. S1), S56–S61. [Google Scholar]
- Riedel, S. Biological warfare and bioterrorism: A historical review. Proceedings 2004, 17, 400–406. [Google Scholar] [CrossRef]
- Black, S. UNSCOM and the Iraqi Biological Weapons Program: Implications for Arms Control. Politics Life Sci. 1999, 18, 62–69. [Google Scholar] [CrossRef]
- Schmaljohn, C.S.; Smith, L.A.; Friedlander, A.M. Military vaccines in today’s environment. Hum. Vaccin. Immunother. 2012, 8, 1126–1128. [Google Scholar] [CrossRef] [Green Version]
- Blanchard, J.C.; Haywood, Y.; Stein, B.D.; Tanielian, T.L.; Stoto, M.; Lurie, N. In their own words: Lessons learned from those exposed to anthrax. Am. J. Public Health. 2005, 95, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Jernigan, D.B.; Raghunathan, P.L.; Bell, B.P.; Brechner, R.; Bresnitz, E.A.; Butler, J.C.; Cetron, M.; Cohen, M.; Doyle, T.; Fischer, M.; et al. Investigation of bioterrorism-related anthrax, United States, 2001: Epidemiologic findings. Emerg. Infect. Dis. 2002, 8, 1019–1028. [Google Scholar] [CrossRef]
- D’Amelio, E.; Gentile, B.; Lista, F.; D’Amelio, R. Historical evolution of human anthrax from occupational disease to potentially global threat as bioweapon. Environ. Int. 2015, 85, 133–146. [Google Scholar] [CrossRef]
- Wheelis, M. Biological sabotage in World War I. In Biological and Toxin Weapons: Research, Development, and Use from the Middle Ages to 1945. SIPRI Chemical and Biological Warfare Studies, No. 18; Geissler, E., van Courtland Moon, J., Eds.; Oxford University Press: Oxford, UK, 1999; pp. 35–62. [Google Scholar]
- Guillemin, J. Scientists and the history of biological weapons. A brief historical overview of the development of biological weapons in the twentieth century. EMBO Rep. 2006, 7, S45–S49. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.H. Factories of Death: Japanese Biological Warfare, 1932–1945, and the American Cover-Up; Routledge: London, UK, 1994. [Google Scholar]
- Willis, E.A. Landscape with dead sheep: What they did to Gruinard Island. Med. Confl. Surviv. 2002, 18, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Manchee, R.J.; Broster, M.G.; Stagg, A.J.; Hibbs, S.E. Formaldehyde Solution Effectively Inactivates Spores of Bacillus anthracis on the Scottish Island of Gruinard. Appl. Environ. Microbiol. 1994, 60, 4167–4171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willis, E.A. Contamination and compensation: Gruinard as a ‘menace to the mainland’. Med. Confl. Surviv. 2004, 20, 334–343. [Google Scholar] [CrossRef]
- Beierlein, J.M.; Anderson, A.C. New developments in vaccines, inhibitors of anthrax toxins, and antibiotic therapeutics for Bacillus anthracis. Curr. Med. Chem. 2011, 18, 5083–5094. [Google Scholar] [CrossRef] [PubMed]
- Roffey, R.; Tegnell, A.; Elgh, F. Biological warfare in a historical perspective. Clin. Microbiol. Infect. 2002, 8, 450–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leitenberg, M. Biological weapons in the twentieth century: A review and analysis. Crit. Rev. Microbiol. 2001, 27, 267–320. [Google Scholar] [CrossRef]
- Alibek, K.; Handelman, S. Biohazard; Random House: New York, NY, USA, 1999. [Google Scholar]
- Martin, J.W.; Christopher, G.W.; Eitzen, E.M. History of biological weapons: From poisoned darts to intentional epidemics. In Medical Aspects of Biological Warfare (Series: Textbooks of Military Medicine); Dembek, F.Z., Ed.; The Borden Institute: Washington, DC, USA, 2007; p. 11. [Google Scholar]
- Hendricks, K.A.; Wright, M.E.; Shadomy, S.V.; Bradley, J.S.; Morrow, M.G.; Pavia, A.T.; Rubinstein, E.; Holty, J.E.; Messonnier, N.E.; Smith, T.L.; et al. Centers for disease control and prevention expert panel meetings on prevention and treatment of anthrax in adults. Emerg. Infect. Dis. 2014, 20, e130687. [Google Scholar] [CrossRef]
- Splino, M.; Patocka, J.; Prymula, R.; Chlibek, R. Anthrax vaccines. Ann. Saudi Med. 2005, 25, 143–149. [