Circadian Genes Expression Patterns in Disorders Due to Enzyme Deficiencies in the Heme Biosynthetic Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Biochemical Analysis
2.3. Molecular Analyses
2.4. HMBS Variants
2.5. CPOX Variants
2.6. UROD Variant
2.7. Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Puy, H.; Gouya, L.; Deybach, J.-C. Porphyrias. Lancet 2010, 375, 924–937. [Google Scholar] [CrossRef]
- Bissell, D.M.; Anderson, K.E.; Bonkovsky, H.L. Porphyria. N. Engl. J. Med. 2017, 377, 862–872. [Google Scholar] [CrossRef]
- de Souza, P.V.S.; Badia, B.D.M.L.; Farias, I.B.; Pinto, W.B.V.D.R.; Oliveira, A.S.B. Acute Hepatic Porphyria: Pathophysiological Basis of Neuromuscular Manifestations. Front. Neurosci. 2021, 15, 715523. [Google Scholar] [CrossRef]
- Szlendak, U.; Bykowska, K.; Lipniacka, A. Clinical, Biochemical and Molecular Characteristics of the Main Types of Porphyria. Adv. Clin. Exp. Med. 2016, 25, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Phillips, J.D. Heme biosynthesis and the porphyrias. Mol. Genet. Metab. 2019, 128, 164–177. [Google Scholar] [CrossRef]
- Stein, P.E.; Badminton, M.N.; Rees, D.C. Update review of the acute porphyrias. Br. J. Haematol. 2016, 176, 527–538. [Google Scholar] [CrossRef]
- Bustad, H.; Kallio, J.; Vorland, M.; Fiorentino, V.; Sandberg, S.; Schmitt, C.; Aarsand, A.; Martinez, A. Acute Intermittent Porphyria: An Overview of Therapy Developments and Future Perspectives Focusing on Stabilisation of HMBS and Proteostasis Regulators. Int. J. Mol. Sci. 2021, 22, 675. [Google Scholar] [CrossRef]
- Wylie, K.; Testai, F.D. Neurological Manifestations of Acute Porphyrias. Curr. Neurol. Neurosci. Rep. 2022, 22, 355–362. [Google Scholar] [CrossRef]
- Yasuda, M.; Chen, B.; Desnick, R.J. Recent advances on porphyria genetics: Inheritance, penetrance & molecular heterogeneity, including new modifying/causative genes. Mol. Genet. Metab. 2018, 128, 320–331. [Google Scholar] [CrossRef]
- Chen, H.; Isayama, K.; Kumazawa, M.; Zhao, L.; Yamauchi, N.; Shigeyoshi, Y.; Hashimoto, S.; Hattori, M.-A. Integration of the nuclear receptor REV-ERBα linked with circadian oscillators in the expressions ofAlas1, Ppargc1a, andIl6genes in rat granulosa cells. Chronobiol.-Int. 2015, 32, 739–749. [Google Scholar] [CrossRef]
- Zheng, B.; Albrecht, U.; Kaasik, K.; Sage, M.; Lu, W.; Vaishnav, S.; Li, Q.; Sun, Z.S.; Eichele, G.; Bradley, A.; et al. Nonredundant Roles of the mPer1 and mPer2 Genes in the Mammalian Circadian Clock. Cell 2001, 105, 683–694. [Google Scholar] [CrossRef] [Green Version]
- Kaasik, K.; Lee, C.C. Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature 2004, 430, 467–471. [Google Scholar] [CrossRef]
- Rogers, P.M.; Ying, L.; Burris, T.P. Relationship between circadian oscillations of Rev-erbα expression and intracellular levels of its ligand, heme. Biochem. Biophys. Res. Commun. 2008, 368, 955–958. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, U. Timing to Perfection: The Biology of Central and Peripheral Circadian Clocks. Neuron 2012, 74, 246–260. [Google Scholar] [CrossRef] [Green Version]
