A Review of Compartmentalised Inflammation and Tertiary Lymphoid Structures in the Pathophysiology of Multiple Sclerosis
Abstract
:1. Introduction
2. Compartmentalised Inflammation and Tertiary Lymphoid Structures in Multiple Sclerosis
Study | Cases | TLS Identified | Findings | Location of TLS |
---|---|---|---|---|
Serafini et al., 2004 [25] | SPMS n = 3 PPMS n = 2 RRMS n = 1 Control (non-neurological disease) n = 1 Post-mortem FFPE and fixed frozen tissue | 2 SPMS cases had TLS. 0 TLS identified in PPMS and RRMS | TLS consisted of CD3+ T cells, CD35+ cells, CXCL13+ cells, Ki67+ nuclei. Plasma cells were identified in periphery of follicle. | In TLS+ cases, inflammatory infiltrates found around blood vessels in cerebral leptomeninges. B cells accumulated perivascularly in chronic inactive lesions and in subarachnoid space. |
Magliozzi et al., 2007 [15] | SPMS n = 29 PPMS n = 7 Controls n = 3 Post-mortem FFPE and snap frozen tissue | PPMS: 0 TLS cases, 3 cases demonstrated moderate meningeal inflammation SPMS: TLS cases n = 12 | IHC staining identified inflammatory infiltrate of CD3+ T cells, CD20+ B cells, CD138+ or Ig+ plasmablasts/plasma cells, CD68+ macrophages. TLS had evidence of CD35+ and CXCL13+ cells, Ki67+ B cells and Ig+ plasmablasts/plasma cells. | TLS observed in frontal, temporal, parietal lobes and cingulate gyrus. 1 TLS identified in brainstem. TLS always found adjacent to subpial lesions and along depth of cerebral sulci. TLS cases associated were with more severe grey matter pathology. |
Serafini et al., 2007 [36] | MS n = 22 Other inflammatory neurological conditions n = 7 Non-neurological controls n = 2 Alzheimers n = 1 Non EBV related lymphoblastic leukaemia n = 1 Post-mortem FFPE and fixed frozen tissue | B follicles consisting of CD20+ B cells, clustered around network of stromal/FDCs that expressed CXCL13. Furthermore, contained cells expressing AID and caspase-3. Cells expressing anti-apoptotic molecule bcl-2 also observed. | ISH staining for EBER transcripts on 8 MS cases with B follicles identified EBER+ cells within meninges, with maximal enrichment in follicles (n = 15), perivascular cuffs of acute (n = 4) and chronic active (n = 16) WM lesions. 70–90% of EBER+ cells identified as CD20+ B cells. The highest percentage of B cells expressing EBERs were detected inside and around ectopic B cell follicles suggesting that these structures may originate from the expansion of EBV infected B cells. Ectopic B cell follicles contained numerous LMP1+ but no EBNA2+ cells. A high frequency of BFRF1+ cells was observed inside and around all intrameningeal B cell follicles analysed indicating that these structures represent main sites of viral reactivation. Double immunostainings showed that BFRF1 immunoreactivity was present in a substantial proportion of intrameningeal B cells and plasma cells (30–55%) but was much stronger in plasma cells than in B cells. | B follicles observed in cerebral meninges. |
Kooi et al., 2009 [37] | PPMS n = 7 Progressive relapsing n = 1 SPMS n = 12 MS subtype not determined n = 8 Controls n = 6 Post-mortem FFPE tissue | 0 TLS cases | Meninges from chronic MS patients contained more CD3+ T cells, CD68+ macrophages, DC-SIGN dendritic cells than controls. There were fewer CD20+ B cells and CD138+ plasma cells were seen occasionally in chronic MS meninges versus controls. Meningeal inflammation was not found to be associated with adjacent subpial demyelination. | TLS not observed in this cohort |
Willis et al., 2009 [38] | 23 FFPE tissue specimens from 12 MS cases with confirmed B cell infiltrates and 12 fixed frozen MS cases with meningeal tissue were examined for EBV by ISH. 17 snap frozen MS lesions with confirmed B cell infiltrate from 5 cases and 12 snap frozen MS tissue containing meninges from 12 cases were examined for EBV by rt-PCR. | B cell aggregates identified in 3/12 cases within brain parenchyma 4/12 cases had a loose B cell infiltrate within the meninges. | In tissue specimens each containing white matter lesions (n = 23), EBV was examined by ISH - all were negative for the EBV transcript EBER. Subset of cases further examined with IHC for expression of EBV latent proteins and found to be negative for LMP1 and EBNA2. RT-PCR was used to detect genomic EBV or EBER1. Neither detected from 17 snap frozen specimens from 5 MS cases. All examined tissue specimens had CD20+ B cells detected. | B cell aggregates in brain parenchyma |
Frischer et al., 2009 [39] | 67 MS Cases
| Follicle structures identified in meninges in 15/67 cases | In SPMS and PPMS cases, follicles were only present in cases with active progressive disease. Active demyelination and neurodegeneration was only observed in cases with pronounced inflammation in the brain. | Infiltrates of CD3+ T cells, CD20+ B cells and Ig+ plasma cells identified in meninges. B cells and plasma cells noted to predominantly accumulate in the perivascular spaces and the meninges. |
Peferoen et al., 2010 [40] | Screened 632 CNS specimens from 94 MS cases (Netherlands Brain Bank) 12 blocks from 12 cases used in Serafini et al. JEM 2007 (UK MS Society Brain Bank). Post-mortem FFPE tissue used for EBER ISH (as per supplementary material) | Screening of 11 patients (76 blocks) did not identify B follicles as defined by the presence of CXCL13 or podoplanin. 60 blocks from 16 patients had evidence of prominent B cell infiltrates but ectopic/lymphoid follicles not observed. All UK samples negative for EBV encoded RNA technique. IHC for BZLF1, BMRF1, BFRF3 and BLLF1 + LMP1 also performed. | B cell rich areas screened for EBV encoded RNA and EBV viral lytic (BZLF1, BMRF1, BFRF3, BLLF1) and latent (LMP1) proteins. Nuclear EBV encoded RNA was found in only one tissue specimen from a single MS case. All others negative. RT-PCR to search for EBV genomes and encoded RNAs in 5 tissue blocks containing B cell rich areas did not detect EBV DNA or RNA. Single sample (EBV encoded RNA Negative) was positive for multiple EBV lytic cycle markers (BZLF1, BMRF1, BLLF1). All samples screened from UK MS Society Brain Bank cohort were negative for EBV encoded RNA and EBV lytic and latent proteins. | TLS not observed in this cohort |
