Genetic Markers for Thrombophilia and Cardiovascular Disease Associated with Multiple Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Genetic Analysis for Thrombophilia and Cardiovascular Risk Factors in MS Patients
2.3. Statistical Analysis
3. Results
3.1. Demographic and Clinical Data of Study Participants
3.2. Analysis of Genotype and Allele Distributions of Thrombophilia and Cardiovascular Polymorphisms in MS Patients and Healthy Controls
3.3. Mutant Allele Presence and Disability Progression in MS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lennon, R.P.; Claussen, K.A.; Kuersteiner, K.A. State of the Heart: An Overview of the Disease Burden of Cardiovascular Disease from an Epidemiologic Perspective. Prim. Care-Clin. Off. Pract. 2018, 45, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Jadidi, E.; Mohammadi, M.; Moradi, T. High Risk of Cardiovascular Diseases after Diagnosis of Multiple Sclerosis. Mult. Scler. J. 2013, 19, 1336–1340. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.H.; Huang, W.S.; Lin, C.L.; Chang, Y.J. Increased Risk of Ischaemic Stroke among Patients with Multiple Sclerosis. Eur. J. Neurol. 2015, 22, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Palladino, R.; Marrie, R.A.; Majeed, A.; Chataway, J. Evaluating the Risk of Macrovascular Events and Mortality among People with Multiple Sclerosis in England. JAMA Neurol. 2020, 77, 820–828. [Google Scholar] [CrossRef]
- Koudriavtseva, T. Thrombotic Processes in Multiple Sclerosis as Manifestation of Innate Immune Activation. Front. Neurol. 2014, 5, 119. [Google Scholar] [CrossRef] [PubMed]
- Koumas, L.; Costeas, P.A.; Papaloizou, A.; Giantsiou-Kyriakou, A. Genetic Assessment of Cardiovascular Risk Factors in the Greek Cypriot Population. Thromb. Res. 2003, 112, 143–146. [Google Scholar] [CrossRef]
- Friedline, J.A.; Ahmad, E.; Garcia, D.; Blue, D.; Ceniza, N.; Mattson, J.C.; Crisan, D. Combined Factor V Leiden and Prothrombin Genotyping in Patients Presenting with Thromboembolic Episodes. Arch. Pathol. Lab. Med. 2001, 125, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Gehring, N.H.; Frede, U.; Neu-Yilik, G.; Hundsdoerfer, P.; Vetter, B.; Hentze, M.W.; Kulozik, A.E. Increased Efficiency of MRNA 3′ End Formation: A New Genetic Mechanism Contributing to Hereditary Thrombophilia. Nat. Genet. 2001, 28, 389–392. [Google Scholar] [CrossRef]
- Spiroski, I. Factor V Leiden (G1691A), Factor V R2 (A4070G), and Prothrombin (G20210A) Genetic Polymorphisms in Macedonian Patients with Occlusive Artery Disease and Deep Vein Thrombosis. South East Eur. J. Cardiol. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Klajmon, A.; Chmiel, J.; Ząbczyk, M.; Pociask, E.; Wypasek, E.; Malinowski, K.P.; Undas, A.; Natorska, J. Fibrinogen β Chain and FXIII Polymorphisms Affect Fibrin Clot Properties in Acute Pulmonary Embolism. Eur. J. Clin. Investig. 2022, 52, e13718. [Google Scholar] [CrossRef]
