Beta-Boswellic Acid Reverses 3-Nitropropionic Acid-Induced Molecular, Mitochondrial, and Histopathological Defects in Experimental Rat Model of Huntington’s Disease
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Animals
2.2. Drugs and Chemicals
2.3. Experimental Grouping of Animals
2.4. Measurement of Body Weight
2.5. Parameters of Behavioral Assessment
2.5.1. Morris Water Maze Test (MWM)
2.5.2. Spontaneous Locomotor Activity (LA)
2.5.3. String Test for Grip Strength
2.6. Biochemical Assessment of Parameters
2.6.1. Biological Samples Preparation
2.6.2. Analyse the Enzyme Activity of Mitochondrial ETC Complexes in Rat Brain Homogenate
Post-Mitochondrial Supernatant (PMS) Preparation
Analyse the Enzyme Activity of Mitochondrial Complex-I (NADPH Dehydrogenase) Protein in Rat Brain Homogenate
Analyse the Enzyme Activity of Mitochondrial Complex-II (Succinate Dehydrogenase/SDH) Protein in Rat Brain Homogenate
Analyse the Enzyme Activity of Mitochondrial ETC Complex-V (ATP Synthase) Protein in Rat Brain Homogenate
2.6.3. Analysis of Neuroinflammatory Biomarkers
TNF-α and IL-1β Protein Concentration in the Brain
2.6.4. Analysis of Neurotransmitters
Dopamine Concentration in Rat’s Brain Homogenate
GABA and Glutamate Concentration in Rat’s Brain Homogenate
2.6.5. Analysis of Oxidative Stress Parameters
Acetylcholinesterase (AChE) Concentration in Rat’s Brain Homogenate
Malondialdehyde (MDA) Concentration in Rat’s Brain Homogenate
Glutathione (GSH) Concentration in Rat’s Brain Homogenate
Superoxide Dismutase (SOD) Concentration in Rat’s Brain Homogenate
Catalase (CAT) Concentration in Rat’s Brain Homogenate
2.7. Histopathology
2.8. Statistical Analysis
3. Results
3.1. β-Boswellic Acid Ameliorates the Decreased Body Weight in 3-NP-Treated Rats
3.2. Behavioural Parameters
3.2.1. β-Boswellic Acid Ameliorates Spatial Navigation Task in 3-NP Treated Rats
3.2.2. β-Boswellic Acid Ameliorates Locomotor Activity in 3-NP-Treated Rats
3.2.3. β-Boswellic Acid Ameliorates Grip Strength in 3-NP-Treated Rats
3.3. Biochemical Parameters
3.3.1. β Boswellic Acid Ameliorates Mitochondrial ETC Complexes Activity in 3-NP Treated Rats
3.3.2. β-Boswellic Acid Ameliorates Inflammatory Markers (TNF-α,& IL-1β) Level in 3-NP Treated Rats
3.3.3. β-Boswellic Acid Ameliorates Neurotransmitter Levels (Dopamine, Glutamate, and GABA) in 3-NP Treated Rats
3.3.4. β-Boswellic Acid Amelioratesoxidative Stress (AChE, MDA, Reduced GSH, SOD, and CAT) Parameters in 3-NP Treated Rats
3.4. Histopathological Analysis
Effect of β-Boswellic Acid on 3-NP Induced Histopathological Changes in Rat Brain
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACh | Acetylcholine |
AChE | Acetyl cholinesterase |
AD | Alzheimer disease |
ALS | Amyotrophic lateral sclerosis |
ANOVA | Analysis of variance |
ATP | Adenosine triphosphate |
β-BA | Beta Boswellic acid |
BG | Basal Ganglia |
CAG | Cytosine, adenine, guanine |
CAT | Catalase |
CNS | Central nervous system |
DA | Dopamine |
DNA | Deoxyribonucleic acid |
DTNB | 5,5′-dithiobis-(2-nitrobenzoic acid) |
ECD | Electron capture detector |
EDTA | Ethylenediaminetetraacetic acid |
ELISA | Enzyme-linked immunosorbent assay |
ELT | Escape latency test |
ETC | Electron transport chain |
GABA | Gamma-amino butyric acid |
GP | Globus pallidus |
GSH | Glutathione |
HD | Huntington diseases |
H2O2 | Hydrogen peroxide |
HPLC | High-Performance Liquid Chromatography |
Htt | Huntigtin gene |
LA | Locomotor activity |
5-LO | 5-lipoxygenase |
MDA | Malondialdehyde |
MAPK | Mitogen-activated protein kinase |
mHtt | Mutated huntigtin gene |
MSN | Medium spiny neurons |
MWM | Morris water maze |
NMDA | N-methyl-D-aspartate |