Magliozzi et al., 2010 [22] | SPMS n = 37 Controls (no neurological disease) n = 14 Non-MS neurological inflammatory diseases n = 9 Post-mortem FFPE, snap frozen and fixed frozen. | SPMS: TLS cases n = 20 TB meningitis: TLS cases n = 1 Luetic meningitis: TLS cases n = 1 | TLS demonsrtated Ki67+CD20+ B cells, CD35+ and CXCL13+ stromal cells/FDCs, Ig+ plasmablasts. Lacked GCs. | Frontal, temporal, parietal, occipital lobes examined. CD20+ B cells detected along and in depth of some sulci of frontal, temporal, parietal lobes-in particular cingulate and precentral gyrus. TLS always adjacent to subpial lesions. |
Torkildsen et al., 2010 [41] | Microarray analysis of 6 MS and 8 controls (no neurological disease) Post-mortem FFPE and snap frozen. For qPCR validation–5 additional MS and 4 controls used. | No CD20+ B cell follicles detected in meninges. CD3+ cells found in meninges and active lesions. Small number of CD20+ B cells in meninges and cortex. | 572 probes were identified as differentially expressed between MS samples and controls: 296 downregulated and 276 upregulated in MS. 33 of 276 upregulated genes mapped to molecular function Ig. A total of 83 Ig-related probes showed detectable expression among the MS and control samples, targeting 67 unique genes. Almost half of all Ig-related genes present show a significant upregulation in cortical samples of MS patients compared with controls. qPCR on RNA samples with primers specifically targeting the transcripts of the EBV lytic protein BZLF1 and the latent proteins LMP1 and 2 and EBNA1 and 2 showed no signs of latent or lytic EBV infections in any of the MS or control samples. | CD20+ B cell follicles not detected in meninges. |
Serafini et al., 2010 [42] | SPMS n = 9 (Post-mortem snap or fixed frozen) Non-neurological controls n = 3 (Post mortem FFPE or snap frozen) | Ectopic B follicles (n = 12) identified in 8 out of 9 MS cases. | In all MS brain specimens analysed, LMP-2A (EBV encoded latent membrane protein) immunoreactivity localised to surface of many lymphocytes within perivascular cuffs of active and chronic active WMLs, meningeal immune infiltrates and B cell follicles. Double immunofluorescence staining showed majority of LMP-2A+ cells were CD20+ B cells. 80–90% of B cells within meningeal follicles were CD27+ antigen experienced cells. 2 MS cases had evidence of BAFF+ cells in sparse meningeal infiltrates and B cell follicles. In B cell follicles BAFF+ cells co-localised with CD20+ B cells and the percentage of B cells expressing BAFF ranged between 10% and 50%. Within the B cell follicles, LMP-2A+ cells expressing BAFF ranged between 15% and 90%. BAFF was rarely detected in meningeal iba-1 positive microglia/macrophages. | B cell follicles were detected in meninges. |
Howell et al., 2011 [23] | SPMS n = 123 Post-mortem FFPE or fixed frozen. | 107/123 (87%) at least one sample with moderate inflammatory meningeal infiltrate. 64/123 (52%) substantial (‘++’) perivascular or meningeal inflammatory infiltrate. 49/123 (40%) had evidence of TLS | TLS+ cases had a 6 fold increase in total grey matter lesion area. There was a greater meningeal inflammatory infiltrate. TLS+ cases presented at earlier ages and entered progressive stages sooner. | TLS predominantly found in deep cerebral sulci–cingulate, insula, temporal and frontal gyri. Always in close association with subpial lesions. |
Lucchinetti et al., 2011 [43] | Brain biopsy samples with sufficient cortex available n = 138. FFPE tissue. 43/138 cases had meningeal tissue available. 13/43 cases with meningeal tissue were excluded due to surgical haemorrhage. | TLS not specifically looked for. | 15/43 cases with meningeal tissue had evidence of cortical demyelination. Diffuse meningeal inflammation was associated with cortical demyelination, particularly subpial lesions. | IHC staining showed the presence of perivascular meningeal infiltrates containing CD3+ T cells and CD20+ B cells. |
Lovato et al., 2011 [44] | Post-mortem (half of samples FFPE and half snap frozen) 11 MS cases
| Meningeal B cell aggregates identified in a subset of MS cases with CD20 IHC analysis. Number of cases with meningeal B cell aggregates not stated. | This study characterised B cell repertoires from meningeal B cell aggregates and the corresponding parenchymal infiltrates from brain tissue. Observed similar features of antigen experience in B cell clones. The relative clonal expansion of B cells in meningeal aggregates was 24% and in parenchymal infiltrates 28%. Mutation frequency in Immunoglobulin (Ig) variable region heavy chain (VH) sequences similar in both areas. ~90% IgG isotype and remainder IgM. This is in contrast to the IgG/IgM ratio of 15:85 expected in peripheral blood of healthy controls. | B cell aggregates identified in meninges. |
Choi et al., 2012 [24] | PPMS n = 26 Controls n = 6 326 frozen blocks (50 fixed and 276 snap frozen) and 416 paraffin-embedded blocks from 26 PPMS cases 24 FFPE blocks from control cases were examined. | 0 TLS | 8/26 cases had substantial (‘++’) meningeal and perivascular immune cell aggregates. Meningeal inflammation was evident in this cohort of PPMS cases. A greater extent of meningeal inflammation was associated with greater neurite loss and more severe MS disease. | 8 cases with substantial meningeal immune cell aggregates had evidence of CD3+ T cells and CD20+ B cells. Other defining features of TLS; Ki67+ and CD20+ double positive cells and CD35+ cells were not observed in these aggregates. |
Magliozzi et al., 2013 [45] | 181 brain tissue blocks (cerebral cortex) from 44 SPMS cases
| F+ cases with infiltrated cortical lesions had CD20+ B cells and Ig+ plasmablasts/plasma cells. 11/26 subpial cortical lesions contained dense perivascular immune infiltrates. 0/18 F- cases contained infiltrated cortical lesions. | ISH for EBER demonstrated EBER positive cells in 3/3 intracortical perivascular infiltrates analysed. EBER positive cells also detected in adjacent inflamed meninges and in WMLs. EBER signals typically nuclear. Perivascular cells showing nuclear reactivity for BZLF1 (early EBV lytic stage) were detected in all infiltrated active cortical lesions (n = 4) but not in chronic active cortical lesion. BZLF1-positive cells were also detected in the meninges adjacent to the infiltrated cortical lesions. BFRF1 immunoreactivity was expressed in a substantial proportion of Ig+ plasmablasts/plasma cells in the cortical perivascular cuffs, the adjacent meninges and in WMLs. | Follicle+ cases had a higher frequency of active WMLs and a higher frequency of active and chronic active cortical lesions. Perivascular immune infiltrates in cortex typically formed around small venules in layers II and III. |