- Hu, X.; Wang, J.; Li, Y.; Wu, J.; Qiao, S.; Xu, S.; Huang, J.; Chen, L. The β-Fibrinogen Gene 455G/A Polymorphism Associated with Cardioembolic Stroke in Atrial Fibrillation with Low CHA2DS2-VaSc Score. Sci. Rep. 2017, 7, 17517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martiskainen, M.; Oksala, N.; Pohjasvaara, T.; Kaste, M.; Oksala, A.; Karhunen, P.J.; Erkinjuntti, T. Βeta-Fibrinogen Gene Promoter A -455 Allele Associated with Poor Longterm Survival among 55-71 Years Old Caucasian Women in Finnish Stroke Cohort. BMC Neurol. 2014, 14, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davalos, D.; Baeten, K.M.; Whitney, M.A.; Mullins, E.S.; Friedman, B.; Olson, E.S.; Ryu, J.K.; Smirnoff, D.S.; Petersen, M.A.; Bedard, C.; et al. Early Detection of Thrombin Activity in Neuroinflammatory Disease. Ann. Neurol. 2014, 75, 303–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shammaa, D.M.R.; Sabbagh, A.S.; Taher, A.T.; Zaatari, G.S.; Mahfouz, R.A.R. Plasminogen Activator Inhibitor-1 (PAI-1) Gene 4G/5G Alleles Frequency Distribution in the Lebanese Population. Mol. Biol. Rep. 2008, 35, 453–457. [Google Scholar] [CrossRef]
- Zhang, T.; Pang, C.; Li, N.; Zhou, E.; Zhao, K. Plasminogen Activator Inhibitor-1 4G/5G Polymorphism and Retinopathy Risk in Type 2 Diabetes: A Meta-Analysis. BMC Med. 2013, 11, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Živković, M.; Starčević Čizmarević, N.; Lovrečić, L.; Klupka-Sarić, I.; Stanković, A.; Gašparović, I.; Lavtar, P.; Dinčić, E.; Stojković, L.; Rudolf, G.; et al. The Role of TPA I/D and PAI-1 4G/5G Polymorphisms in Multiple Sclerosis. Dis. Mark. 2014, 2014, 362708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duval, C.; Ali, M.; Chaudhry, W.W.; Ridger, V.C.; Ariëns, R.A.S.; Philippou, H. Factor XIII A-Subunit V34L Variant Affects Thrombus Cross-Linking in a Murine Model of Thrombosis. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 308–316. [Google Scholar] [CrossRef] [Green Version]
- Wells, P.S.; Anderson, J.L.; Scarvelis, D.K.; Doucette, S.P.; Gagnon, F. Factor XIII Val34Leu Variant Is Protective against Venous Thromboembolism: A HuGE Review and Meta-Analysis. Am. J. Epidemiol. 2006, 164, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Kattula, S.; Bagoly, Z.; Tóth, N.K.; Muszbek, L.; Wolberg, A.S. The Factor XIII-A Val34Leu Polymorphism Decreases Whole Blood Clot Mass at High Fibrinogen Concentrations. J. Thromb. Haemost. 2020, 18, 885–894. [Google Scholar] [CrossRef]
- Naghibalhossaini, F.; Ehyakonandeh, H.; Nikseresht, A.; Kamali, E. Association Between MTHFR Genetic Variants and Multiple Sclerosis in a Southern Iranian Population. Int. J. Mol. Cell. Med. 2015, 4, 82. [Google Scholar]
- Poddar, R.; Paul, S. Homocysteine-NMDA Receptor-Mediated Activation of Extracellular Signal-Regulated Kinase Leads to Neuronal Cell Death. J. Neurochem. 2009, 110, 1095–1106. [Google Scholar] [CrossRef] [PubMed]
- Deep, S.N.; Mitra, S.; Rajagopal, S.; Paul, S.; Poddar, R. GluN2A-NMDA Receptor-Mediated Sustained Ca2+ Influx Leads to Homocysteine-Induced Neuronal Cell Death. J. Biol. Chem. 2019, 294, 11154–11165. [Google Scholar] [CrossRef] [PubMed]
- Ramsaransing, G.S.M.; Fokkema, M.R.; Teelken, A.; Arutjunyan, A.V.; Koch, M.; De Keyser, J. Plasma Homocysteine Levels in Multiple Sclerosis. J. Neurol. Neurosurg. Psychiatry 2006, 77, 189–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Qiu, S.; Shi, J.; Guo, Y.; Li, Z.; Cheng, Y.; Liu, Y. Association between MTHFR C677T/A1298C and Susceptibility to Autism Spectrum Disorders: A Meta-Analysis. BMC Pediatr. 2020, 20, 449. [Google Scholar] [CrossRef] [PubMed]