3-NP | 3-Nitropropionic acid |
PD | Parkinson’s disases |
Poly Q | Polyglutamine |
O2• | Superoxide |
OH | Hydroxyl ion |
ROS | Reactive oxygen species |
SLA | Spontaneous locomotor activity |
SN | Substantianigra |
SOD | Superoxide dismutase |
TCA | Trichloroacetic acid |
TH | Tyrosine hydroxylase |
TL | Transfer latency |
TNF-α | Tumour necrosis factor-α |
TSTQ | Time spent in the target quadrant zone |
References
- Ajitkumar, A.; De Jesus, O. Huntington Disease. In StatPearls [Internet]; StatPearls Publishing: Tampa, FL, USA, 2021. [Google Scholar]
- Warby, S.C.; Visscher, H.; Collins, J.A.; Doty, C.N.; Carter, C.; Butland, S.L.; Hayden, A.R.; Kanazawa, I.; Ross, C.J.; Hayden, M.R. HTT haplotypes contribute to differences in Huntington disease prevalence between Europe and East Asia. Eur. J. Hum. Genet. 2011, 19, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Exuzides, A.; Reddy, S.R.; Chang, E.; Paydar, C.; Yohrling, G. Epidemiology of Huntington’s disease in the United States Medicare and Medicaid Populations. Neuroepidemiology 2022, 3, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Crowell, V.; Houghton, R.; Tomar, A.; Fernandes, T.; Squitieri, F. Modeling Manifest Huntington’s Disease Prevalence Using Diagnosed Incidence and Survival Time. Neuroepidemiology 2021, 55, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.E.; Collins, J.A.; Kay, C.; McDonald, C.; Dolzhenko, E.; Xia, Q.; Bečanović, K.; Drögemöller, B.I.; Semaka, A.; Nguyen, C.M.; et al. Length of uninterrupted CAG, independent of polyglutamine size, results in increased somatic instability, hastening onset of Huntington disease. Am. J. Hum. Genet. 2019, 104, 1116–1126. [Google Scholar] [CrossRef] [Green Version]
- Mehrabi, N.F.; Singh-Bains, M.K.; Waldvogel, H.J.; Faull, R.L. Cortico-Basal Ganglia Interactions in Huntington’s. Ann. Neurodegener. Disord. 2016, 1, 1007. [Google Scholar]
- Mehrabi, N.F.; Waldvogel, H.J.; Tippett, L.J.; Hogg, V.M.; Synek, B.J.; Faull, R.L. Symptom heterogeneity in Huntington’s disease correlates with neuronal degeneration in the cerebral cortex. Neurobiol. Dis. 2016, 96, 67–74. [Google Scholar] [CrossRef]
- Ehrlich, M.E. Huntington’s disease and the striatal medium spiny neuron: Cell-autonomous and non-cell-autonomous mechanisms of disease. Neurotherapeutics 2012, 9, 270–284. [Google Scholar] [CrossRef] [Green Version]
- Waldvogel, H.J.; Kim, E.H.; Tippett, L.J.; Vonsattel, J.P.; Faull, R.L. The neuropathology of Huntington’s disease. Behavioral neurobiology of Huntington’s disease and Parkinson’s disease. Curr. Top. Behav. Neurosci. 2015, 22, 33–80. [Google Scholar]
- Rüb, U.; Seidel, K.; Heinsen, H.; Vonsattel, J.P.; Den Dunnen, W.F.; Korf, H.W. Huntington’s disease (HD): The Neuropathology of a Multisystem Neurodegen-erative Disorder of the Human Brain. Brain Pathol. 2016, 26, 726–740. [Google Scholar] [CrossRef]
- Rosenblatt, A. Neuropsychiatry of Huntington’s disease. Dialogues Clin. Neurosci. 2022, 9, 191–197. [Google Scholar] [CrossRef]
- Testa, C.M.; Jankovic, J. Huntington disease: A quarter century of progress since the gene discovery. J. Neurol. Sci. 2019, 396, 52–68. [Google Scholar] [CrossRef] [PubMed]
- Roth, J. Clinical symptomatology of Huntington’s disease. In Pathology, Pre-Vention and Therapeutics of Neurodegenerative Disease; Springer: Berlin/Heidelberg, Germany, 2019; pp. 117–131. [Google Scholar]
- Beal, M.F.; Brouillet, E.; Jenkins, B.; Henshaw, R.; Rosen, B.; Hyman, B.T. Age-dependent striatal excitotoxic lesions produced by the endogenous mitochondrial inhibitor malonate. J. Neurochem. 1993, 61, 1147–1150. [Google Scholar] [CrossRef] [PubMed]