Howell et al., 2015 [46] | SPMS n = 27 (Subset of cases previously characterised [23] with known TLS (n = 12) and TLS negative (n = 15) Non-neurological controls n = 11 Post-mortem FFPE | 0 TLS in cerebellar blocks examined. One forebrain TLS+ case had evidence of substantial meningeal infiltration (+++) within the cerebellum however unable to further analyse due to loss of the area of interest in subsequent tissue sections. | This study investigated the extent of meningeal inflammation within the cerebellum of a previously characterised cohort of TLS+ and TLS- SPMS cases. Cases that were known to have TLS in the forebrain meninges had evidence of mild-moderate (‘+’ and ‘++’) meningeal immune cell infiltrate within the cerebellum. Inflammation of the meninges was associated with more extensive cerebellar GM demyelination. | TLS not observed within this cohort of cerebellar tissue. |
Serafini et al., 2016 [47] | SPMS n = 15 (29 cerebral tissue blocks examined) PFA-fixed frozen snap-frozen sections Controls: fixed-frozen and snap-frozen human adult lymph nodes (1 abdominal and 2 hilo-pulmonary lymph nodes) and 1 snap frozen tonsil | TLS n = 5 | TLS contained CD35+ stromal cells. RORγt immunoreactivity was mainly nuclear and observed in 6 SPMS cases (5 TLS+ and 1 TLS-). This was almost exclusively localised to meninges. RORγt+ cells found in the periphery of 12 out of 18 TLS, generally clustering in areas enriched with CD3+ T cells. | Located in meninges. |
Bevan et al., 2018 [33] | Short MS disease duration n = 12 Progressive MS n = 21 Non diseased controls n = 11 Other neurological inflammatory disease controls n = 6 Post-mortem FFPE | 4 out of 12 cases in short disease duration cohort had evidence of TLS. | TLS+ cases had evidence of increased meningeal CD68+ macrophages, CD3+ T cells and CD20+ B cells. TLS comprised CD8+ cytotoxic T cells, B cells co-expressing PCNA and leukocytes expressing transcripts of CXCL13. | TLS were associated with subpial GML. TLS+ cases had extensive neurodegeneration and elevated parenchymal microglia/macrophage activation. |
Hassani et al., 2018 [48] | MS n = 101 Non-MS control n = 21 Other neurological controls n = 9 Post-mortem FFPE | Minimal-moderate meningeal infiltration observed. Negligible lymphoid aggregates in examined sections. | This study investigated for the presence of EBV in MS brain tissue detecting EBV by PCR and EBER ISH. 47/101 cases were positive for EBV in meninges. EBER ISH showed EBV positive cells in 83/101 MS cases–80/101 EBV+ cells detected in brain parenchyma and 60/101 EBV+ cells detected in meninges. 5/21 non-MS neurological controls had evidence of EBV+ cells. Double staining IHC performed on 18 EBV heavily infected cases identified 11/18 and 7/18 cases were found to be double positive for EBV/GFAP and EBV/Iba-1 respectively. | |
Bell et al., 2019 [49] | 11 PPMS 22 SPMS 2 PD 13 healthy controls Post-mortem FFPE | 11/22 SPMS cases TLS+ 0/11 PPMS cases had TLS | CD20+ B cells, CD35+ cells, CD138+ plasma cells and CXCR5 expression on lymphocytes detected in TLS. Investigated for evidence of GC function; 4/38 TLS positive for Bcl-6 but all expressed CXCR5 (homing receptor for GCs) Investigated for evidence of regulatory T cells within TLS-FOXP3+ cells not detected within follicles and almost completely absent in tissue section. | 75% of chronic active lesion brain and 88% of chronic active lesion spinal cord cases had evidence of CD3+ T cell and/or CD20+ B cell infiltrates. |
Reali et al., 2020 [32] | 22 SPMS 5 non neurological controls Spinal cord meninges from 11 TLS+ cerebral cases 11 TLS- cerebral cases Post-mortem fixed-frozen. | TLS were observed in 3/11 spinal cord meninges that had known cerebral TLS. | TLS comprised CD20+ B cells, CD35+ FDCs, CD3+ T cells, CD8+ T cells, Ki67+ B cells and Ig+ plasma cells. Cases that had TLS within spinal cord meninges had more CD20+ B cells in comparison to TLS- cases (3-fold higher in number in the TLS+ SPMS cases). CD4+ T cells were found to be more numerous within meninges, grey and white matter perivascular cuffs in TLS+ cases. There was a trend towards greater areas of demyelinated white and grey matter in TLS+ cases (p = 0.052). The density of meningeal B cells in TLS+ SPMS correlated with the extent of axon loss in the lateral corticospinal tract, dorsal column and combined spinal cord tracts axons. | Spinal cord meninges. |
2.1. The Meninges; Vascular Channels and Lymphatic Networks
2.2. Composition of Tertiary Lymphoid Structures
2.3. What Drives the Formation of Tertiary Lymphoid Structures?
2.4. Potential Function of Tertiary Lymphoid Structures
2.4.1. Could TLS Be a Site for B Cell Maturation and Immunoglobulin Synthesis?
2.4.2. Could TLS Propagate Subpial Neuroinflammation and Contribute to Progression in MS?
2.4.3. Identifying which Patients Have Higher Degrees of Meningeal Inflammation and a High Likelihood of TLS
3. Therapeutic Strategies Targeting Meningeal Inflammation and TLS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reich, D.S.; Lucchinetti, C.F.; Calabresi, P.A. Multiple sclerosis. N. Engl. J. Med. 2018, 378, 169–180. [Google Scholar] [CrossRef]
- Koch, M.; Kingwell, E.; Rieckmann, P.; Tremlett, H.; Adams, D.; Craig, D.; Daly, L.; Devonshire, V.; Hashimoto, S.; Hrebicek, O.; et al. The natural history of secondary progressive multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2010, 81, 1039–1043. [Google Scholar] [CrossRef] [Green Version]
- Debouverie, M.; Pittion-Vouyovitch, S.; Louis, S.; Guillemin, F. Natural history of multiple sclerosis in a population-based cohort. Eur. J. Neurol. 2008, 15, 916–921. [Google Scholar] [CrossRef]
- Confavreux, C.; Vukusic, S.; Moreau, T.; Adeleine, P. Relapses and progression of disability in multiple sclerosis. N. Engl. J. Med. 2000, 343, 1430–1438. [Google Scholar] [CrossRef]
- Koch-Henriksen, N.; Thygesen, L.C.; Stenager, E.; Laursen, B.; Magyari, M. Incidence of MS has increased markedly over six decades in Denmark particularly with late onset and in women. Neurology 2018, 90, e1954–e1963. [Google Scholar] [CrossRef]
- Wallin, M.T.; Culpepper, W.J.; Nichols, E.; Bhutta, Z.A.; Gebrehiwot, T.T.; Hay, S.I.; Khalil, I.A.; Krohn, K.J.; Liang, X.; Naghavi, M.; et al. Global, regional, and national burden of multiple sclerosis 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 269–285. [Google Scholar] [CrossRef] [Green Version]