- Brown, N.M.; Pratt, V.M.; Buller, A.; Pike-Buchanan, L.; Redman, J.B.; Sun, W.; Chen, R.; Crossley, B.; McGinniss, M.J.; Quan, F.; et al. Detection of 677CT/1298AC “Double Variant” Chromosomes: Implications for Interpretation of MTHFR Genotyping Results. Genet. Med. 2005, 7, 278–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouzidi, N.; Hassine, M.; Fodha, H.; Ben Messaoud, M.; Maatouk, F.; Gamra, H.; Ferchichi, S. Association of the Methylene-Tetrahydrofolate Reductase Gene Rs1801133 C677T Variant with Serum Homocysteine Levels, and the Severity of Coronary Artery Disease. Sci. Rep. 2020, 10, 10064. [Google Scholar] [CrossRef] [PubMed]
- Ghazouani, L.; Abboud, N.; Mtiraoui, N.; Zammiti, W.; Addad, F.; Amin, H.; Almawi, W.Y.; Mahjoub, T. Homocysteine and Methylenetetrahydrofolate Reductase C677T and A1298C Polymorphisms in Tunisian Patients with Severe Coronary Artery Disease. J. Thromb. Thrombolysis 2009, 27, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Saidi, S.; Mahjoub, T.; Slamia, L.B.; Ammou, S.B.; Al-Subaie, A.M.; Almawi, W.Y. Polymorphisms of the Human Platelet Alloantigens HPA-1, HPA-2, HPA-3, and HPA-4 in Ischemic Stroke. Am. J. Hematol. 2008, 83, 570–573. [Google Scholar] [CrossRef] [PubMed]
- Gulsah, D.; Nevin, K.; Serkan, Y.; Nurten, K. Analysis of Twelve Cardiovascular Disease Related Gene Mutations among Turkish Patients with Coronary Artery Disease. Int. J. Blood Res. Disord. 2020, 7, 074. [Google Scholar] [CrossRef] [Green Version]
- Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L.; et al. Diagnostic Criteria for Multiple Sclerosis: 2010 Revisions to the McDonald Criteria. Ann. Neurol. 2011, 69, 292–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadjiagapiou, M.S.; Krashias, G.; Deeba, E.; Christodoulou, C.; Pantzaris, M.; Lambrianides, A. Antibodies to Blood Coagulation Components Are Implicated in Patients with Multiple Sclerosis. Mult. Scler. Relat. Disord. 2022, 62, 103775. [Google Scholar] [CrossRef]
- Göbel, K.; Kraft, P.; Pankratz, S.; Gross, C.C.; Korsukewitz, C.; Kwiecien, R.; Mesters, R.; Kehrel, B.E.; Wiendl, H.; Kleinschnitz, C.; et al. Prothrombin and Factor X Are Elevated in Multiple Sclerosis Patients. Ann. Neurol. 2016, 80, 946–951. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, O.; Geraldes, R.; DeLuca, G.C.; Palace, J. Multiple Sclerosis and the Risk of Systemic Venous Thrombosis: A Systematic Review. Mult. Scler. Relat. Disord. 2019, 27, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, C.F. Risk of Vascular Disease in Patients with Multiple Sclerosis: A Review. Neurol. Res. 2012, 34, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Castoldi, E. FV and APC Resistance: The Plot Thickens. Blood 2014, 123, 2288–2289. [Google Scholar] [CrossRef] [Green Version]
- Castoldi, E.; Simioni, P.; Kalafatis, M.; Lunghi, B.; Tormene, D.; Girelli, D.; Girolami, A.; Bernardi, F. Combinations of 4 Mutations (FV R506Q, FV H1299R, FV Y1702C, PT 20210G/A) Affecting the Prothrombinase Complex in a Thrombophilic Family. Blood 2000, 96, 1443–1448. [Google Scholar] [CrossRef]