- Naseri, N.N.; Bonica, J.; Xu, H.; Park, L.C.; Arjomand, J.; Chen, Z.; Gibson, G.E. Novel metabolic abnormalities in the tricarboxylic acid cycle in peripheral cells from Huntington’s disease patients. PLoS ONE 2016, 11, e0160384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef] [Green Version]
- Fukui, K. Reactive oxygen species induce neurite degeneration before induction of cell death. J. Clin. Biochem. Nutr. 2016, 3, 155–159. [Google Scholar] [CrossRef] [Green Version]
- Cirillo, G.; Maggio, N.; Bianco, M.R.; Vollono, C.; Sellitti, S.; Papa, M. Discriminative behavioral assessment unveils remarkable reactive astrocytosis and early molecular correlates in basal ganglia of 3-nitropropionic acid subchronic treated rats. Neurochem. Int. 2010, 56, 152–160. [Google Scholar] [CrossRef]
- Kaur, N.; Jamwal, S.; Gill, H.K.; Bansal, P.K. Animal models of Huntington’s disease. In Animal Models of Neurological Disorders; Springer: Singapore, 2017; pp. 43–57. [Google Scholar]
- Han, I.; You, Y.; Kordower, J.H.; Brady, S.T.; Morfini, G.A. Differential vulnerability of neurons in Huntington’s disease: The role of cell type-specific features. J. Neurochem. 2010, 113, 1073–1091. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Kalonia, H.; Kumar, A. Huntington’s disease: Pathogenesis to animal models. Pharmacol. Rep. 2010, 62, 1–14. [Google Scholar] [CrossRef]
- Johri, A.; Beal, M.F. Antioxidants in Huntington’s disease. Biochim. Bio Phys. (BBA) Mol. Basis Dis. 2012, 1822, 664–674. [Google Scholar] [CrossRef] [Green Version]
- González-Reyes, R.E.; Nava-Mesa, M.O.; Vargas-Sánchez, K.; Ariza-Salamanca, D.; Mora-Muñoz, L. Involvement of astrocytes in Alzheimer’s disease from a neuroinflammatory and oxidative stress perspective. Front. Mol. Neurosci. 2017, 10, 427. [Google Scholar] [CrossRef] [Green Version]
- Silva-Palacios, A.; Colín-González, A.L.; López-Cervantes, S.P.; Zazueta, C.; Lu-na-López, A.; Santamaría, A.; Königsberg, M. Tert-buthylhydroquinone pre-conditioning exerts dual effects in old female rats exposed to 3-nitropropionic acid. Redox Biol. 2017, 12, 610–624. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Mulgund, A.; Alshahrani, S.; Assidi, M.; Abuzenadah, A.M.; Sharma, R.; Sabanegh, E. Reactive oxygen species and sperm DNA damage in infertile men presenting with low level leukocytospermia. Reprod. Biol. Endocrinol. 2014, 12, 126. [Google Scholar] [CrossRef] [PubMed]
- Thangarajan, S.; Ramachandran, S.; Krishnamurthy, P. Chrysin exerts neuro-protective effects against 3-Nitropropionic acid induced behavioral des-pair—Mitochondrial dysfunction and striatal apoptosis via upregulating Bcl-2 gene and downregulating Bax—Bad genes in male wistar rats. Biomed. Pharmacother. 2016, 84, 514–525. [Google Scholar] [PubMed]
- Iram, F.; Khan, S.A.; Husain, A. Phytochemistry and potential therapeutic actions of Boswellic acids: A mini-review. Asian Pac. J. Trop. Biomed. 2017, 7, 513–523. [Google Scholar] [CrossRef]
- Karmarkar, S.W.; Bottum, K.M.; Krager, S.L.; Tischkau, S.A. ERK/MAPK is essential for endogenous neuroprotection in SCN2. 2 cells. PLoS ONE 2011, 6, e23493. [Google Scholar] [CrossRef]
- Al-Yasiry, A.R.; Kiczorowska, B. Frankincense-therapeutic properties. Adv. Hyg. Exp. Med. Postep. Hig. I Med. Dosw. 2016, 70, 380–391. [Google Scholar] [CrossRef]
- Roy, N.K.; Parama, D.; Banik, K.; Bordoloi, D.; Devi, A.K.; Thakur, K.K.; Padmavathi, G.; Shakibaei, M.; Fan, L.; Sethi, G.; et al. An update on pharma-cological potential of boswellic acids against chronic diseases. Int. J. Mol. Sci. 2019, 20, 4101. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zeng, W.; Zhang, Y.; Yu, Q.; Zeng, M.; Gan, J.; Zhang, W.; Jiang, X.; Li, H. Focus on the role of mitochondria in NLRP3 inflammasome activation: A pro-spective target for the treatment of ischemic stroke. Int. J. Mol. Med. 2022, 49, 74. [Google Scholar] [CrossRef]