- Castelo-Branco, A.; Landfeldt, E.; Svedbom, A.; Löfroth, E.; Kavaliunas, A.; Hillert, J. Clinical course of multiple sclerosis and labour-force absenteeism: A longitudinal population-based study. Eur. J. Neurol. 2019, 26, 603–609. [Google Scholar] [CrossRef]
- Feinstein, A.; Freeman, J.; Lo, A.C. Treatment of progressive multiple sclerosis: What works, what does not, and what is needed. Lancet Neurol. 2015, 14, 194–207. [Google Scholar] [CrossRef]
- Guseo, A.; Jellinger, K. The significance of perivascular infiltrations in multiple sclerosis. J. Neurol. 1975, 211, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Prineas, J.W. Multiple sclerosis: Presence of lymphatic capillaries and lymphoid tissue in the brain and spinal cord. Science 1979, 203, 1123–1125. [Google Scholar] [CrossRef]
- Raine, C.S.; Mokhtarian, F.; McFarlin, D.E. Adoptively transferred chronic relapsing experimental autoimmune encephalomyelitis in the mouse. Neuropathologic analysis. Lab. Investig. 1984, 51, 534–546. [Google Scholar]
- Kirk, J.; Plumb, J.; Mirakhur, M.; McQuaid, S. Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination. J. Pathol. 2003, 201, 319–327. [Google Scholar] [CrossRef]
- Frischer, J.M.; Weigand, S.D.; Guo, Y.; Kale, N.; Parisi, J.E.; Pirko, I.; Mandrekar, J.; Bramow, S.; Metz, I.; Brück, W.; et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann. Neurol. 2015, 78, 710–721. [Google Scholar] [CrossRef] [Green Version]
- Hochmeister, S.; Grundtner, R.; Bauer, J.; Engelhardt, B.; Lyck, R.; Gordon, G.; Korosec, T.; Kutzelnigg, A.; Berger, J.J.; Bradl, M.; et al. Dysferlin is a new marker for leaky brain blood vessels in multiple sclerosis. J. Neuropathol. Exp. Neurol. 2006, 65, 855–865. [Google Scholar] [CrossRef] [Green Version]
- Magliozzi, R.; Howell, O.; Vora, A.; Serafini, B.; Nicholas, R.; Puopolo, M.; Reynolds, R.; Aloisi, F. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 2007, 130, 1089–1104. [Google Scholar] [CrossRef]
- Van de Pavert, S.A.; Mebius, R.E. New insights into the development of lymphoid tissues. Nat. Rev. Immunol. 2010, 10, 664–674. [Google Scholar] [CrossRef]
- Drayton, D.L.; Liao, S.; Mounzer, R.H.; Ruddle, N.H. Lymphoid organ development: From ontogeny to neogenesis. Nat. Immunol. 2006, 7, 344–353. [Google Scholar] [CrossRef]
- Pitzalis, C.; Jones, G.W.; Bombardieri, M.; Jones, S.A. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat. Rev. Immunol. 2014, 14, 447–462. [Google Scholar] [CrossRef]
- Mitsdoerffer, M.; Peters, A. Tertiary Lymphoid Organs in Central Nervous System Autoimmunity. Front. Immunol. 2016, 7, 451. [Google Scholar] [CrossRef] [Green Version]
- Pikor, N.B.; Prat, A.; Bar-Or, A.; Gommerman, J.L.; Reynolds, R. Meningeal Tertiary Lymphoid Tissues and Multiple Sclerosis: A Gathering Place for Diverse Types of Immune Cells during CNS Autoimmunity. Front. Immunol. 2016, 6, 657. [Google Scholar] [CrossRef] [Green Version]
- Magliozzi, R.; Columba-Cabezas, S.; Serafini, B.A.F.; Magliozzi, R.; Columba-Cabezas, S.; Serafini, B.; Aloisi, F. Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J. Neuroimmunol. 2004, 148, 11–23. [Google Scholar] [CrossRef]
- Magliozzi, R.; Howell, O.W.; Reeves, C.; Roncaroli, F.; Nicholas, R.; Serafini, B.; Aloisi, F.; Reynolds, R. A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann. Neurol. 2010, 68, 477–493. [Google Scholar] [CrossRef]
- Howell, O.W.; Reeves, C.A.; Nicholas, R.; Carassiti, D.; Radotra, B.; Gentleman, S.M.; Serafini, B.; Aloisi, F.; Roncaroli, F.; Magliozzi, R.; et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 2011, 134, 2755–2771. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.R.; Howell, O.W.; Carassiti, D.; Magliozzi, R.; Gveric, D.; Muraro, P.A.; Nicholas, R.; Roncaroli, F.R.R.; Choi, S.R.; Howell, O.W.; et al. Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain 2012, 135, 2925–2937. [Google Scholar] [CrossRef] [Green Version]
- Serafini, B.; Rosicarelli, B.; Magliozzi, R.; Stigliano, E.; Aloisi, F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 2004, 14, 164–174. [Google Scholar] [CrossRef]
- Haider, L.; Zrzavy, T.; Hametner, S.; Hoftberger, R.; Bagnato, F.; Grabner, G.; Trattnig, S.; Pfeifenbring, S.; Bruck, W.; Lassmann, H. The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain. Brain 2016, 139, 807–815. [Google Scholar] [CrossRef] [Green Version]
- Parker Harp, C.R.; Archambault, A.S.; Cheung, M.; Williams, J.W.; Czepielewski, R.S.; Duncker, P.C.; Kilgore, A.J.; Miller, A.T.; Segal, B.M.; Kim, A.H.J.; et al. Neutrophils promote VLA-4–dependent B cell antigen presentation and accumulation within the meninges during neuroinflammation. Proc. Natl. Acad. Sci. USA 2019, 116, 201909098. [Google Scholar] [CrossRef] [Green Version]
- Columba-Cabezas, S.; Griguoli, M.; Rosicarelli, B.; Magliozzi, R.; Ria, F.; Serafini, B.; Aloisi, F. Suppression of established experimental autoimmune encephalomyelitis and formation of meningeal lymphoid follicles by lymphotoxin β receptor-Ig fusion protein. J. Neuroimmunol. 2006, 179, 76–86. [Google Scholar] [CrossRef]
- Peters, A.; Pitcher, L.A.; Sullivan, J.M.; Mitsdoerffer, M.; Acton, S.E.; Franz, B.; Wucherpfennig, K.; Turley, S.; Carroll, M.C.; Sobel, R.A.; et al. Th17 Cells Induce Ectopic Lymphoid Follicles in Central Nervous System Tissue Inflammation. Immunity 2011, 35, 986–996. [Google Scholar] [CrossRef] [Green Version]
- Kuerten, S.; Schickel, A.; Kerkloh, C.; Recks, M.S.; Addicks, K.; Ruddle, N.H.; Lehmann, P. V Tertiary lymphoid organ development coincides with determinant spreading of the myelin-specific T cell response. Acta Neuropathol. 2012, 124, 861–873. [Google Scholar] [CrossRef]
- Pikor, N.B.; Astarita, J.L.; Summers-Deluca, L.; Galicia, G.; Qu, J.; Ward, L.A.; Armstrong, S.; Dominguez, C.X.; Malhotra, D.; Heiden, B.; et al. Integration of Th17- and Lymphotoxin-Derived Signals Initiates Meningeal-Resident Stromal Cell Remodeling to Propagate Neuroinflammation. Immunity 2015, 43, 1160–1173. [Google Scholar] [CrossRef] [PubMed]