- Mohawk, J.A.; Green, C.B.; Takahashi, J.S. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 2012, 35, 445–462. [Google Scholar] [CrossRef] [Green Version]
- Maywood, E.S.; O’Neill, J.S.; Reddy, A.B.; Chesham, J.E.; Prosser, H.M.; Kyriacou, C.P.; Godinho, S.I.H.; Nolan, P.M.; Hastings, M.H. Genetic and Molecular Analysis of the Central and Peripheral Circadian Clockwork of Mice. Cold Spring Harb. Symp. Quant. Biol. 2007, 72, 85–94. [Google Scholar] [CrossRef]
- Bass, J.; Takahashi, J.S. Circadian Integration of Metabolism and Energetics. Science 2010, 330, 1349–1354. [Google Scholar] [CrossRef] [Green Version]
- Partch, C.L.; Green, C.B.; Takahashi, J.S. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 2013, 24, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Hastings, M.H.; Reddy, A.B.; Maywood, E.S. A clockwork web: Circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 2003, 4, 649–661. [Google Scholar] [CrossRef]
- Reddy, A.B. Genome-Wide Analyses of Circadian Systems; Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2013; Volume 217, pp. 379–388. [Google Scholar] [CrossRef]
- Reddy, A.B.; O’Neill, J. Healthy clocks, healthy body, healthy mind. Trends Cell Biol. 2010, 20, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Vinciguerra, M.; Tevy, M.F.; Mazzoccoli, G. A ticking clock links metabolic pathways and organ systems function in health and disease. Clin. Exp. Med. 2013, 14, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, J.S. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 2016, 18, 164–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, K.H.; Takahashi, J.S. Circadian clock genes and the transcriptional architecture of the clock mechanism. J. Mol. Endocrinol. 2019, 63, R93–R102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.; Fitzpatrick, K.; Olker, C.; Vitaterna, M.H.; Turek, F.W. Casein kinase 1 epsilon and circadian misalignment impact affective behaviours in mice. Eur. J. Neurosci. 2021, 55, 2939–2954. [Google Scholar] [CrossRef] [PubMed]
- Bellet, M.M.; Orozco-Solis, R.; Sahar, S.; Eckel-Mahan, K.; Sassone-Corsi, P. The Time of Metabolism: NAD+, SIRT1, and the Circadian Clock. Cold Spring Harb. Symp. Quant. Biol. 2011, 76, 31–38. [Google Scholar] [CrossRef]
- Asher, G.; Schibler, U. Crosstalk between Components of Circadian and Metabolic Cycles in Mammals. Cell Metab. 2011, 13, 125–137. [Google Scholar] [CrossRef] [Green Version]
- Mense, S.M.; Zhang, L. Heme: A versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases. Cell Res. 2006, 16, 681–692. [Google Scholar] [CrossRef] [Green Version]