- Kheradmand, H.; Babaloo, H.; Vojgani, Y.; Mirzakhanlouei, S.; Bayat, N. PCL/gelatin scaffolds and beta-boswellic acid synergistically increase the efficiency of CGR8 stem cells differentiation into dopaminergic neuron: A new paradigm of Parkinson’s disease cell therapy. J. Biomed. Mater. Res. Part A 2021, 109, 562–571. [Google Scholar] [CrossRef]
- Li, C.; He, Q.; Xu, Y.; Lou, H.; Fan, P. Synthesis of 3-O-acetyl-11-keto-β-boswellic acid (AKBA)-derived amides and their mitochondria-targeted antitumor activities. ACS Omega 2022, 7, 9853–9866. [Google Scholar] [CrossRef]
- Haghaei, H.; Soltani, S.; Hosseini, S.A.; Rashidi, M.R.; Karima, S. Boswellic acids as promising leads in drug development against Alzheimer’s disease. Pharm. Sci. 2020, 27, 14–31. [Google Scholar] [CrossRef]
- Stürner, K.H.; Stellmann, J.P.; Dörr, J.; Paul, F.; Friede, T.; Schammler, S.; Reinhardt, S.; Gellissen, S.; Weissflog, G.; Faizy, T.D.; et al. standardised frankincense extract reduces disease activity in relapsing-remitting multiple sclerosis (the SABA phase IIa trial). J. Neurol. Neurosurg. Psychiatry 2018, 89, 330–338. [Google Scholar] [CrossRef]
- Wang, M.; Yu, J.; Yang, Q.; Guo, C.; Zhang, W.; Li, W.; Weng, Y.; Ding, Y.; Wang, J. Beta-Boswellic Acid Protects Against Cerebral Ischemia/Reperfusion Injury via the Protein Kinase C Epsilon/Nuclear Factor Erythroid 2-like 2/Heme Ox-ygenase-1 Pathway. Mol. Neurobiol. 2022, 59, 4242–4256. [Google Scholar] [CrossRef] [PubMed]
- Rajabian, A.; Sadeghnia, H.; Fanoudi, S.; Hosseini, A. Genus Boswellia as a new candidate for neurodegenerative disorders. Iran. J. Basic Med. Sci. 2020, 23, 277. [Google Scholar] [PubMed]
- Ambrogini, P.; Torquato, P.; Bartolini, D.; Albertini, M.C.; Lattanzi, D.; Di Palma, M.; Marinelli, R.; Betti, M.; Minelli, A.; Cuppini, R.; et al. Excitotoxicity, neuroinflammation and oxidant stress as molecular bases of epileptogenesis and epilepsy-derived neurodegeneration: The role of vitamin E. Biochim. Bio Phys. (BBA) Mol. Basis Dis. 2019, 1865, 1098–1112. [Google Scholar] [CrossRef]
- Tarawneh, R.; Galvin, J.E. Potential future neuroprotective therapies for neurodegenerative disorders and stroke. Clin. Geriatr. Med. 2010, 26, 125–147. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Mehan, S.; Sethi, P.; Prajapati, A.; Alshammari, A.; Alharbi, M.; Al-Mazroua, H.A.; Narula, A.S. Smo-Shh agonist Purmorphamine prevents neurobehavioral and neurochemical defects in 8-OH-DPAT-induced experimental model of obsessive-compulsive disorder. Brain Sci. 2022, 12, 342. [Google Scholar] [CrossRef]
- Duggal, P.; Mehan, S. Neuroprotective approach of anti-cancer microtubule stabilizers against tauopathy associated dementia: Current status of clinical and preclinical findings. J. Alzheimer’s Dis. Rep. 2019, 3, 179–218. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Mehan, S. Targeting PI3K-AKT/mTOR signaling in the prevention of autism. Neurochem. Int. 2021, 147, 105067. [Google Scholar] [CrossRef]
- Dudi, R.; Mehan, S. Neuroprotection of brain permeable Forskolin ameliorates behavioral, biochemical and histopatho-logical alterations in rat model of intracerebral hemorrhage. Pharmaspire 2018, 10, 68–86. [Google Scholar]
- Alam, M.M.; Minj, E.; Yadav, R.K.; Mehan, S. Neuroprotective potential of ade-nylcyclase/cAMP/CREB and mitochondrial CoQ10 activator in amyotrophic lateral sclerosis rats. Curr. Bioact. Compd. 2021, 17, 53–69. [Google Scholar] [CrossRef]