- Reali, C.; Magliozzi, R.; Roncaroli, F.; Nicholas, R.; Howell, O.W.; Reynolds, R. B cell rich meningeal inflammation associates with increased spinal cord pathology in multiple sclerosis. Brain Pathol. 2020, 30, 779–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bevan, R.J.; Evans, R.; Griffiths, L.; Watkins, L.M.; Rees, M.I.; Magliozzi, R.; Allen, I.; McDonnell, G.; Kee, R.; Naughton, M.; et al. Meningeal inflammation and cortical demyelination in acute multiple sclerosis. Ann. Neurol. 2018, 84, 829–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cañete, J.D.; Celis, R.; Moll, C.; Izquierdo, E.; Marsal, S.; Sanmartí, R.; Palacín, A.; Lora, D.; De La Cruz, J.; Pablos, J.L. Clinical significance of synovial lymphoid neogenesis and its reversal after anti-tumour necrosis factor α therapy in rheumatoid arthritis. Ann. Rheum. Dis. 2009, 68, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Klaasen, R.; Thurlings, R.M.; Wijbrandts, C.A.; Van Kuijk, A.W.; Baeten, D.; Gerlag, D.M.; Tak, P.P. The relationship between synovial lymphocyte aggregates and the clinical response to infliximab in rheumatoid arthritis: A prospective study. Arthritis Rheum. 2009, 60, 3217–3224. [Google Scholar] [CrossRef] [PubMed]
- Serafini, B.; Rosicarelli, B.; Franciotta, D.; Magliozzi, R.; Reynolds, R.; Cinque, P.; Andreoni, L.; Trivedi, P.; Salvetti, M.; Faggioni, A.; et al. Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. J. Exp. Med. 2007, 204, 2899–2912. [Google Scholar] [CrossRef] [Green Version]
- Kooi, E.J.; Geurts, J.J.G.; Van Horssen, J.; Bø, L.; Van Der Valk, P. Meningeal inflammation is not associated with cortical demyelination in chronic multiple sclerosis. J. Neuropathol. Exp. Neurol. 2009, 68, 1021–1028. [Google Scholar] [CrossRef] [Green Version]
- Willis, S.N.; Stadelmann, C.; Rodig, S.J.; Caron, T.; Gattenloehner, S.; Mallozzi, S.S.; Roughan, J.E.; Almendinger, S.E.; Blewett, M.M.; Brück, W.; et al. Epstein–Barr virus infection is not a characteristic feature of multiple sclerosis brain. Brain 2009, 132, 3318–3328. [Google Scholar] [CrossRef] [Green Version]
- Frischer, J.M.; Bramow, S.; Dal-Bianco, A.; Lucchinetti, C.F.; Rauschka, H.; Schmidbauer, M.; Laursen, H.; Sorensen, P.S.; Lassmann, H. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 2009, 132, 1175–1189. [Google Scholar] [CrossRef] [Green Version]
- Peferoen, L.A.N.N.; Lamers, F.; Lodder, L.N.R.R.; Gerritsen, W.H.; Huitinga, I.; Melief, J.; Giovannoni, G.; Meier, U.; Hintzen, R.Q.; Verjans, G.M.G.M.G.M.; et al. Epstein Barr virus is not a characteristic feature in the central nervous system in established multiple sclerosis. Brain 2010, 133, e137. [Google Scholar] [CrossRef] [Green Version]
- Torkildsen, O.; Stansberg, C.; Angelskar, S.M.; Kooi, E.-J.; Geurts, J.J.G.; van der Valk, P.; Myhr, K.-M.; Steen, V.M.; Bo, L. Upregulation of immunoglobulin-related genes in cortical sections from multiple sclerosis patients. Brain Pathol. 2010, 20, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Serafini, B.; Severa, M.; Columba-Cabezas, S.; Rosicarelli, B.; Veroni, C.; Chiappetta, G.; Magliozzi, R.; Reynolds, R.; Coccia, E.M.; Aloisi, F.; et al. Epstein-barr virus latent infection and baff expression in B cells in the multiple sclerosis brain: Implications for viral persistence and intrathecal B-cell activation. J. Neuropathol. Exp. Neurol. 2010, 69, 677–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucchinetti, C.F.; Popescu, B.F.G.G.; Bunyan, R.F.; Moll, N.M.; Roemer, S.F.; Lassmann, H.; Brück, W.; Parisi, J.E.; Scheithauer, B.W.; Giannini, C.; et al. Inflammatory cortical demyelination in early multiple sclerosis. N. Engl. J. Med. 2011, 365, 2188–2197. [Google Scholar] [CrossRef] [Green Version]
- Lovato, L.; Willis, S.N.; Rodig, S.J.; Caron, T.; Almendinger, S.E.; Howell, O.W.; Reynolds, R.; O’Connor, K.C.; Hafler, D.A.; Connor, K.C.O.; et al. Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis. Brain 2011, 134, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Magliozzi, R.; Serafini, B.; Rosicarelli, B.; Chiappetta, G.; Veroni, C.; Reynolds, R.; Aloisi, F. B-cell enrichment and Epstein-Barr virus infection in inflammatory cortical lesions in secondary progressive multiple sclerosis. J. Neuropathol. Exp. Neurol. 2013, 72, 29–41. [Google Scholar] [CrossRef]
- Howell, O.W.; Schulz-Trieglaff, E.K.; Carassiti, D.; Gentleman, S.M.; Nicholas, R.; Roncaroli, F.; Reynolds, R. RR Extensive grey matter pathology in the cerebellum in multiple sclerosis is linked to inflammation in the subarachnoid space. Neuropathol. Appl. Neurobiol. 2015, 41, 798–813. [Google Scholar] [CrossRef] [Green Version]
- Serafini, B.; Rosicarelli, B.; Veroni, C.; Zhou, L.; Reali, C.; Aloisi, F. RORgammat Expression and Lymphoid Neogenesis in the Brain of Patients with Secondary Progressive Multiple Sclerosis. J. Neuropathol. Exp. Neurol. 2016, 75, 877–888. [Google Scholar] [CrossRef] [Green Version]
- Hassani, A.; Corboy, J.R.; Al-Salam, S.; Khan, G. Epstein-Barr virus is present in the brain of most cases of multiple sclerosis and may engage more than just B cells. PLoS ONE 2018, 13, e0192109. [Google Scholar] [CrossRef] [Green Version]
- Bell, L.; Lenhart, A.; Rosenwald, A.; Monoranu, C.M.; Berberich-Siebelt, F. Lymphoid Aggregates in the CNS of Progressive Multiple Sclerosis Patients Lack Regulatory T Cells. Front. Immunol. 2019, 10, 3090. [Google Scholar] [CrossRef] [Green Version]
- Engelhardt, B.; Sorokin, L. The blood–brain and the blood–cerebrospinal fluid barriers: Function and dysfunction. Semin. Immunopathol. 2009, 31, 497–511. [Google Scholar] [CrossRef] [Green Version]
- Korin, B.; Ben-Shaanan, T.L.; Schiller, M.; Dubovik, T.; Azulay-Debby, H.; Boshnak, N.T.; Koren, T.; Rolls, A. High-dimensional, single-cell characterization of the brain’s immune compartment. Nat. Neurosci. 2017, 20, 1300–1309. [Google Scholar] [CrossRef] [PubMed]
- Filiano, A.J.; Gadani, S.P.; Kipnis, J. How and why do T cells and their derived cytokines affect the injured and healthy brain? Nat. Rev. Neurosci. 2017, 18, 375–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mrdjen, D.; Pavlovic, A.; Hartmann, F.J.; Schreiner, B.; Utz, S.G.; Leung, B.P.; Lelios, I.; Heppner, F.L.; Kipnis, J.; Merkler, D.; et al. High-Dimensional Single-Cell Mapping of Central Nervous System Immune Cells Reveals Distinct Myeloid Subsets in Health, Aging, and Disease. Immunity 2018, 48, 380–395.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derk, J.; Jones, H.E.; Como, C.; Pawlikowski, B.; Siegenthaler, J.A. Living on the Edge of the CNS: Meninges Cell Diversity in Health and Disease. Front. Cell. Neurosci. 2021, 15, 703944. [Google Scholar] [CrossRef]
- Rua, R.; McGavern, D.B. Advances in Meningeal Immunity. Trends Mol. Med. 2018, 24, 542–559. [Google Scholar] [CrossRef] [PubMed]
- Mascagni, P.; Sanctius, C. Vasorum Lymphaticorum Corporis Humani Historia et Ichnographia; Ex typographia Pazzini Carli: Siena, Italy, 1787. [Google Scholar]