- Raghuram, S.; Stayrook, K.R.; Huang, P.; Rogers, P.M.; Nosie, A.K.; McClure, D.B.; Burris, L.L.; Khorasanizadeh, S.; Burris, T.; Rastinejad, F. Identification of heme as the ligand for the orphan nuclear receptors REV-ERBα and REV-ERBβ. Nat. Struct. Mol. Biol. 2007, 14, 1207–1213. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Kim, K.D.; Lucas, A.; Drahos, K.E.; Santos, C.S.; Mury, S.P.; Capelluto, D.G.S.; Finkielstein, C.V. A Novel Heme-Regulatory Motif Mediates Heme-Dependent Degradation of the Circadian Factor Period 2. Mol. Cell. Biol. 2008, 28, 4697–4711. [Google Scholar] [CrossRef]
- Golding, J.; Northstone, K.; Miller, L.L.; Smith, G.D.; Pembrey, M. Differences between blood donors and a population sample: Implications for case–control studies. Int. J. Epidemiol. 2013, 42, 1145–1156. [Google Scholar] [CrossRef] [Green Version]
- Di Pierro, E.; De Canio, M.; Mercadante, R.; Savino, M.; Granata, F.; Tavazzi, D.; Nicolli, A.; Trevisan, A.; Marchini, S.; Fustinoni, S. Laboratory Diagnosis of Porphyria. Diagnostics 2021, 11, 1343. [Google Scholar] [CrossRef]
- Salamanca, R.D.E.; Sepulveda, P.; Moran, M.J.; Santos, J.L.; Fontanellas, A.; Hernandez, A. Clinical utility of fluorometric scanning of plasma porphyrins for the diagnosis and typing of porphyrias. Clin. Exp. Dermatol. 1993, 18, 128–130. [Google Scholar] [CrossRef] [PubMed]
- Elder, G.; Harper, P.; Badminton, M.; Sandberg, S.; Deybach, J.-C. The incidence of inherited porphyrias in Europe. J. Inherit. Metab. Dis. 2012, 36, 849–857. [Google Scholar] [CrossRef]
- Hee, S.W.; Willis, A.; Smith, C.T.; Day, S.; Miller, F.; Madan, J.; Posch, M.; Zohar, S.; Stallard, N. Does the low prevalence affect the sample size of interventional clinical trials of rare diseases? An analysis of data from the aggregate analysis of clinicaltrials.gov. Orphanet, J. Rare Dis. 2017, 12, 44. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Logan, H.L.; Glueck, D.H.; Muller, K.E. Selecting a sample size for studies with repeated measures. BMC Med. Res. Methodol. 2013, 13, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogun, A.S.; Joy, N.V.; Valentine, M. Biochemistry, Heme Synthesis; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Adachi, Y.; Umeda, M.; Kawazoe, A.; Sato, T.; Ohkawa, Y.; Kitajima, S.; Izawa, S.; Sagami, I.; Taketani, S. The novel heme-dependent inducible protein, SRRD regulates heme biosynthesis and circadian rhythms. Arch. Biochem. Biophys. 2017, 631, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Wu, N.; Curtin, J.C.; Qatanani, M.; Szwergold, N.R.; Reid, R.A.; Waitt, G.M.; Parks, D.J.; Pearce, K.H.; Wisely, G.B.; et al. Rev-erbα, a Heme Sensor That Coordinates Metabolic and Circadian Pathways. Science 2007, 318, 1786–1789. [Google Scholar] [CrossRef]
- Yin, L.; Wu, N.; Lazar, M.A. Nuclear Receptor Rev-Erbα: A Heme Receptor that Coordinates Circadian Rhythm and Metabolism. Nucl. Recept. Signal. 2010, 8, e001. [Google Scholar] [CrossRef] [Green Version]