- Mehan, S.; Rahi, S.; Tiwari, A.; Kapoor, T.; Rajdev, K.; Sharma, R.; Khera, H.; Kosey, S.; Kukkar, U.; Dudi, R. Adenylatecyclase activator forskolin alleviates intracerebroventricular propionic acid-induced mitochondrial dysfunction of autistic rats. Neural Regen. Res. 2020, 15, 1140. [Google Scholar] [CrossRef] [PubMed]
- Rajdev, K.; Siddiqui, E.M.; Jadaun, K.S.; Mehan, S. Neuroprotective potential of solanesol in a combined model of intracerebral and intraventricular hemor-rhage in rats. IBRO Rep. 2020, 8, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Mehan, S.; Khera, H.; Sharma, R. Neuroprotective Strategies of Blood-Brain Barrier Penetrant “Forskolin” (AC/cAMP/PKA/CREB Activator) to Ameliorate Mitochondrial Dysfunctioning in Neurotoxic Experimental Model of Autism. In Recent Advances in Neurodegeneration; IntechOpen: London, UK, 2019. [Google Scholar]
- Sharma, R.; Rahi, S.; Mehan, S. Neuroprotective potential of solanesol in intracerebroventricular propionic acid induced experimental model of autism: Insights from behavioral and biochemical evidence. Toxicol. Rep. 2019, 6, 1164–1175. [Google Scholar] [CrossRef]
- Siddiqui, E.M.; Mehan, S.; Upadhayay, S.; Khan, A.; Halawi, M.; Halawi, A.A.; Alsaffar, R.M. Neuroprotective efficacy of 4-Hydroxyisoleucine in experimentally induced intracerebral hemorrhage. Saudi J. Biol. Sci. 2021, 28, 6417–6431. [Google Scholar] [CrossRef]
- Shandilya, A.; Mehan, S.; Kumar, S.; Sethi, P.; Narula, A.S.; Alshammari, A.; Alharbi, M.; Alasmari, A.F. Activation of IGF-1/GLP-1 Signalling via 4-Hydroxyisoleucine Prevents Motor Neuron Impairments in Experimental ALS-Rats Exposed to Methylmercury-Induced Neurotoxicity. Molecules 2022, 27, 3878. [Google Scholar] [CrossRef]
- Kaur, R.; Parveen, S.; Mehan, S.; Khanna, D.; Kalra, S. Neuroprotective effect of ellagic acid against chronically scopolamine induced Alzheimer’s type memory and cognitive dysfunctions: Possible behavioural and biochemical evidences. Int. J. Preven. Med. Res. 2015, 1, 45–64. [Google Scholar]
- Rahi, S.; Gupta, R.; Sharma, A.; Mehan, S. Smo-Shh signaling activator purmor-phamine ameliorates neurobehavioral, molecular, and morphological alterations in an intracerebroventricular propionic acid-induced experimental model of autism. Hum. Exp. Toxicol. 2021, 40, 1880–1898. [Google Scholar] [CrossRef]
- Bala, R.; Khanna, D.; Mehan, S.; Kalra, S. Experimental evidence for the potential of lycopene in the management of scopolamine induced amnesia. RSC Adv. 2015, 5, 72881–72892. [Google Scholar] [CrossRef]
- Sahu, R.; Mehan, S.; Kumar, S.; Prajapati, A.; Alshammari, A.; Alharbi, M.; Assiri, M.A.; Narula, A.S. Effect of alpha-mangostin in the prevention of behavioural and neurochemical defects in methylmercury-induced neurotoxicity in ex-perimental rats. Toxicol. Rep. 2022, 9, 977–998. [Google Scholar] [CrossRef] [PubMed]
- Han, X.R.; Wen, X.; Wang, Y.J.; Wang, S.; Shen, M.; Zhang, Z.F.; Fan, S.H.; Shan, Q.; Wang, L.; Li, M.Q.; et al. Effects of CREB1 gene silencing on cognitive dysfunc-tion by mediating PKA-CREB signaling pathway in mice with vascular de-mentia. Mol. Med. 2018, 24, 18. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, R.; Sharma, V.; Mehan, S.; Sharma, N.; Bedi, K.L. Amelioration of in-tracerebroventricularstreptozotocin induced cognitive dysfunction and oxi-dative stress by vinpocetine—A PDE1 inhibitor. Eur. J. Pharmacol. 2009, 620, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Mehan, S.; Parveen, S.; Kalra, S. Adenylcyclase activator forskolin protects against Huntington’s disease-like neurodegenerative disorders. Neural Re-Gener. Res. 2017, 12, 290. [Google Scholar] [CrossRef]
