From SGAP-Model to SGAP-Score: A Simplified Predictive Tool for Post-Surgical Recurrence of Pheochromocytoma
Abstract
1. Introduction
2. Materials and Methods
2.1. Design
2.2. Study Population and Data Collection
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population and Brief Description of the SGAP-Model
3.2. Development of the SGAP-Score
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lenders, J.W.M.; Duh, Q.Y.; Eisenhofer, G.; Gimenez-Roqueplo, A.P.; Grebe, S.K.G.; Murad, M.H.; Naruse, M.; Pacak, K.; Young, W.F. Pheochromocytoma and paraganglioma: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2014, 99, 1915–1942. [Google Scholar] [CrossRef] [PubMed]
- Plouin, P.F.; Amar, L.; Dekkers, O.M.; Fassnach, M.; Gimenez-Roqueplo, A.P.; Lenders, J.W.M.; Lussey-Lepoutre, C.; Steichen, O. European Society of Endocrinology Clinical Practice Guideline for long-term follow-up of patients operated on for a phaeochromocytoma or a paraganglioma. Eur. J. Endocrinol. 2016, 174, G1–G10. [Google Scholar] [CrossRef] [PubMed]
- Amar, L.; Lussey-Lepoutre, C.; Lenders, J.W.M.; Djadi-Prat, J.; Plouin, P.F.; Steichen, O. Recurrence or new tumors after complete resection of pheochromocytomas and paragangliomas: A systematic review and meta-analysis. Eur. J. Endocrinol. 2016, 175, R135–R145. [Google Scholar] [CrossRef] [PubMed]
- Hescot, S.; Curras-Freixes, M.; Deutschbein, T.; Van Berkel, A.; Vezzosi, D.; Amar, L.; De La Fouchardiere, C.; Valdes, N.; Riccardi, F.; Cao, C.D.; et al. Prognosis of malignant pheochromocytoma and paraganglioma (MAPP-Prono study): A European network for the study of adrenal tumors retrospective study. J. Clin. Endocrinol. Metab. 2019, 104, 2367–2374. [Google Scholar] [CrossRef]
- Khorram-Manesh, A.; Ahlman, H.; Nilsson, O.; Friberg, P.; Odén, A.; Stenström, G.; Hansson, G.; Stenquist, O.; Wängberg, B.; Tisell, L.E.; et al. Long-term outcome of a large series of patients surgically treated for pheochromocytoma. J. Intern. Med. 2005, 258, 55–66. [Google Scholar] [CrossRef]
- Björklund, P.; Pacak, K.; Crona, J. Precision medicine in pheochromocytoma and paraganglioma: Current and future concepts. J. Intern. Med. 2016, 280, 559–573. [Google Scholar] [CrossRef]
- Parasiliti-Caprino, M.; Lucatello, B.; Lopez, C.; Burrello, J.; Maletta, F.; Mistrangelo, M.; Migliore, E.; Tassone, F.; La Grotta, A.; Pia, A.; et al. Predictors of recurrence of pheochromocytoma and paraganglioma: A multicenter study in Piedmont, Italy. Hypertens. Res. 2020, 43, 500–510. [Google Scholar] [CrossRef]
- Tanabe, A.; Naruse, M. Recent advances in the management of pheochromocytoma and paraganglioma. Hypertens. Res. 2020, 43, 1141–1151. [Google Scholar] [CrossRef]
- Cho, Y.Y.; Kwak, M.K.; Lee, S.E.; Ahn, S.H.; Kim, H.; Suh, S.; Kim, B.J.; Song, K.H.; Koh, J.M.; Kim, J.H.; et al. A clinical prediction model to estimate the metastatic potential of pheochromocytoma/paraganglioma: ASES score. Surgery 2018, 164, 511–517. [Google Scholar] [CrossRef]
- Kim, K.Y.; Kim, J.H.; Hong, A.R.; Seong, M.W.; Lee, K.E.; Kim, S.J.; Kim, S.W.; Shin, C.S.; Kim, S.Y. Disentangling of malignancy from benign pheochromocytomas/paragangliomas. PLoS ONE 2016, 11, e0168413. [Google Scholar] [CrossRef]
- Zelinka, T.; Musil, Z.; Dušková, J.; Burton, D.; Merino, M.J.; Milosevic, D.; Widimský, J.; Pacak, K. Metastatic pheochromocytoma: Does the size and age matter? Eur. J. Clin. Investig. 2011, 41, 1121–1128. [Google Scholar] [CrossRef] [PubMed]
- Amar, L.; Servais, A.; Gimenez-Roqueplo, A.P.; Zinzindohoue, F.; Chatellier, G.; Plouin, P.F. Year of diagnosis, features at presentation, and risk of recurrence in patients with pheochromocytoma or secreting paraganglioma. J. Clin. Endocrinol. Metab. 2005, 90, 2110–2116. [Google Scholar] [CrossRef] [PubMed]