- Slowik, A.; Dziedzic, T.; Turaj, W.; Pera, J.; Glodzik-Sobanska, L.; Szermer, P.; Malecki, M.T.; Figlewicz, D.A.; Szczudlik, A. A2 Alelle of GpIIIa Gene Is a Risk Factor for Stroke Caused by Large-Vessel Disease in Males. Stroke 2004, 35, 1589–1593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faioni, E.M.; Castaman, G.; Asti, D.; Lussana, F.; Rodeghiero, F. Association of Factor V Deficiency with Factor V HR2. Haematologica 2004, 89, 195–200. [Google Scholar] [PubMed]
- Margaglione, M.; Bossone, A.; Coalizzo, D.; D’Andrea, G.; Brancaccio, V.; Ciampa, A.; Grandone, E.; Di Minno, G. FV HR2 Haplotype as Additional Inherited Risk Factor for Deep Vein Thrombosis in Individuals with a High-Risk Profile. Thromb. Haemost. 2002, 87, 32–36. [Google Scholar] [CrossRef]
- Pecheniuk, N.M.; Morris, C.P.; Walsh, T.P.; Marsh, N.A. The Factor V HR2 Haplotype: Prevalence and Association of the A4070G and A6755G Polymorphisms. Blood Coagul. Fibrinolysis 2001, 12, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Federici, E.H.; Al-Mondhiry, H. High Risk of Thrombosis Recurrence in Patients with Homozygous and Compound Heterozygous Factor V R506Q (Factor V Leiden) and Prothrombin G20210A. Thromb. Res. 2019, 182, 75–78. [Google Scholar] [CrossRef]
- Demirci, F.Y.K.; Dressen, A.S.; Kammerer, C.M.; Barmada, M.M.; Kao, A.H.; Ramsey-Goldman, R.; Manzi, S.; Kamboh, M.I. Functional Polymorphisms of the Coagulation Factor II Gene (F2) and Susceptibility to Systemic Lupus Erythematosus. J. Rheumatol. 2011, 38, 652–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoteit, R.; Abbas, F.; Antar, A.; Abdel Khalek, R.; Shammaa, D.; Mahfouz, R. Significance of the Use of the ViennaLab “Cardiovascular Disease Panel” (CVD) Assay as a Reflex Test for the “Factor V/II/MTHFR Assay.”. Meta Gene 2013, 1, 76–81. [Google Scholar] [CrossRef]
- Renner, W.; Köppel, H.; Hoffmann, C.; Schallmoser, K.; Stanger, O.; Toplak, H.; Wascher, T.C.; Pilger, E. Prothrombin G20210A, Factor V Leiden, and Factor XIII Val34Leu: Common Mutations of Blood Coagulation Factors and Deep Vein Thrombosis in Austria. Thromb. Res. 2000, 99, 35–39. [Google Scholar] [CrossRef]
- Voskuhl, R.R.; Patel, K.; Paul, F.; Gold, S.M.; Scheel, M.; Kuchling, J.; Cooper, G.; Asseyer, S.; Chien, C.; Brandt, A.U.; et al. Sex Differences in Brain Atrophy in Multiple Sclerosis. Biol. Sex Differ. 2020, 11, 49. [Google Scholar] [CrossRef] [PubMed]
- Coyle, P.K. What Can We Learn from Sex Differences in MS? J. Pers. Med. 2021, 11, 1006. [Google Scholar] [CrossRef] [PubMed]
- Jallu, V.; Poulain, P.; Fuchs, P.F.J.; Kaplan, C.; de Brevern, A.G. Modeling and Molecular Dynamics of HPA-1a and -1b Polymorphisms: Effects on the Structure of the Β3 Subunit of the AIIbβ3 Integrin. PLoS ONE 2012, 7, e47304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbadessa, G.; Miele, G.; Di Pietro, A.; Sparaco, M.; Palladino, R.; Armetta, I.; D’Elia, G.; Trojsi, F.; Signoriello, E.; Giacomo Lus, G.; et al. Multiple Sclerosis and Genetic Polymorphisms in Fbrinogen-mediated Hemostatic Pathways: A Case–Control Study. Neurol. Sci. 2022, 43, 2601–2609. [Google Scholar] [CrossRef] [PubMed]
- Davalos, D.; Akassoglou, K. Fibrinogen as a Key Regulator of Inflammation in Disease. Semin. Immunopathol. 2012, 34, 43–62. [Google Scholar] [CrossRef]