- Freeman, S.L.; Kwon, H.; Portolano, N.; Parkin, G.; Girija, U.V.; Basran, J.; Fielding, A.J.; Fairall, L.; Svistunenko, D.A.; Moody, P.C.E.; et al. Heme binding to human CLOCK affects interactions with the E-box. Proc. Natl. Acad. Sci. USA 2019, 116, 19911–19916. [Google Scholar] [CrossRef]
- Mazzoccoli, G.; Laukkanen, M.; Vinciguerra, M.; Colangelo, T.; Colantuoni, V. A Timeless Link Between Circadian Patterns and Disease. Trends Mol. Med. 2015, 22, 68–81. [Google Scholar] [CrossRef]
- Larion, S.; Caballes, F.R.; Hwang, S.-I.; Lee, J.-G.; Rossman, W.E.; Parsons, J.; Steuerwald, N.; Li, T.; Maddukuri, V.; Groseclose, G.; et al. Circadian rhythms in acute intermittent porphyria—A pilot study. Eur. J. Clin. Investig. 2013, 43, 727–739. [Google Scholar] [CrossRef] [PubMed]
Variables | Values | Number |
---|---|---|
General variables | ||
BMI (kg/m2) | 22.9 (19–26) | 16 |
LDH (U/I) | 280 (205–300) | 10 |
Creatine kinase (U/I) | 62 (41–85) | 10 |
ESR (mm/h) | 21 (12–27) | 15 |
CRP (mg/dL) | 0.34 (0.32–0.49) | 15 |
Renal function and urinalysis | ||
GFR CKD/EPI (mL/min) | 122 (110–129) | 16 |
Urea (mg/dL) | 33.5 (26–45) | 16 |
Creatinine (mg/dL) | 0.76 (0.64–0.8) | 16 |
Urine pH | 6 (5.6–6.1) | 16 |
Urobilinogen (mg/dL) | 0.2 (0–0.7) | 16 |
Nitrates | Negative | 15 |
Urine Specific weight (g/L) | 1018 (1014–1021) | 16 |
Urine colture | 1 positive for E. coli | 15 |
Porphyrins and other metabolites | ||
ALA (mg/L) | 2.4 (1.8–7.1) | 16 |
PBG (umol/L) | 1.4 (1–13.6) | 16 |
Total porphyrins (ug/24 h) | 158 (104–493) | 15 |
Fecal porphyrins (mcg/24 h) | 140 (45–33,000) | 7 |
Uroporphyrins (mcg/24/h) | 4000 (5–8100) | 4 |
Fecal coproporphyrins (ug/L) | 3200 (47–7000) | 4 |
Thyroid Function | ||
FT3 (nmol/L) | 3.2 (2.9–3.6) | 15 |
FT4 (nmol/L) | 1.3 (1–1.4) | 15 |
TSH (umol/mL) | 1.5 (1.1–2.2) | 15 |
Anti-TG (IU/mL) | 9.6 (0.1–16) | 15 |
anti-TPO (IU/mL) | 3.9 (0.2–22.5) | 15 |
Coagulation | ||
INR | 1 (1–1.1) | 16 |
Fibrinogen (mg/dL) | 300 (260–340) | 7 |
D-dimer (ng/mL) | 270 (74–380) | 13 |
Metabolism | ||
Blood glucose (mg/dL) | 86 (64–91) | 16 |
Uric acid (mg/dL) | 4.3 (3.6–91) | 16 |
Total serum proteins (g/dL) | 7.2 (6.8–7.5) | 16 |
Albumin (g/dL) | 4.3 (4.1–4.5) | 5 |
Total cholesterol (mg/dL) | 188 (164–209) | 16 |
LDL cholesterol (mg/dL) | 99 (85–140) | 9 |
HDL cholesterol (mg/dL) | 58 (41–63) | 10 |
Triglycerides (mg/dL) | 90 (68–135) | 16 |
Glycated Hemoglobin (%) | 5.5 (5.4–5.9) | 4 |
Vitamin D (ng/mL) | 7 (3.6–15) | 5 |
Electrolytes | ||
Sodium (mEq/L) | 141 (139–141) | 16 |
Chloride (mEq/L) | 105 (104–107) | 16 |
Potassium (mEq/L) | 4.3 (4.1–4.4) | 16 |
Phosphorus (mg/dL) | 3.3 (3.1–3.7) | 16 |
Magnesium (mEq/L) | 2.2 (2.1–2.2) | 5 |
Calcium (mEq/L) | 8.9 (8.6–9.4) | 16 |
Hepatic and pancreatic function | ||
Total bilirubin (mg/dL) | 0.5 (0.5–0.7) | 16 |
Alanine aminotransferase (U/I) | 26 (20–32) | 16 |
Aspartate aminotransferase (U/I) | 25 (20–44) | 16 |
GGT (U/L) | 21 (14–32) | 16 |
Alkaline phosfatase (U/L) | 71 (62–93) | 16 |