- Khadilkar, K.; Sarathi, V.; Kasaliwal, R.; Pandit, R.; Goroshi, M.; Malhotra, G.; Dalvi, A.; Bakshi, G.; Bhansali, A.; Rajput, R.; et al. Predictors of malignancy in patients with pheochromocytomas/ paragangliomas: Asian Indian experience. Endocr. Connect. 2016, 5, 89–97. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Park, J.; Song, C.; Park, M.; Yoo, S.; Park, S.J.; Hong, S.; Hong, B.; Kim, C.S.; Ahn, H. Predictive characteristics of malignant pheochromocytoma. Korean J. Urol. 2011, 52, 241–246. [Google Scholar] [CrossRef]
- Ayala-Ramirez, M.; Feng, L.; Johnson, M.M.; Ejaz, S.; Habra, M.A.; Rich, T.; Busaidy, N.; Cote, G.J.; Perrier, N.; Phan, A.; et al. Clinical risk factors for malignancy and overall survival in patients with pheochromocytomas and sympathetic paragangliomas: Primary tumor size and primary tumor location as prognostic indicators. J. Clin. Endocrinol. Metab. 2011, 96, 717–725. [Google Scholar] [CrossRef]
- Press, D.; Akyuz, M.; Dural, C.; Aliyev, S.; Monteiro, R.; Mino, J.; Mitchell, J.; Hamrahian, A.; Siperstein, A.; Berber, E. Predictors of recurrence in pheochromocytoma. Surgery 2014, 156, 1523–1528. [Google Scholar] [CrossRef]
- Van Der Harst, E.; De Herder, W.W.; De Krijger, R.R.; Bruining, H.A.; Bonjer, H.J.; Lamberts, S.W.J.; Van Den Meiracker, A.H.; Stijnen, T.H.; Boomsma, F. The value of plasma markers for the clinical behaviour of phaeochromocytomas. Eur. J. Endocrinol. 2002, 147, 85–94. [Google Scholar] [CrossRef]
- Favier, J.; Amar, L.; Gimenez-Roqueplo, A.P. Paraganglioma and phaeochromocytoma: From genetics to personalized medicine. Nat. Rev. Endocrinol. 2015, 11, 101–111. [Google Scholar] [CrossRef]
- Pasini, B.; Stratakis, C.A. SDH mutations in tumorigenesis and inherited endocrine tumours: Lesson from the phaeochromocytoma-paraganglioma syndromes. J. Intern. Med. 2009, 266, 19–42. [Google Scholar] [CrossRef]
- Amar, L.; Fassnacht, M.; Gimenez-Roqueplo, A.P.; Januszewicz, A.; Prejbisz, A.; Timmers, H.; Plouin, P.F. Long-term postoperative follow-up in patients with apparently benign pheochromocytoma and paraganglioma. Horm. Metab. Res. 2012, 44, 385–389. [Google Scholar] [CrossRef]
- Hamidi, O.; Young, W.F.; Gruber, L.; Smestad, J.; Yan, Q.; Ponce, O.J.; Prokop, L.; Murad, M.H.; Bancos, I. Outcomes of patients with metastatic phaeochromocytoma and paraganglioma: A systematic review and meta-analysis. Clin. Endocrinol. 2017, 87, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, O. Metastatic pheochromocytoma and paraganglioma: Recent advances in prognosis and management. Curr. Opin. Endocrinol. Diabetes Obes. 2019, 26, 146–154. [Google Scholar] [CrossRef]
- Thompson, L.D.R. Pheochromocytoma of the Adrenal Gland Scaled Score (PASS) to Separate Benign From Malignant Neoplasms A Clinicopathologic and Immunophenotypic Study of 100 Cases. Am. J. Surg. Pathol. 2002, 26, 551–566. [Google Scholar] [CrossRef]
- Kimura, N.; Takayanagi, R.; Takizawa, N.; Itagaki, E.; Katabami, T.; Kakoi, N.; Rakugi, H.; Ikeda, Y.; Tanabe, A.; Nigawara, T.; et al. Pathological grading for predicting metastasis in phaeochromocytoma and paraganglioma. Endocr. Relat. Cancer 2014, 21, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Koh, J.M.; Ahn, S.H.; Kim, H.; Kim, B.J.; Sung, T.Y.; Kim, Y.H.; Hong, S.J.; Song, D.E.; Lee, S.H. Validation of pathological grading systems for predicting metastatic potential in pheochromocytoma and paraganglioma. PLoS ONE 2017, 12, e0187398. [Google Scholar] [CrossRef]
- Pierre, C.; Agopiantz, M.; Brunaud, L.; Battaglia-Hsu, S.F.; Max, A.; Pouget, C.; Nomine, C.; Lomazzi, S.; Vignaud, J.M.; Weryha, G.; et al. COPPS, a composite score integrating pathological features, PS100 and SDHB losses, predicts the risk of metastasis and progression-free survival in pheochromocytomas/paragangliomas. Virchows Arch. 2019, 474, 721–734. [Google Scholar] [CrossRef] [PubMed]