- Sillen, M.; Declerck, P.J. Targeting PAI-1 in Cardiovascular Disease: Structural Insights Into PAI-1 Functionality and Inhibition. Front. Cardiovasc. Med. 2020, 7, 364. [Google Scholar] [CrossRef]
- Abboud, N.; Ghazouani, L.; Saidi, S.; Ben-Hadj-Khalifa, S.; Addad, F.; Almawi, W.Y.; Mahjoub, T. Association of PAI-1 4G/5G and -844G/A Gene Polymorphisms and Changes in PAI-1/Tissue Plasminogen Activator Levels in Myocardial Infarction: A Case-Control Study. Genet. Test. Mol. Biomark. 2010, 14, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Isordia-Salas, I.; Leaños-Miranda, A.; Sainz, I.M.; Reyes-Maldonado, E.; Borrayo-Sánchez, G. Association of the Plasminogen Activator Inhibitor-1 Gene 4G/5G Polymorphism With ST Elevation Acute Myocardial Infarction in Young Patients. Rev. Esp. Cardiol. (Engl. Ed.) 2009, 62, 365–372. [Google Scholar] [CrossRef]
- Szegedi, I.; Nagy, A.; Székely, E.G.; Czuriga-Kovács, K.R.; Sarkady, F.; Lánczi, L.I.; Berényi, E.; Csiba, L.; Bagoly, Z. PAI-1 5G/5G Genotype Is an Independent Risk of Intracranial Hemorrhage in Post-Lysis Stroke Patients. Ann. Clin. Transl. Neurol. 2019, 6, 2240–2250. [Google Scholar] [CrossRef] [PubMed]
- Ineichen, B.V.; Keskitalo, S.; Farkas, M.; Bain, N.; Kallweit, U.; Weller, M.; Klotz, L.; Linnebank, M. Genetic Variants of Homocysteine Metabolism and Multiple Sclerosis: A Case-Control Study. Neurosci. Lett. 2014, 562, 75–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szvetko, A.L.; Fowdar, J.; Nelson, J.; Colson, N.; Tajouri, L.; Csurhes, P.A.; Pender, M.P.; Griffiths, L.R. No Association between MTHFR A1298C and MTRR A66G Polymorphisms, and MS in an Australian Cohort. J. Neurol. Sci. 2007, 252, 49–52. [Google Scholar] [CrossRef] [Green Version]
- Tajouri, L.; Martin, V.; Gasparini, C.; Ovcaric, M.; Curtain, R.; Lea, R.A.; Haupt, L.M.; Csurhes, P.; Pender, M.P.; Griffiths, L.R. Genetic Investigation of Methylenetetrahydrofolate Reductase (MTHFR) and Catechol-O-Methyl Transferase (COMT) in Multiple Sclerosis. Brain Res. Bull. 2006, 69, 327–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fawzy, M.S.; Toraih, E.A.; Aly, N.M.; Fakhr-Eldeen, A.; Badran, D.I.; Hussein, M.H. Atherosclerotic and Thrombotic Genetic and Environmental Determinants in Egyptian Coronary Artery Disease Patients: A Pilot Study. BMC Cardiovasc. Disord. 2017, 17, 26. [Google Scholar] [CrossRef] [Green Version]
- Ohira, N.; Matsumoto, T.; Tamaki, S.; Takashima, H.; Tarutani, Y.; Yamane, T.; Yasuda, Y.; Horie, M. Angiotensin-Converting Enzyme Insertion/Deletion Polymorphism Modulates Coronary Release of Tissue Plasminogen Activator in Response to Bradykinin. Hypertens. Res. 2004, 27, 39–45. [Google Scholar] [CrossRef]
Features | MS Patients (n = 48) | HCs (n = 25) |
---|---|---|
Sex | ||
Women/Men | 28/20 | 16/9 |
Age in years | ||
Mean ± S.D. | 49.5 ± 13.8 | 40.7 ± 10.0 |
Min–max | 23–80 | 21–55 |
Disease course (RRMS/SPMS/PPMS) | 39/8/1 | N/A |
Disease duration | ||
Mean ± S.D. | 15.52 ± 8.5 | N/A |
Median (interquartile range) | 16 (10–21) | |
EDSS | ||
Median (interquartile range, IQR) | 3.25 (2.5–5.5) | N/A |
Mild: 0–3.0 [n (%)] | 24 (50.0) | |