- Khera, R.; Mehan, S.; Bhalla, S.; Kumar, S.; Alshammari, A.; Alharbi, M.; Sadhu, S.S. Guggulsterone mediated JAK/STAT and PPAR-gamma modulation prevents neurobehavioral and neurochemical abnormalities in propionic acid-induced experimental model of autism. Molecules 2022, 27, 889. [Google Scholar] [CrossRef] [PubMed]
- Safayhi, H.; Mack, T.; Sabieraj, J.; Anazodo, M.I.; Subramanian, L.R.; Ammon, H.P. Boswellic acids: Novel, specific, nonredox inhibitors of 5-lipoxygenase. J. Pharmacol. Exp. Ther. 1992, 261, 1143–1146. [Google Scholar]
- Túnez, I.; Tasset, I.; Pérez-De La Cruz, V.; Santamaría, A. 3-Nitropropionic acid as a tool to study the mechanisms involved in Huntington’s disease: Past, present and future. Molecules 2010, 15, 878–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jinu, A. Elucidation of Role of 3-O-Acetyl-11-Keto-β-Boswellic Acid (AKBA) on Peroxisome Proliferator-Activated Receptor-γ in Scopolamine Induced Cognitive Impairment Model in Rats. Ph.D. Thesis, KMCH College Of Pharmacy, Coimbatore, India, 2020. [Google Scholar]
- Minj, E.; Upadhayay, S.; Mehan, S. Nrf2/HO-1 signaling activator ace-tyl-11-keto-beta Boswellic acid (AKBA)-Mediated Neuroprotection in Methyl Mercury-induced experimental model of ALS. Neurochem. Res. 2021, 46, 2867–2884. [Google Scholar] [CrossRef]
- Aziz, N.A.; Roos, R.A. Characteristics, pathophysiology and clinical manage-ment of weight loss in Huntington’s disease. Neurodegener. Dis. Manag. 2013, 3, 253–266. [Google Scholar] [CrossRef]
- Kim, H.S.; Song, J. Cell therapy in Huntington’s disease. In Progress in Stem Cell Transplantation; IntechOpen: London, UK, 2015; pp. 77–109. [Google Scholar]
- Stürner, K.H.; Verse, N.; Yousef, S.; Martin, R.; Sospedra, M. Boswellic acids reduce T h17 differentiation via blockade of IL-1β-mediated IRAK 1 signaling. Eur. J. Immunol. 2014, 44, 1200–1212. [Google Scholar] [CrossRef]
- Beghelli, D.; Isani, G.; Roncada, P.; Andreani, G.; Bistoni, O.; Bertocchi, M.; Lupidi, G.; Alunnoet, A. Antioxidant and ex vivo immune systemregulatory properties of Boswelliaserrata extracts. Oxidative Med. Cell. Longev. 2017, 2017, 7468064. [Google Scholar] [CrossRef] [Green Version]
- Joshi, Y.B.; Praticò, D. Vitamin E in aging, dementia, and Alzheimer’s disease. Biofactors 2012, 38, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Waters, C.W.; Varuzhanyan, G.; Talmadge, R.J.; Voss, A.A. Huntington disease skeletal muscle is hyperexcitable owing to chloride and potassium channel dysfunction. Proc. Natl. Acad. Sci. USA 2013, 110, 9160–9165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, B.; Levy, S.; Raval, A.P.; Perez-Pinzon, M.A.; Defazio, R.A. Forebrain ischemia triggers GABAergic system degeneration in substantia nigra at chronic stages in rats. Cardiovasc. Psychiatry Neurol. 2010, 2010, 506952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christopherson, K.S.; Bredt, D.S. Nitric oxide in excitable tissues: Physiological roles and disease. J. Clin. Investig. 1997, 100, 2424–2429. [Google Scholar] [CrossRef] [Green Version]
- Beal, M.F.; Brouillet, E.; Jenkins, B.G.; Ferrante, R.J.; Kowall, N.W.; Miller, J.M.; Storey, E.; Srivastava, R.; Rosen, B.R.; Hyman, B.T. Neurochemical and histologic characterization of striatal excitotoxiclesions produced by the mitochondrial toxin 3-nitropropionic acid. J. Neurosci. 1993, 13, 4181–4192. [Google Scholar] [CrossRef] [PubMed]
- Bossi, S.R.; Simpson, J.R.; Isacson, O. Age dependence of striatalneuronal death caused by mitochondrial dysfunction. Neuroreport 1993, 4, 73–76. [Google Scholar] [CrossRef]
- De Moura, M.B.; Dos Santos, L.S.; Van Houten, B. Mitochondrial dysfunction in neurodegenerative diseases and cancer. Environ. Mol. Mutagen. 2010, 51, 391–405. [Google Scholar] [CrossRef]