Amylases (U/I) | 63 (54–76 | 12 |
Lipases (U/I) | 33 (25–50) | 8 |
HbsAg | 1 positive | 15 |
anti-HCV antibodies | 1 positive | 15 |
Blood cell counts | ||
Hemoglobin (g/dL) | 13.6 (12.3–14.5) | 16 |
White blood cells (U/L) | 6600 (5700–7700) | 16 |
Platelets (U/I) | 236,000 (172,000–256,000) | 16 |
Iron metabolism | ||
Serum iron (mcg/dL) | 78 (73–94) | 16 |
Ferritin (ng/mL) | 84 (31–143) | 16 |
Transferrin (mg/dL) | 231 (211–271) | 16 |
Tumor markers | ||
Alphafetoprotein (ng/mL) | 2.7 (2.3–3.4) | 16 |
CEA (ng/mL) | 2 (1–4) | 16 |
Ca 19.9 (U/mL) | 10.5 (2.2–16.8) | 16 |
Ca 15.3 (U/mL) | 13.1 (0.7–18) | 10 |
Ca 125 (U/mL) | 17.6 (9.4–18.4) | 13 |
PTH (pmol/mL) | 48 (26–88) | 14 |
Mutated Gene | Gene Mutation | Protein Mutation | Mutation Type | |
---|---|---|---|---|
HMBS | HMBS c.181delG | frameshift | ||
HMBS | HMBS c.72_77delTACCCG | p.Thr25_Arg26del | p.del | |
HMBS | HMBS c.772-3C>G | splicing | ||
HMBS | HMBS c.652-2delA | frameshift | ||
HMBS | HMBS c.580C>T | p.Q194X | nonsense | |
CPOX | CPOX c.148C>T | p.50 | missense | new |
CPOX | CPOX c.395C>T | p.132A>V | missense | new |
CPOX | CPOX c.613G>T | p.205V>L | missense | new |
UROD | UROD C.1000A>G | p.394I>V ? | missense | |
UROD | UROD c.246-248delCAT | p.del | new | |
UROS | UROS c.660+4delA | splicing | new |
Genes | Values (Medians and IQRs) | p Value |
---|---|---|
ARNTL | 0.647 | |
Controls | 28.8 (28–30) | |
AIP | 29.5 (28.7–30.3) | |
HCP | 29.3 (28.7–30.3) | |
CEP + PCT | 30 (29–31.4) | |
ARNTL2 | <0.001 | |
Controls | 33 (32–33.7) | |
AIP | 35 (34.7–35.5) | |
HCP | 35.4 (35–38) | |
CEP + PCT | 35.5 (34.8–39.8) | |
CLOCK | 0.006 | |
Controls | 30.3 (29.1–32) | |
AIP | 32.2 (31.8–33.3) | |
HCP | 32.7 (32.2–33.7) | |
CEP + PCT | 33 (31.6–33.7) | |
CRY1 | <0.001 | |
Controls | 28 (26.7–29.7) | |
AIP | 31.8 (30.9–32.3) | |
HCP | 32 (31.5–32.3) | |
CEP + PCT | 32.5 (30.6–33.7) | |
CRY2 | 0.002 | |
Controls | 29.8 (29–31.5) | |
AIP | 32.7 (32–33.7) | |
HCP | 32.5 (32.2–33.2) | |
CEP + PCT | 32.9 (32.2–33.9) | |
CSNK1E | 0.009 | |
Controls | 29.8 (28.7–31.1) | |
AIP | 32.5 (31.7–33.1) | |
HCP | 32.6 (31.9–33.3) | |
CEP + PCT | 33.1 (31.9–34.3) | |
DBP | <0.001 | |
Controls | 27.8 (27–29.1) | |
AIP | 31.1 (30.1–31.8) | |
HCP | 30.9 (30.4–32) | |
CEP + PCT | 32.9 (31.8–34) | |
HLF | 0.013 | |
Controls | 34.6 (32.3–35.4) | |
AIP | 35.6 (35–36.2) | |
HCP | 35.8 (35.4–36.2) | |
CEP + PCT | 35.4 (35.4–35.9) | |
NFIL3 | 0.001 | |
Controls | 28.1 (26.3–29.1) | |
AIP | 28.9 (28.5–29.7) | |
HCP | 29.7 (29.2–30.2) | |
CEP + PCT | 30.6 (29.7–31.2) | |
NR1D1 | <0.001 | |
Controls | 27.4 (26.2–28.5) | |
AIP | 31.2 (30.5–32.2) | |
HCP | 31.1 (30.1–31.9) | |
CEP + PCT | 32.3 (30.8–33.5) | |
PER1 | <0.001 | |
Controls | 27.9 (27.2–28.6) | |
AIP | 30.3 (29.6–30.7) | |
HCP | 30.8 (30.1–30.9) | |
CEP + PCT | 30.3 (29.5–31.1) | |
PER2 | 0.032 | |
Controls | 29.9 (29.1–32.4) | |
AIP | 32.1 (31.6–33.6) | |