Moderate: 3.5–5.5 [n (%)] | 17 (35.4) | |
Severe: 6.0–9.5 [n (%)] | 7 (14.6) | |
Women/Men (median, IQR) | 3.0 (2.5–4.75)/4.0 (2.5–6.0) | |
MSSS | ||
Median (interquartile range) | 3.65 (2.64–5.41) | N/A |
Benign MS: 0.01–1.99 [n (%)] | 7 (14.6) | |
Moderate MS: 2.00–6.99 [n (%)] | 36 (75.0) | |
Severe MS: 7–10 [n (%)] | 4 (8.3) | |
N/A | 1 (2.1) | |
Women/Men (median, IQR) | 3.14 (2.35–5.48)/4.20 (2.82–5.41) | |
Laboratory findings | ||
Anti-FVIIa [n (%)] | 11 (22.9) | N/A |
Anti-thrombin [n (%)] | 6 (12.5) | |
Anti-prothrombin [n (%)] | 7 (14.6) | |
Anti-FXa [n (%)] | 11 (22.9) | |
Anti-FXII [n (%)] | 9 (18.7) | |
Anti-plasmin [n (%)] | 15 (31.2) | |
Anti-protein C [n (%)] | 6 (12.5) |
Protein | Gene | Mutation and Polymorphism | Ref SNP |
---|---|---|---|
Blood coagulation factor V | F5 | 1691 G>A (Leiden) | rs6025 |
His1299Arg (HR2 haplotype) | rs1800595 | ||
Prothrombin (Blood coagulation factor II) | F2 | 20210 G>A | rs1799963 |
Blood coagulation factor XIII | F13A1 | Val34Leu | rs5985 |
ß-Fibrinogen | FGB | −445 G>A | rs1800790 |
Human platelet antigen 1 (HPA1) | ITGB3 | 1a/1b (Leu33Pro) | rs5918 |
5,10-Methylenetetrahydrofolate reductase | MTHFR | 677 C>T | rs1801133 |
1298 A>C | rs1801131 | ||
Plasminogen activator inhibitor 1 (PAI-1) | Serpine1 | 4G/5G | rs1799762 |
Angiotensin-converting enzyme (ACE) | ACE | I/D (Insertion or Deletion) | rs1799752 |
Apolipoprotein B (Apo B) | ApoB | Arg3500Gln | rs5742904 |
Risk Factors | Genotype | MS (n (%)) | HC (n (%)) | * p Value | Hardy–Weinberg Equilibrium (Only for HCs)Chi-Square (χ2) | Odds Ratio (95% CI) |
---|---|---|---|---|---|---|
Factor V Leiden | G/G | 39 (81.25) | 22 (88.0) | 0.53 | 0.10 | Ref |
G/A | 9 (18.75) | 3 (12.0) | 1.69 (0.41–6.91) | |||
A/A | 0 | 0 | - | - | ||
G/A + A/A | 9 (18.75) | 3 (12.0) | 0.53 | 1.69 (0.41–6.91) | ||
Factor V R2 | A/A | 40 (83.33) | 21 (84.0) | 1.00 | 0.19 | Ref |
A/G | 8 (16.67) | 4 (16.0) | 1.05 (0.28–3.90) | |||
G/G | 0 | 0 | - | - | ||
A/G + G/G | 8 (16.67) | 4 (16.0) | 1.00 | 1.05 (0.28–3.90) | ||
Factor II | G/G | 47 (97.92) | 25 (100) | 1.00 | - | Ref |
G/A | 1 (2.08) | 0 | 1.61 (0.06–41.01) | |||
A/A | 0 | 0 | - | - | ||
G/A + A/A | 1 (2.08) | 0 | 1.00 | 1.61 (0.06–41.01) | ||
Factor FXIII Val34Leu | G/G | 34 (70.83) | 12 (48.0) | - | 0.91 | Ref |
G/T | 12 (25.0) | 12 (48.0) | 0.04 * | 0.35 (0.12–0.99) | ||
T/T | 2 (4.17) | 1 (4.0) | 1.00 | 0.70 (0.05–8.51) | ||
G/T + T/T | 14 (29.17) | 13 (52.0) | 0.055 | 0.38 (0.14–1.03) | ||
β-Fibrinogen | G/G | 23 (47.92) | 16 (64.0) | - | 1.20 | Ref |
G/A | 21 (43.75) | 9 (36.0) | 0.34 | 1.62 (0.59–4.45) | ||
A/A | 4 (8.33) | 0 | 0.27 | 6.32 (0.32–125.6) | ||
G/A + A/A | 25 (52.08) | 9 (36.0) | 0.19 | 1.93 (0.71–5.22) | ||
HPA-1 | 1a/1a | 34 (70.83) | 17 (68.0) | - | 0.06 | Ref |
1a/1b | 14 (29.17) | 7 (28.0) | 1.00 | 1.00 (0.34–2.94) | ||
1b/1b | 0 | 1 (4.0) | 0.34 | 0.17 (0.0–4.37) |
Risk Factors | Genotype | MS (n (%)) | HC (n (%)) | * p Value | Hardy–Weinberg Equilibrium (Only for HCs) Chi-Square (χ2) | Odds Ratio (95% CI) |
---|---|---|---|---|---|---|
PAI-1 | 4G/4G | 8 (16.67) | 8 (32.0) | - | 0.69 | Ref |
4G/5G | 21 (43.75) | 14 (56.0) | 0.50 | 1.50 (0.46–4.93) | ||
5G/5G | 19 (39.58) | 3 (12.0) | 0.02 * | 6.33 (1.32–30.24) | ||