- Rohlena, J.; Dong, L.F.; Neuzil, J. Targeting the mitochondrial electron transport chain complexes for the induction of apoptosis and cancer treatment. Curr. Pharm. Biotechnol. 2013, 14, 377–389. [Google Scholar] [CrossRef]
- Shasaltaneh, M.D.; Naghdi, N.; Ramezani, S.; Alizadeh, L.; Riazi, G.H. Protection of Beta Boswellic Acid against Streptozotocin-induced Alzheimerʼs Model by Reduction of Tau Phosphorylation Level and Enhancement of Reelin Expression. Planta Med. 2022, 88, 367–379. [Google Scholar] [CrossRef]
- Ahuja, M.; Bishnoi, M.; Copra, K. Protective effect of minocycline, a semisynthetic second generation tetracycline against 3-nitropropionic acid (3-NP)-induced neurotoxicity. Toxicology 2008, 244, 111–122. [Google Scholar] [CrossRef]
- Golpich, M.; Amini, E.; Mohamed, Z.; Azman Ali, R.; Mohamed Ibrahim, N.; Ah-madiani, A. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: Pathogenesis and treatment. CNS Neurosci. Ther. 2017, 23, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kalonia, H.; Kumar, A. Role of LOX/COX pathways in 3-nitropropionicacid-induced Huntington’s disease-like symptoms in rats: Protective effect of licofenole. Br. J. Pharmacol. 2011, 162, 644–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montilla, P.; Túnez, I.; Munoz, M.C.; Salcedo, M.; Feijóo, M.; Muñoz-Castañeda, J.R.; Bujalance, I. Effect of glucocorticoids on 3-nitropropionic acid-induced oxidativestressing synaptosomes. Eur. J. Pharmacol. 2004, 488, 19–25. [Google Scholar] [CrossRef]
- Reus, G.Z.; Titus, S.E.; Abelaira, H.M.; Freitas, S.M.; Tuon, T.; Quevedo, J.; Budni, J. Neurochemical correlation between major depressive disorder and neuro-degenerative diseases. Life Sci. 2016, 158, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhou, T.; Ziegler, A.C.; Dimitrion, P.; Zuo, L. Oxidative stress in neuro-degenerative diseases: From molecular mechanisms to clinical applications. Oxidative Med. Cell Longev. 2017, 2017, 2525967. [Google Scholar] [CrossRef]
- Ross, C.A.; Pantelyat, A.; Kogan, J.; Brandt, J. Determinants of functional disability in Huntington’s disease: Role of cognitive and motor dysfunction. Mov. Disord. 2014, 29, 1351–1358. [Google Scholar] [CrossRef] [Green Version]
- Uddin, L.Q. Cognitive and behavioural flexibility: Neural mechanisms and clinical considerations. Nat. Rev. Neurosci. 2021, 22, 167–179. [Google Scholar] [CrossRef]
- Wang, E.A.; Cepeda, C.; Levine, M.S. Cognitive deficits in Huntington’s disease: Insights from animal models. Curr. Transl. Geriatr. Exp. Gerontol. Rep. 2012, 1, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Sas, K.; Szabó, E.; Vécsei, L. Mitochondria, oxidative stress and the kynurenine system, with a focus on ageing and neuroprotection. Molecules 2018, 23, 191. [Google Scholar] [CrossRef] [Green Version]
- Jha, S.K.; Jha, N.K.; Kumar, D.; Ambasta, R.K.; Kumar, P. Linking mitochondrial dysfunction, metabolic syndrome and stress signaling in Neuro-degeneration. Biochim. Bio Phys. (BBA) Mol. Basis Dis. 2017, 1863, 1132–1146. [Google Scholar] [CrossRef]
- Chaturvedi, R.K.; Beal, M.F. Mitochondrial approaches for neuroprotection. Ann. N. Y. Acad. Sci. 2008, 1147, 395–412. [Google Scholar] [CrossRef] [PubMed]
- Sandhir, R.; Sood, A.; Mehrotra, A.; Kamboj, S.S. N-Acetylcysteine reverses mito-chondrial dysfunctions and behavioral abnormalities in 3-nitropropionic acid-induced Huntington’s disease. Neurodegener. Dis. 2012, 9, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.S.; Koh, S.H. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl. Neurodegener. 2020, 9, 42. [Google Scholar] [CrossRef]