- Aspelund, A.; Antila, S.; Proulx, S.T.; Karlsen, T.V.; Karaman, S.; Detmar, M.; Wiig, H.; Alitalo, K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 2015, 212, 991–999. [Google Scholar] [CrossRef]
- Louveau, A.; Smirnov, I.; Keyes, T.J.; Eccles, J.D.; Rouhani, S.J.; Peske, J.D.; Derecki, N.C.; Castle, D.; Mandell, J.W.; Lee, K.S.; et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015, 523, 337–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louveau, A.; Herz, J.; Alme, M.N.; Salvador, A.F.; Dong, M.Q.; Viar, K.E.; Herod, S.G.; Knopp, J.; Setliff, J.C.; Lupi, A.L.; et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci. 2018, 21, 1380–1391. [Google Scholar] [CrossRef] [PubMed]
- Rustenhoven, J.; Drieu, A.; Mamuladze, T.; de Lima, K.A.; Dykstra, T.; Wall, M.; Papadopoulos, Z.; Kanamori, M.; Salvador, A.F.; Baker, W.; et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell 2021, 184, 1000–1016.e27. [Google Scholar] [CrossRef] [PubMed]
- Da Mesquita, S.; Louveau, A.; Vaccari, A.; Smirnov, I.; Cornelison, R.C.; Kingsmore, K.M.; Contarino, C.; Onengut-Gumuscu, S.; Farber, E.; Raper, D.; et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 2018, 560, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Van Zwam, M.; Huizinga, R.; Heijmans, N.; van Meurs, M.; Wierenga-Wolf, A.F.; Melief, M.-J.; Hintzen, R.Q.; ’t Hart, B.A.; Amor, S.; Boven, L.A.; et al. Surgical excision of CNS-draining lymph nodes reduces relapse severity in chronic-relapsing experimental autoimmune encephalomyelitis. J. Pathol. 2009, 217, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Herisson, F.; Frodermann, V.; Courties, G.; Rohde, D.; Sun, Y.; Vandoorne, K.; Wojtkiewicz, G.R.; Masson, G.S.; Vinegoni, C.; Kim, J.; et al. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat. Neurosci. 2018, 21, 1209–1217. [Google Scholar] [CrossRef]
- Brioschi, S.; Wang, W.-L.; Peng, V.; Wang, M.; Shchukina, I.; Greenberg, Z.J.; Bando, J.K.; Jaeger, N.; Czepielewski, R.S.; Swain, A.; et al. Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science 2021, 373, eabf9277. [Google Scholar] [CrossRef] [PubMed]
- Aloisi, F.; Pujol-Borrell, R. Lymphoid neogenesis in chronic inflammatory diseases. Nat. Rev. Immunol. 2006, 6, 205–217. [Google Scholar] [CrossRef]
- Corsiero, E.; Nerviani, A.; Bombardieri, M. PC Ectopic Lymphoid Structures: Powerhouse of Autoimmunity. Front. Immunol. 2016, 7, 430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, G.W.; Hill, D.G.; Jones, S.A. Understanding immune cells in tertiary lymphoid organ development: It is all starting to come together. Front. Immunol. 2016, 7, 401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- J Gunderson, A.; Rajamanickam, V.; Bui, C.; Bernard, B.; Pucilowska, J.; Ballesteros-Merino, C.; Schmidt, M.; McCarty, K.; Philips, M.; Piening, B.; et al. Germinal center reactions in tertiary lymphoid structures associate with neoantigen burden, humoral immunity and long-term survivorship in pancreatic cancer. Oncoimmunology 2021, 10, 1900635. [Google Scholar] [CrossRef] [PubMed]
- Endres, R.; Alimzhanov, M.B.; Plitz, T.; Fütterer, A.; Kosco-Vilbois, M.H.; Nedospasov, S.A.; Rajewsky, K.; Pfeffer, K. Mature Follicular Dendritic Cell Networks Depend on Expression of Lymphotoxin β Receptor by Radioresistant Stromal Cells and of Lymphotoxin β and Tumor Necrosis Factor by B Cells. J. Exp. Med. 1999, 189, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Ansel, K.M.; Ngo, V.N.; Hyman, P.L.; Luther, S.A.; Förster, R.; Sedgwlck, J.D.; Browning, J.L.; Upp, M.; Cyster, J.G. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 2000, 406, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Cyster, J.G.; Ansel, K.M.; Reif, K.; Ekland, E.H.; Hyman, P.L.; Tang, H.L.; Luther, S.A.; Ngo, V.N. Follicular stromal cells and lymphocyte homing to follicles. Immunol. Rev. 2000, 176, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Schneider, P.; MacKay, F.; Steiner, V.; Hofmann, K.; Bodmer, J.L.; Holler, N.; Ambrose, C.; Lawton, P.; Bixler, S.; Acha-Orbea, H.; et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J. Exp. Med. 1999, 189, 1747–1756. [Google Scholar] [CrossRef]
- Mackay, F.; Tangye, S.G. The role of the BAFF/APRIL system in B cell homeostasis and lymphoid cancers. Curr. Opin. Pharmacol. 2004, 4, 347–354. [Google Scholar] [CrossRef]
- Thangarajh, M.; Gomes, A.; Masterman, T.; Hillert, J.; Hjelmström, P. Expression of B-cell-activating factor of the TNF family (BAFF) and its receptors in multiple sclerosis. J. Neuroimmunol. 2004, 152, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Krumbholz, M.; Theil, D.; Derfuss, T.; Rosenwald, A.; Schrader, F.; Monoranu, C.-M.; Kalled, S.L.; Hess, D.M.; Serafini, B.; Aloisi, F.; et al. BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J. Exp. Med. 2005, 201, 195–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hjelmström, P.; Hjelmstrom, P. Lymphoid neogenesis: De novo formation of lymphoid tissue in chronic inflammation through expression of homing chemokines. J. Leukoc. Biol. 2001, 69, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Armengol, M.P.; Juan, M.; Lucas-Martin, A.; Fernandez-Figueras, M.T.; Jaraquemada, D.; Gallart, T.; Pujol-Borrell, R. Thyroid autoimmune disease: Demonstration of thyroid antigen-specific B cells and recombination-activating gene expression in chemokine-containing active intrathyroidal germinal centers. Am. J. Pathol. 2001, 159, 861–873. [Google Scholar] [CrossRef]
- Ansel, K.M.; Cyster, J.G. Chemokines in lymphopoiesis and lymphoid organ development. Curr. Opin. Immunol. 2001, 13, 172–179. [Google Scholar] [CrossRef]
- Mebius, R.E. Organogenesis of lymphoid tissues. Nat. Rev. Immunol. 2003, 3, 292–303. [Google Scholar] [CrossRef]
- Cupedo, T.; Mebius, R.E. Role of chemokines in the development of secondary and tertiary lymphoid tissues. Semin. Immunol. 2003, 15, 243–248. [Google Scholar] [CrossRef]
- Drayton, D.L.; Ying, X.; Lee, J.; Lesslauer, W.; Ruddle, N.H. Ectopic LTαβ directs lymphoid organ neogenesis with concomitant expression of peripheral node addressin and a HEV-restricted sulfotransferase. J. Exp. Med. 2003, 197, 1153–1163. [Google Scholar] [CrossRef] [PubMed]
- Schropp, V.; Rohde, J.; Rovituso, D.M.; Jabari, S.; Bharti, R.; Kuerten, S. Contribution of LTi and TH17 cells to B cell aggregate formation in the central nervous system in a mouse model of multiple sclerosis. J. Neuroinflamm. 2019, 16, 111. [Google Scholar] [CrossRef] [PubMed]