4G/4G + 4G/5G | 29 (60.42) | 22 (88.0) | - | Ref | ||
5G/5G | 19 (39.58) | 3 (12.0) | 0.016 * | 4.80 (1.26–18.31) | ||
MTHFR (C677T) | C/C | 18 (37.5) | 12 (48.0) | - | 0.98 | Ref |
C/T | 25 (52.08) | 9 (36.0) | 0.25 | 1.85 (0.64–5.32) | ||
T/T | 5 (10.42) | 4 (16.0) | 1.00 | 0.83 (0.18–3.75) | ||
C/T + T/T | 30 (62.50) | 13 (52.0) | 0.38 | 1.54 (0.57–4.09) | ||
MTHFR (A1298C) | A/A | 21 (43.75) | 10 (40.0) | - | 0.04 | Ref |
A/C | 23 (47.92) | 12 (48.0) | 0.86 | 0.91 (0.32–2.55) | ||
C/C | 4 (8.33) | 3 (12.0) | 0.67 | 0.63 (0.12–3.39) | ||
A/C + C/C | 27 (56.25) | 15 (60.0) | 0.76 | 0.85 (0.32–2.29) | ||
ACE | I/I | 3 (6.25) | 4 (16.0) | - | 0.98 | Ref |
I/D | 26 (54.17) | 9 (36.0) | 0.17 | 3.85 (0.72–20.63) | ||
D/D | 19 (39.58) | 12 (48.0) | 0.42 | 2.11 (0.40–11.13) | ||
Apo B | G/G | 48(100) | 25 (100) | - | - | - |
G/A | 0 | 0 | ||||
A/A | 0 | 0 |
Risk Factors | Allele | MS (%) | HC (%) | * p Value | Odds Ratio (95% CI) |
---|---|---|---|---|---|
Factor V Leiden | G | 87 (90.62) | 47 (94.0) | 0.75 | Ref 1.62 (0.42–6.28) |
A | 9 (9.38) | 3 (6.0) | |||
Factor V R2 | A | 88 (91.67) | 46 (92.0) | 1.00 | Ref 1.04 (0.30–3.66) |
G | 8 (8.33) | 4 (8.0) | |||
Factor II | G | 95 (98.96) | 50 (100) | 1.00 | Ref 1.59 (0.06–39.69) |
A | 1 (1.04) | 0 | |||
Factor FXIII Val34Leu | G | 80 (83.33) | 36 (72.0) | 0.10 | Ref 0.51 (0.22–1.17) |
T | 16 (16.67) | 14 (28.0) | |||
beta- Fibrinogen | G | 67 (69.80) | 41 (82.0) | 0.11 | Ref 1.97 (0.85–4.58) |
A | 29 (30.20) | 9 (18.0) | |||
HPA-1 | 1a | 82 (85.42) | 41 (82.0) | 0.59 | Ref 0.77 (0.31–1.95) |
1b | 14 (14.58) | 9 (18.0) |
Risk Factors | Allele | MS (%) | HC (%) | * p Value | Odds Ratio (95% CI) |
---|---|---|---|---|---|
PAI-1 | 4G | 37 (38.54) | 30 (60.0) | 0.013 * | Ref 2.39 (1.19–4.81) |
5G | 59 (61.46) | 20 (40.0) | |||
MTHFR (C677T) | C | 61 (63.54) | 33 (66.0) | 0.77 | Ref 1.11 (0.54–2.28) |
T | 35 (36.46) | 17 (34.0) | |||
MTHFR (A1298C) | A | 65 (67.71) | 32 (64.0) | 0.65 | Ref 0.85 (0.41–1.74) |
C | 31 (32.29) | 18 (36.0) | |||
ACE | I | 32 (33.33) | 17 (34.0) | 0.93 | Ref 1.03 (0.50–2.12) |
D | 64 (66.67) | 33 (66.0) | |||
Apo B | G | 96 (100) | 50 (100) | - | - |
A | 0 | 0 |
Risk Factors | Genotype | EDSS | MSSS | ||||
---|---|---|---|---|---|---|---|
Median (IQR) | Odds Ratio (95% CI) | p Value for OR | Median (IQR) | Odds Ratio (95% CI) | p Value for OR | ||
Factor V Leiden | G/G | 3.25 (2.50–5.50) | Ref | 3.65 (2.64–5.41) | Ref | ||
G/A | 3.00 (1.75–3.50) | 0.53 (0.25–0.90) | 0.016 (*) | 2.73 (1.90–3.93) | 0.70 (0.44–1.06) | 0.10 | |
Factor V R2 | A/A | 3.25 (2.50–5.50) | Ref | 3.65 (2.64–5.41) | Ref | ||
A/G | 1.75 (1.00–4.75) | 0.46 (0.19–0.84) | 0.008 (**) | 2.10 (1.45–4.49) | 0.60 (0.30–0.97) | 0.038 (*) | |
Factor FXIII Val34Leu | G/G | 3.50 (2.50–5.50) | Ref | 3.65 (2.64–5.60) | Ref | ||
G/T, T/T | 3.00 (2.50–5.75) | 1.02 (0.71–1.44) | 0.90 | 4.16 (2.55–6.28) | 1.16 (0.87–1.57) | 0.31 | |
beta-Fibrinogen −455 G>A | G/G | 3.50 (2.50–5.50) | Ref | 3.65 (2.50–5.41) | Ref | ||
G/A, A/A | 3.50 (2.50–5.50) | 0.99 (0.72–1.37) | 0.99 | 4.21 (3.02–5.26) | 1.06 (0.81–1.40) | 0.66 | |
HPA-1 | 1a/1a | 3.25 (2.50–5.50) | Ref | 3.65 (2.64–5.41) | Ref | ||