- Pal, A.; Das, S. Terpenoids in Treatment of Neurodegenerative Disease. In Terpenoids Against Human Diseases; CRC Press: Boca Raton, FL, USA, 2019; pp. 95–117. [Google Scholar]
- Cepeda, C.; Murphy, K.P.; Parent, M.; Levine, M.S. The role of dopamine in Huntington’s disease. Prog. Brain Res. 2014, 211, 235–254. [Google Scholar] [PubMed] [Green Version]
- Khan, H.; Ullah, H.; Tundis, R.; Belwal, T.; Devkota, H.P.; Daglia, M.; Cetin, Z.; Saygili, E.I.; Campos, M.D.; Capanoglu, E.; et al. Dietary flavonoids in the management of huntington’s disease: Mechanism and clinical perspective. EFood 2020, 1, 38–52. [Google Scholar] [CrossRef]
- Tabassum, R.; Jeong, N.Y. Potential for therapeutic use of hydrogen sulfide in oxidative stress-induced neurodegenerative diseases. Int. J. Med. Sci. 2019, 16, 1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cha, M.Y.; Kim, D.K.; Mook-Jung, I. The role of mitochondrial DNA mutation on neurodegenerative diseases. Exp. Mol. Med. 2015, 47, e150. [Google Scholar] [CrossRef] [Green Version]
- Colle, D.; Hartwig, J.M.; Soares, F.A.; Farina, M. Probucol modulates oxidative stress and excitotoxicity in Huntington’s disease models in vitro. Brain Res. Bull. 2012, 87, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Saad, M.A.; Ahmed, M.A.; Elbadawy, N.N.; Abdelkader, N.F. Nano-ivabradine averts behavioral anomalies in Huntington’s disease rat model via modulat-ingRhes/m-tor pathway. Prog. Neuro-Psychopharmacol. Bio-Log. Psychiatry 2021, 111, 110368. [Google Scholar] [CrossRef]
- Elbaz, E.M.; Helmy, H.S.; El-Sahar, A.E.; Saad, M.A.; Sayed, R.H. Lercanidipine boosts the efficacy of mesenchymal stem cell therapy in 3-NP-induced Huntington’s disease model rats via modulation of the calcium/calcineurin/NFATc4 and Wnt/β-catenin signalling pathways. Neuro-Chem. Int. 2019, 131, 104548. [Google Scholar]
- El-Sahar, A.E.; Rastanawi, A.A.; El-Yamany, M.F.; Saad, M.A. Dapagliflozinim-proves behavioral dysfunction of Huntington’s disease in rats via inhibiting apoptosis-related glycolysis. Life Sci. 2020, 257, 118076. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albekairi, T.H.; Kamra, A.; Bhardwaj, S.; Mehan, S.; Giri, A.; Suri, M.; Alshammari, A.; Alharbi, M.; Alasmari, A.F.; Narula, A.S.; et al. Beta-Boswellic Acid Reverses 3-Nitropropionic Acid-Induced Molecular, Mitochondrial, and Histopathological Defects in Experimental Rat Model of Huntington’s Disease. Biomedicines 2022, 10, 2866. https://doi.org/10.3390/biomedicines10112866
Albekairi TH, Kamra A, Bhardwaj S, Mehan S, Giri A, Suri M, Alshammari A, Alharbi M, Alasmari AF, Narula AS, et al. Beta-Boswellic Acid Reverses 3-Nitropropionic Acid-Induced Molecular, Mitochondrial, and Histopathological Defects in Experimental Rat Model of Huntington’s Disease. Biomedicines. 2022; 10(11):2866. https://doi.org/10.3390/biomedicines10112866
Chicago/Turabian StyleAlbekairi, Thamer H., Arzoo Kamra, Sudeep Bhardwaj, Sidharth Mehan, Aditi Giri, Manisha Suri, Abdulrahman Alshammari, Metab Alharbi, Abdullah F. Alasmari, Acharan S Narula, and et al. 2022. "Beta-Boswellic Acid Reverses 3-Nitropropionic Acid-Induced Molecular, Mitochondrial, and Histopathological Defects in Experimental Rat Model of Huntington’s Disease" Biomedicines 10, no. 11: 2866. https://doi.org/10.3390/biomedicines10112866
APA StyleAlbekairi, T. H., Kamra, A., Bhardwaj, S., Mehan, S., Giri, A., Suri, M., Alshammari, A., Alharbi, M., Alasmari, A. F., Narula, A. S., & Kalfin, R. (2022). Beta-Boswellic Acid Reverses 3-Nitropropionic Acid-Induced Molecular, Mitochondrial, and Histopathological Defects in Experimental Rat Model of Huntington’s Disease. Biomedicines, 10(11), 2866. https://doi.org/10.3390/biomedicines10112866