HCP | 32.4 (32.2–32.7) | |
CEP + PCT | 32.2 (31.6–33.9) | |
PER3 | 0.001 | |
Controls | 30.9 (30–32.5) | |
AIP | 33.8 (33.2–35.2) | |
HCP | 34 (33.6–34.8) | |
CEP + PCT | 34.4 (33–37) | |
RORA | <0.001 | |
Controls | 31.8 (31.5–32.2) | |
AIP | 37.4 (35.5–38.2) | |
HCP | 36.7 (35.6–38.5) | |
CEP + PCT | 37 (36.1–37.8) | |
SIRT1 | <0.001 | |
Controls | 27.5 (26.3–28.5) | |
AIP | 30.2 (29.7–30.5) | |
HCP | 30.5 (29.6–31.2) | |
CEP + PCT | 30.8 (29.3–33.9) | |
TEF | 0.21 | |
Controls | 33.3 (32.7–35.3) | |
AIP | 34.8 (34–35.3) | |
HCP | 34.8 (34.2–35.2) | |
CEP + PCT | 35 (33.8–36.4) | |
TIMELESS | <0.001 | |
Controls | 31.3 (29.5–31.7) | |
AIP | 33.1 (32.2–33.5) | |
HCP | 33.3 (33.1–34.3) | |
CEP + PCT | 34 (33.5–39.6) |
Gene | Asymptomatic Patients | Symptomatic Patients | p Value |
---|---|---|---|
ARNTL | 30 (29–30.7) | 28.7 (28.6–29) | 0.006 |
ARNTL2 | 35.4 (34.7–35.5) | 34.8 (34.2–35.9) | 0.38 |
CLOCK | 33.3 (31.9–33.7) | 31.9 (31.4–32.3) | 0.027 |
CRY1 | 32.1 (31.7–33.1) | 31 (30.8–31.8) | 0.017 |
CRY2 | 33.2 (32.3–34.1) | 32.2 (31.6–32.3) | 0.02 |
CSNK1E | 33 (32–34) | 31.9 (31–32.3) | 0.023 |
DBP | 31.8 (30.7–33.3) | 30.4 (30–31) | 0.027 |
HLF | 35.6 (35.3–35.9) | 35.7 (35.1–36) | 0.88 |
NFIL3 | 30 (29.5–30.9) | 29 (28–30) | 0.049 |
NR1D1 | 31.9 (31–33) | 30.9 (30–31) | 0.027 |
PER1 | 30.8 (29.5–31.2) | 30.1 (29.6–30.3) | 0.14 |
PER2 | 32.5 (31.7–33.8) | 30.1 (29.6–30.3) | <0.001 |
PER3 | 35 (33.4–35.9) | 33.4 (33.1–33.9) | 0.079 |
RORA | 37 (36–38.3) | 38 (35.5–38.5) | 0.77 |
SIRT1 | 31.1 (30–32) | 29.7 (29–30) | 0.008 |
TEF | 35 (34.4–35.7) | 34 (33.6–34.8) | 0.062 |
TIMELESS | 33.5 (33.2–34.4) | 33.1 (32.3–33.6) | 0.16 |
Genes and Variables | Normal Expression | Over-Expression (>75th Percentile) | p Value |
---|---|---|---|
ARTNL | |||
Amylases (U/I) | 67 (61–80) | 52 (37–55) | 0.033 |
CRP (mg/dL) | 0.36 (0.33–0.9) | 0.32 (0.30–0.33) | 0.049 |
ARTNL2 | |||
Amylases (U/L) | 76 (67–89) | 58 (46–61) | 0.025 |
AST (U/L) | 30 (20–33) | 86 (84–95) | 0.033 |
INR | 1 (0.9–1) | 1.1 (1–1.1) | 0.049 |
Iron blood level (mcg/dL) | 87 (77–104) | 73 (64–80) | 0.034 |
CLOCK | 3.3 (2.7–4) | 0.007 | |
Alpha-fetoprotein (ng/mL) | 2.2 (1.45–2.4) | 54 (46–61) | 0.02 |
Amylases (U/L) | 73 (65–89) | 0.6 (0.49–0.83) | 0.039 |
Total bilirubin (mg/dL) | 0.39 (0.38–0.51) | 3 (1–14) | 0.026 |
Ca 19.9 (U/mL) | 16 (10–20) | 25 (20–33) | 0.049 |
Lipases (U/L) | 50 (37–58) | 118 (86–182) | 0.49 |
Ferritin (ng/mL) | 32 (22–66) | 1.1 (0.9–1.6) | 0.044 |
PBG (umol/L) | 9.7 (1–47) | ||
CRY1 | |||
Alpha-fetoprotein (ng/mL) | 2 (1.4–2.4) | 3.3 (2.6–3.8) | 0.015 |
Ca 125 (U/mL) | 18 (15–18.5) | 22 (19–25) | 0.037 |
Ca 19.9 (U/mL) | 16 (12–20) | 3.4 (1–13) | 0.045 |
Lipases (U/L) | 52 (47–63) | 26 (22–30) | 0.025 |
CRY2 | |||
Uric acid (mg/dL) | 3.8 (3.6–4.2) | 4.5 (4.3–5.2) | 0.039 |
Amylases (U/L) | 73 (65–105) | 55 (48–66) | 0.034 |
INR | 1 (0.9–1.1) | 1.1 (1–1.1) | 0.032 |
CSNK1E | |||