1a/1b | 4.50 (2.87–6.12) | 1.47 (1.03–2.18) | 0.03 (*) | 4.54 (3.08–6.47) | 1.42 (1.05–2.01) | 0.02 (*) |
Risk Factors | Genotype | EDSS | MSSS | ||||
---|---|---|---|---|---|---|---|
Median (IQR) | Odds Ratio (95% CI) | p Value for OR | Median (IQR) | Odds Ratio (95% CI) | p Value for OR | ||
PAI–1 | 4G/4G | 4.00 (2.75–5.50) | Ref | 3.65 (2.40–5.63) | Ref | ||
4G/5G, 5G/5G | 3.00 (2.50–5.12) | 0.79 (0.52–1.20) | 0.27 | 3.50 (2.64–5.03) | 0.88 (0.62–1.25) | 0.46 | |
MTHFR (C677T) | CC | 3.50 (2.50–5.50) | Ref | 3.69 (2.64–5.50) | Ref | ||
CT, TT | 3.50 (2.50–5.50) | 1.05 (0.75–1.47) | 0.78 | 3.57 (2.30–5.12) | 0.92 (0.70–1.23) | 0.60 | |
MTHFR (A1298C) | AA | 3.50 (2.50–5.50) | Ref | 3.65 (2.64–5.03) | Ref | ||
AC, CC | 3.00 (2.50–5.50) | 1.09 (0.79–1.52) | 0.60 | 4.25 (2.77–6.45) | 1.33 (0.99–1.87) | 0.055 | |
ACE | I/I | 3.00 (2.50–5.50) | Ref | 3.50 (2.57–4.64) | Ref | ||
I/D, D/D | 3.50 (2.50–5.50) | 0.81 (0.43–1.58) | 0.52 | 3.57 (2.53–4.98) | 0.69 (0.39–1.16) | 0.16 |
Risk Factors | Genotype | EDSS | MSSS | ||||
---|---|---|---|---|---|---|---|
Median (IQR) | Odds Ratio (95% CI) | p Value for OR | Median (IQR) | Odds Ratio (95% CI) | p Value for OR | ||
HPA-1 (Women) | 1a/1a | 3.00 (2.50–4.00) | Ref | 2.64 (1.60–4.25) | Ref | ||
1a/1b | 4.00 (2.50–5.50) | 1.54 (0.90–2.99) | 0.11 | 4.49 (3.01–6.24) | 1.56 (1.04–2.61) | 0.03 (*) | |
HPA-1 (Men) | 1a/1a | 3.50 (2.25–5.50) | Ref | 3.69 (2.68–4.98) | Ref | ||
1a/1b | 6.50 (6.00–8.00) | 3.04 (1.22–19.54) | 0.01 (*) | 6.43 (4.5408.47) | 1.63 (0.93–3.35) | 0.08 | |
MTHFR (A1298C) (Women) | AA | 3.50 (3.00–4.00) | Ref | 2.97 (2.30–3.79) | Ref | ||
AC, CC | 3.00 (2.50–5.25) | 0.97 (0.57–1.70) | 0.93 | 4.21 (2.47–6.01) | 1.23 (0.84–1.92) | 0.29 | |
MTHFR (A1298C) (Men) | AA | 3.25 (2.37–5.62) | Ref | 3.62 (2.42–4.87) | Ref | ||
AC, CC | 4.00 (2.62–7.12) | 1.21 (0.80–1.91) | 0.37 | 4.38 (3.35–8.35) | 1.66 (1.02–3.43) | 0.04 (*) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadjiagapiou, M.S.; Krashias, G.; Deeba, E.; Kallis, G.; Papaloizou, A.; Costeas, P.; Christodoulou, C.; Pantzaris, M.; Lambrianides, A. Genetic Markers for Thrombophilia and Cardiovascular Disease Associated with Multiple Sclerosis. Biomedicines 2022, 10, 2665. https://doi.org/10.3390/biomedicines10102665
Hadjiagapiou MS, Krashias G, Deeba E, Kallis G, Papaloizou A, Costeas P, Christodoulou C, Pantzaris M, Lambrianides A. Genetic Markers for Thrombophilia and Cardiovascular Disease Associated with Multiple Sclerosis. Biomedicines. 2022; 10(10):2665. https://doi.org/10.3390/biomedicines10102665
Chicago/Turabian StyleHadjiagapiou, Maria S., George Krashias, Elie Deeba, George Kallis, Andri Papaloizou, Paul Costeas, Christina Christodoulou, Marios Pantzaris, and Anastasia Lambrianides. 2022. "Genetic Markers for Thrombophilia and Cardiovascular Disease Associated with Multiple Sclerosis" Biomedicines 10, no. 10: 2665. https://doi.org/10.3390/biomedicines10102665
APA StyleHadjiagapiou, M. S., Krashias, G., Deeba, E., Kallis, G., Papaloizou, A., Costeas, P., Christodoulou, C., Pantzaris, M., & Lambrianides, A. (2022). Genetic Markers for Thrombophilia and Cardiovascular Disease Associated with Multiple Sclerosis. Biomedicines, 10(10), 2665. https://doi.org/10.3390/biomedicines10102665