- Spits, H.; Artis, D.; Colonna, M.; Diefenbach, A.; Di Santo, J.P.; Eberl, G.; Koyasu, S.; Locksley, R.M.; McKenzie, A.N.J.; Mebius, R.E.; et al. Innate lymphoid cells--a proposal for uniform nomenclature. Nat. Rev. Immunol. 2013, 13, 145–149. [Google Scholar] [CrossRef]
- Grogan, J.L.; Ouyang, W. A role for Th17 cells in the regulation of tertiary lymphoid follicles. Eur. J. Immunol. 2012, 42, 2255–2262. [Google Scholar] [CrossRef] [PubMed]
- Stumhofer, J.S.; Laurence, A.; Wilson, E.H.; Huang, E.; Tato, C.M.; Johnson, L.M.; Villarino, A.V.; Huang, Q.; Yoshimura, A.; Sehy, D.; et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat. Immunol. 2006, 7, 937–945. [Google Scholar] [CrossRef]
- Batten, M.; Li, J.; Yi, S.; Kljavin, N.M.; Danilenko, D.M.; Lucas, S.; Lee, J.; de Sauvage, F.J.; Ghilardi, N. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat. Immunol. 2006, 7, 929–936. [Google Scholar] [CrossRef]
- Fitzgerald, D.C.; Zhang, G.-X.; El-Behi, M.; Fonseca-Kelly, Z.; Li, H.; Yu, S.; Saris, C.J.M.; Gran, B.; Ciric, B.; Rostami, A. Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27-stimulated T cells. Nat. Immunol. 2007, 8, 1372–1379. [Google Scholar] [CrossRef]
- Fitzgerald, D.C.; Ciric, B.; Touil, T.; Harle, H.; Grammatikopolou, J.; Das Sarma, J.; Gran, B.; Zhang, G.-X.; Rostami, A. Suppressive effect of IL-27 on encephalitogenic Th17 cells and the effector phase of experimental autoimmune encephalomyelitis. J. Immunol. 2007, 179, 3268–3275. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.W.; Bombardieri, M.; Greenhill, C.J.; McLeod, L.; Nerviani, A.; Rocher-Ros, V.; Cardus, A.; Williams, A.S.; Pitzalis, C.; Jenkins, B.J.; et al. Interleukin-27 inhibits ectopic lymphoid-like structure development in early inflammatory arthritis. J. Exp. Med. 2015, 212, 1793–1802. [Google Scholar] [CrossRef] [Green Version]
- Babcock, G.J.; Decker, L.L.; Volk, M.; Thorley-Lawson, D.A. EBV persistence in memory B cells in vivo. Immunity 1998, 9, 395–404. [Google Scholar] [CrossRef] [Green Version]
- Souza, T.A.; Stollar, B.D.; Sullivan, J.L.; Luzuriaga, K.; Thorley-Lawson, D.A. Peripheral B cells latently infected with Epstein–Barr virus display molecular hallmarks of classical antigen-selected memory B cells. Proc. Natl. Acad. Sci. USA 2005, 102, 18093–18098. [Google Scholar] [CrossRef] [Green Version]
- Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022, 375, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Chu, A.B.; Sever, J.L.; Madden, D.L.; Iivanainen, M.; Leon, M.; Wallen, W.; Brooks, B.R.; Lee, Y.J.; Houff, S. Oligoclonal IgG bands in cerebrospinal fluid in various neurological diseases. Ann. Neurol. 1983, 13, 434–439. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet. Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Qin, Y.; Duquette, P.; Zhang, Y.; Talbot, P.; Poole, R.; Antel, J. Clonal expansion and somatic hypermutation of V(H) genes of B cells from cerebrospinal fluid in multiple sclerosis. J. Clin. Investig. 1998, 102, 1045–1050. [Google Scholar] [CrossRef]
- Baranzini, S.E.; Jeong, M.C.; Butunoi, C.; Murray, R.S.; Bernard, C.C.; Oksenberg, J.R. B cell repertoire diversity and clonal expansion in multiple sclerosis brain lesions. J. Immunol. 1999, 163, 5133–5144. [Google Scholar] [PubMed]
- Colombo, M.; Dono, M.; Gazzola, P.; Roncella, S.; Valetto, A.; Chiorazzi, N.; Mancardi, G.L.; Ferrarini, M. Accumulation of clonally related B lymphocytes in the cerebrospinal fluid of multiple sclerosis patients. J. Immunol. 2000, 164, 2782–2789. [Google Scholar] [CrossRef] [Green Version]
- Palanichamy, A.; Apeltsin, L.; Kuo, T.C.; Sirota, M.; Wang, S.; Pitts, S.J.; Sundar, P.D.; Telman, D.; Zhao, L.Z.; Derstine, M.; et al. Immunoglobulin class-switched B cells form an active immune axis between CNS and periphery in multiple sclerosis. Sci. Transl. Med. 2014, 6, 248ra106. [Google Scholar] [CrossRef] [Green Version]
- Uccelli, A.; Aloisi, F.; Pistoia, V. Unveiling the enigma of the CNS as a B-cell fostering environment. Trends Immunol. 2005, 26, 254–259. [Google Scholar] [CrossRef]
- MacLennan, I.C. Germinal centers. Annu. Rev. Immunol. 1994, 12, 117–139. [Google Scholar] [CrossRef]
- Liu, Y.J.; Arpin, C. Germinal center development. Immunol. Rev. 1997, 156, 111–126. [Google Scholar] [CrossRef]
- Hamel, K.M.; Liarski, V.M.; Clark, M.R. Germinal center B-cells. Autoimmunity 2012, 45, 333–347. [Google Scholar] [CrossRef] [PubMed]
- Salomonsson, S.; Jonsson, M.V.; Skarstein, K.; Brokstad, K.A.; Hjelmstrom, P.; Wahren-Herlenius, M.; Jonsson, R. Cellular basis of ectopic germinal center formation and autoantibody production in the target organ of patients with Sjogren’s syndrome. Arthritis Rheum. 2003, 48, 3187–3201. [Google Scholar] [CrossRef] [PubMed]
- Stott, D.I.; Hiepe, F.; Hummel, M.; Steinhauser, G.; Berek, C. Antigen-driven clonal proliferation of B cells within the target tissue of an autoimmune disease. The salivary glands of patients with Sjögren’s syndrome. J. Clin. Investig. 1998, 102, 938–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humby, F.; Bombardieri, M.; Manzo, A.; Kelly, S.; Blades, M.C.; Kirkham, B.; Spencer, J.; Pitzalis, C. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med. 2009, 6, e1. [Google Scholar] [CrossRef]
- Corcione, A.; Casazza, S.; Ferretti, E.; Giunti, D.; Zappia, E.; Pistorio, A.; Gambini, C.; Mancardi, G.L.; Uccelli, A.; Pistoia, V. Recapitulation of B cell differentiation in the central nervous system of patients with multiple sclerosis. Proc. Natl. Acad. Sci. USA 2004, 101, 11064–11069. [Google Scholar] [CrossRef] [Green Version]
- James Bates, R.E.; Browne, E.; Schalks, R.; Jacobs, H.; Tan, L.; Parekh, P.; Magliozzi, R.; Calabrese, M.; Mazarakis, N.D.; Reynolds, R. Lymphotoxin-alpha expression in the meninges causes lymphoid tissue formation and neurodegeneration. Brain 2022, awac232. [Google Scholar] [CrossRef]
- Lassmann, H.; van Horssen, J.; Mahad, D. Progressive multiple sclerosis: Pathology and pathogenesis. Nat. Rev. Neurol. 2012, 8, 647–656. [Google Scholar] [CrossRef]
- Gardner, C.; Magliozzi, R.; Durrenberger, P.F.; Howell, O.W.; Rundle, J.; Reynolds, R. Cortical grey matter demyelination can be induced by elevated pro-inflammatory cytokines in the subarachnoid space of MOG-immunized rats. Brain 2013, 136, 3596–3608. [Google Scholar] [CrossRef] [Green Version]