Total bilirubin (mg/dL) | 0.039 (0.38–0.57) | 0.6 (0.5–0.8) | 0.044 |
Chloride (mEq/L) | 107 (104–108) | 104 (100–105) | 0.049 |
Alkaline phosphatase (U/L) | 70 (56–72) | 93 (73–110) | 0.039 |
Iron blood level (mcg/dL) | 75 (64–78) | 96 (81–104) | 0.011 |
Sodium (mEq/L) | 141 (140–142) | 140 (135–140) | 0.015 |
PER1 | |||
Ca 15.3 (U/mL) | 9.6 (8.8–10.4) | 18 (15–25) | 0.014 |
GGT (U/I) | 13.5 (11.5–17) | 23.5 (21–37) | 0.039 |
Lipases (U/I) | 52 (47–63) | 26 (22–30) | 0.025 |
anti-TPO (IU/mL) | 23 (9–28) | 0.15 (0.1–7) | 0.042 |
PER2 | |||
Uric acid (mg/dL) | 3.9 (3.2–4.5) | 4.5 (4–4.5) | 0.047 |
Ca 19.9 (U/mL) | 16 (8–19) | 3 (1–11) | 0.044 |
Calcium (mEq/L) | 9.4 (8.8–9.5) | 8.6 (8.4–8.9) | 0.02 |
Lipases (U/L) | 44 (26–52) | 20 (17–23) | 0.046 |
Urine specific weight (g/L) | 1019 (1016–1024) | 1014 (1011–1017) | 0.039 |
PER 3 | |||
Urine pH | 5.6 (5.5–5.8) | 6 (5.9–6.5) | 0.016 |
SIRT1 | |||
Lipases (U/L) | 50 (37–58) | 25 (20–33) | 0.048 |
Urine pH | 5.6 (5.5–5.8) | 6.1 (6–6.5) | 0.012 |
TEF | |||
Uric Acid (mg/dL) | 3.8 (3.3–4.3) | 4.5 (4.4–4.9) | 0.047 |
Lipases (U/I) | 47 (37–55) | 23 (17–26) | 0.037 |
Urine pH | 5.6 (5.5–5.8) | 6.2 (6–6.7) | 0.004 |
TIMELESS | |||
Chloride (mEq/L) | 107 (106–109) | 105 (102–106) | 0.027 |
Urine specific weight (g/L) | 1022 (1017–1027) | 1015 (1013–1019) | 0.031 |
Total porphyrins (ug/mL) | 87 (67–162) | 233 (134–937) | 0.037 |
Urea (mg/dL) | 46 (40–51) | 30 (21–34) | 0.041 |
PTH (pmol/mL) | 88 (59–95) | 37 (24–49) | 0.046 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savino, M.; Guida, C.C.; Nardella, M.; Murgo, E.; Augello, B.; Merla, G.; De Cosmo, S.; Savino, A.F.; Tarquini, R.; Cei, F.; et al. Circadian Genes Expression Patterns in Disorders Due to Enzyme Deficiencies in the Heme Biosynthetic Pathway. Biomedicines 2022, 10, 3198. https://doi.org/10.3390/biomedicines10123198
Savino M, Guida CC, Nardella M, Murgo E, Augello B, Merla G, De Cosmo S, Savino AF, Tarquini R, Cei F, et al. Circadian Genes Expression Patterns in Disorders Due to Enzyme Deficiencies in the Heme Biosynthetic Pathway. Biomedicines. 2022; 10(12):3198. https://doi.org/10.3390/biomedicines10123198
Chicago/Turabian StyleSavino, Maria, Claudio Carmine Guida, Maria Nardella, Emanuele Murgo, Bartolomeo Augello, Giuseppe Merla, Salvatore De Cosmo, Antonio Fernando Savino, Roberto Tarquini, Francesco Cei, and et al. 2022. "Circadian Genes Expression Patterns in Disorders Due to Enzyme Deficiencies in the Heme Biosynthetic Pathway" Biomedicines 10, no. 12: 3198. https://doi.org/10.3390/biomedicines10123198
APA StyleSavino, M., Guida, C. C., Nardella, M., Murgo, E., Augello, B., Merla, G., De Cosmo, S., Savino, A. F., Tarquini, R., Cei, F., Aucella, F., & Mazzoccoli, G. (2022). Circadian Genes Expression Patterns in Disorders Due to Enzyme Deficiencies in the Heme Biosynthetic Pathway. Biomedicines, 10(12), 3198. https://doi.org/10.3390/biomedicines10123198