- Parasiliti-Caprino, M.; Bioletto, F.; Lopez, C.; Maletta, F.; Caputo, M.; Gasco, V.; La Grotta, A.; Limone, P.; Borretta, G.; Volante, M.; et al. Development and internal validation of a predictive model for the estimation of pheochromocytoma recurrence risk after radical surgery. Eur. J. Endocrinol. 2022, 186, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Newson, R. Confidence intervals for rank statistics: Somers’ D and extensions. Stata J. 2006, 6, 309–334. [Google Scholar] [CrossRef]
- Feng, F.; Zhu, Y.; Wang, X.; Wu, Y.; Zhou, W.; Jin, X.; Zhang, R.; Sun, F.; Kasoma, Z.; Shen, Z. Predictive factors for malignant pheochromocytoma: Analysis of 136 patients. J. Urol. 2011, 185, 1583–1590. [Google Scholar] [CrossRef]
- Eisenhofer, G.; Lenders, J.W.M.; Siegert, G.; Bornstein, S.R.; Friberg, P.; Milosevic, D.; Mannelli, M.; Linehan, W.M.; Adams, K.; Timmers, H.J.; et al. Plasma methoxytyramine: A novel biomarker of metastatic pheochromocytoma and paraganglioma in relation to established risk factors of tumour size, location and SDHB mutation status. Eur. J. Cancer 2012, 48, 1739–1749. [Google Scholar] [CrossRef]
- Altman, D.G.; Royston, P. The cost of dichotomising continuous variables. Br. Med. J. 2006, 332, 1080. [Google Scholar] [CrossRef] [PubMed]
- MacCallum, R.C.; Zhang, S.; Preacher, K.J.; Rucker, D.D. On the practice of dichotomization of quantitative variables. Psychol. Methods 2002, 7, 19–40. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. The Cost of Dichotomization. Appl. Psychol. Meas. 1983, 7, 249–253. [Google Scholar] [CrossRef]
Parameter | Multivariable Cox Regression Coefficient | Normalized Coefficient | Points for SGAP-Score |
---|---|---|---|
Tumor size > 50 mm | +0.4874 | +1 | |
Positive genetic testing | +1.6617 | +3 | |
Age ≤ 35 years | +0.5838 | +1 | |
PASS ≥ 3 | +1.4945 | +3 |
Parameter | Predictive Power Using Somers’ D | p-Value for Differences in Predictive Power Compared with the Overall SGAP-Score |
---|---|---|
Tumor size > 50 mm | 0.146 | <0.001 |
Positive genetic testing | 0.419 | 0.033 |
Age ≤ 35 years | 0.294 | 0.004 |
PASS ≥ 3 | 0.220 | <0.001 |
Overall SGAP-score | 0.577 | N/A |
Risk Class as Identified Using the CART Algorithm | SGAP-Score | N of Patients | Recurrence-Free Survival at 2 Years | Recurrence-Free Survival at 5 Years | Recurrence-Free Survival at 10 Years |
---|---|---|---|---|---|
Low risk | 0–2 | 49 | 100% | 100% | 100% |
Intermediate risk | 3–4 | 97 | 96% | 89% | 84% |
High risk | 5–8 | 31 | 74% | 70% | 37% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parasiliti-Caprino, M.; Bioletto, F.; Lopez, C.; Bollati, M.; Maletta, F.; Caputo, M.; Gasco, V.; La Grotta, A.; Limone, P.; Borretta, G.; et al. From SGAP-Model to SGAP-Score: A Simplified Predictive Tool for Post-Surgical Recurrence of Pheochromocytoma. Biomedicines 2022, 10, 1310. https://doi.org/10.3390/biomedicines10061310
Parasiliti-Caprino M, Bioletto F, Lopez C, Bollati M, Maletta F, Caputo M, Gasco V, La Grotta A, Limone P, Borretta G, et al. From SGAP-Model to SGAP-Score: A Simplified Predictive Tool for Post-Surgical Recurrence of Pheochromocytoma. Biomedicines. 2022; 10(6):1310. https://doi.org/10.3390/biomedicines10061310
Chicago/Turabian StyleParasiliti-Caprino, Mirko, Fabio Bioletto, Chiara Lopez, Martina Bollati, Francesca Maletta, Marina Caputo, Valentina Gasco, Antonio La Grotta, Paolo Limone, Giorgio Borretta, and et al. 2022. "From SGAP-Model to SGAP-Score: A Simplified Predictive Tool for Post-Surgical Recurrence of Pheochromocytoma" Biomedicines 10, no. 6: 1310. https://doi.org/10.3390/biomedicines10061310
APA StyleParasiliti-Caprino, M., Bioletto, F., Lopez, C., Bollati, M., Maletta, F., Caputo, M., Gasco, V., La Grotta, A., Limone, P., Borretta, G., Volante, M., Papotti, M., Pia, A., Terzolo, M., Morino, M., Pasini, B., Veglio, F., Ghigo, E., Arvat, E., & Maccario, M. (2022). From SGAP-Model to SGAP-Score: A Simplified Predictive Tool for Post-Surgical Recurrence of Pheochromocytoma. Biomedicines, 10(6), 1310. https://doi.org/10.3390/biomedicines10061310