- Magliozzi, R.; Howell, O.W.; Durrenberger, P.; Aricò, E.; James, R.; Cruciani, C.; Reeves, C.; Roncaroli, F.; Nicholas, R.; Reynolds, R. Meningeal inflammation changes the balance of TNF signalling in cortical grey matter in multiple sclerosis. J. Neuroinflamm. 2019, 16, 259. [Google Scholar] [CrossRef] [Green Version]
- Picon, C.; Jayaraman, A.; James, R.; Beck, C.; Gallego, P.; Witte, M.E.; van Horssen, J.; Mazarakis, N.D.; Reynolds, R. Neuron-specific activation of necroptosis signaling in multiple sclerosis cortical grey matter. Acta Neuropathol. 2021, 141, 585–604. [Google Scholar] [CrossRef]
- James, R.E.; Schalks, R.; Browne, E.; Eleftheriadou, I.; Munoz, C.P.; Mazarakis, N.D.; Reynolds, R. Persistent elevation of intrathecal pro-inflammatory cytokines leads to multiple sclerosis-like cortical demyelination and neurodegeneration. Acta Neuropathol. Commun. 2020, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Komori, M.; Blake, A.; Greenwood, M.; Lin, Y.C.; Kosa, P.; Ghazali, D.; Winokur, P.; Natrajan, M.; Wuest, S.C.; Romm, E.; et al. Cerebrospinal fluid markers reveal intrathecal inflammation in progressive multiple sclerosis. Ann. Neurol. 2015, 78, 3–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magliozzi, R.; Howell, O.W.; Nicholas, R.; Cruciani, C.; Castellaro, M.; Romualdi, C.; Rossi, S.; Pitteri, M.; Benedetti, M.D.; Gajofatto, A.; et al. Inflammatory intrathecal profiles and cortical damage in multiple sclerosis. Ann. Neurol. 2018, 83, 739–755. [Google Scholar] [CrossRef]
- Magliozzi, R.; Scalfari, A.; Pisani, A.I.; Ziccardi, S.; Marastoni, D.; Pizzini, F.B.; Bajrami, A.; Tamanti, A.; Guandalini, M.; Bonomi, S.; et al. The CSF Profile Linked to Cortical Damage Predicts Multiple Sclerosis Activity. Ann. Neurol. 2020, 88, 562–573. [Google Scholar] [CrossRef] [PubMed]
- Kaunzner, U.W.; Gauthier, S.A. MRI in the assessment and monitoring of multiple sclerosis: An update on best practice. Ther. Adv. Neurol. Disord. 2017, 10, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Mainero, C.; Benner, T.; Radding, A.; van der Kouwe, A.; Jensen, R.; Rosen, B.R.; Kinkel, R.P. In vivo imaging of cortical pathology in multiple sclerosis using ultra-high field MRI. Neurology 2009, 73, 941–948. [Google Scholar] [CrossRef] [Green Version]
- Metcalf, M.; Xu, D.; Okuda, D.T.; Carvajal, L.; Srinivasan, R.; Kelley, D.A.C.; Mukherjee, P.; Nelson, S.J.; Vigneron, D.B.; Pelletier, D. High-resolution phased-array MRI of the human brain at 7 tesla: Initial experience in multiple sclerosis patients. J. Neuroimaging Off. J. Am. Soc. Neuroimaging 2010, 20, 141–147. [Google Scholar] [CrossRef]
- Kollia, K.; Maderwald, S.; Putzki, N.; Schlamann, M.; Theysohn, J.M.; Kraff, O.; Ladd, M.E.; Forsting, M.; Wanke, I. First clinical study on ultra-high-field MR imaging in patients with multiple sclerosis: Comparison of 1.5T and 7T. AJNR. Am. J. Neuroradiol. 2009, 30, 699–702. [Google Scholar] [CrossRef] [Green Version]
- Simon, B.; Schmidt, S.; Lukas, C.; Gieseke, J.; Träber, F.; Knol, D.L.; Willinek, W.A.; Geurts, J.J.G.; Schild, H.H.; Barkhof, F.; et al. Improved in vivo detection of cortical lesions in multiple sclerosis using double inversion recovery MR imaging at 3 Tesla. Eur. Radiol. 2010, 20, 1675–1683. [Google Scholar] [CrossRef] [Green Version]
- Geurts, J.J.G.; Pouwels, P.J.W.; Uitdehaag, B.M.J.; Polman, C.H.; Barkhof, F.; Castelijns, J.A. Intracortical lesions in multiple sclerosis: Improved detection with 3D double inversion-recovery MR imaging. Radiology 2005, 236, 254–260. [Google Scholar] [CrossRef]
- Kilsdonk, I.D.; Jonkman, L.E.; Klaver, R.; van Veluw, S.J.; Zwanenburg, J.J.M.; Kuijer, J.P.A.; Pouwels, P.J.W.; Twisk, J.W.R.; Wattjes, M.P.; Luijten, P.R.; et al. Increased cortical grey matter lesion detection in multiple sclerosis with 7 T MRI: A post-mortem verification study. Brain 2016, 139, 1472–1481. [Google Scholar] [CrossRef] [PubMed]
- Absinta, M.; Vuolo, L.; Rao, A.; Nair, G.; Sati, P.; Cortese, I.C.M.; Ohayon, J.; Fenton, K.; Reyes-Mantilla, M.I.; Maric, D.; et al. Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology 2015, 85, 18–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, D.M.; Wang, K.Y.; Fiol, J.; Naunton, K.; Royal, W., 3rd; Hua, J.; Izbudak, I. Leptomeningeal Enhancement at 7T in Multiple Sclerosis: Frequency, Morphology, and Relationship to Cortical Volume. J. Neuroimaging Off. J. Am. Soc. Neuroimaging 2017, 27, 461–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makshakov, G.; Magonov, E.; Totolyan, N.; Nazarov, V.; Lapin, S.; Mazing, A.; Verbitskaya, E.; Trofimova, T.; Krasnov, V.; Shumilina, M.; et al. Leptomeningeal Contrast Enhancement Is Associated with Disability Progression and Grey Matter Atrophy in Multiple Sclerosis. Neurol. Res. Int. 2017, 2017, 8652463. [Google Scholar] [CrossRef]
- Zivadinov, R.; Ramasamy, D.P.; Vaneckova, M.; Gandhi, S.; Chandra, A.; Hagemeier, J.; Bergsland, N.; Polak, P.; Benedict, R.H.; Hojnacki, D.; et al. Leptomeningeal contrast enhancement is associated with progression of cortical atrophy in MS: A retrospective, pilot, observational longitudinal study. Mult. Scler. 2017, 23, 1336–1345. [Google Scholar] [CrossRef]
- Jonas, S.N.; Izbudak, I.; Frazier, A.A.; Harrison, D.M. Longitudinal Persistence of Meningeal Enhancement on Postcontrast 7T 3D-FLAIR MRI in Multiple Sclerosis. AJNR Am. J. Neuroradiol. 2018, 39, 1799–1805. [Google Scholar] [CrossRef] [Green Version]
- Hildesheim, F.E.; Ramasamy, D.P.; Bergsland, N.; Jakimovski, D.; Dwyer, M.G.; Hojnacki, D.; Lizarraga, A.A.; Kolb, C.; Eckert, S.; Weinstock-Guttman, B.; et al. Leptomeningeal, dura mater and meningeal vessel wall enhancements in multiple sclerosis. Mult. Scler. Relat. Disord. 2021, 47, 102653. [Google Scholar] [CrossRef]
- Zivadinov, R.; Bergsland, N.; Carl, E.; Ramasamy, D.P.; Hagemeier, J.; Dwyer, M.G.; Lizarraga, A.A.; Kolb, C.; Hojnacki, D.; Weinstock-Guttman, B. Effect of Teriflunomide and Dimethyl Fumarate on Cortical Atrophy and Leptomeningeal Inflammation in Multiple Sclerosis: A Retrospective, Observational, Case-Control Pilot Study. J. Clin. Med. 2019, 8, 344. [Google Scholar] [CrossRef] [Green Version]
- Bhargava, P.; Wicken, C.; Smith, M.D.; Strowd, R.E.; Cortese, I.; Reich, D.S.; Calabresi, P.A.; Mowry, E.M. Trial of intrathecal rituximab in progressive multiple sclerosis patients with evidence of leptomeningeal contrast enhancement. Mult. Scler. Relat. Disord. 2019, 30, 136–140. [Google Scholar] [CrossRef]
- Zivadinov, R.; Jakimovski, D.; Ramanathan, M.; Benedict, R.H.; Bergsland, N.; Dwyer, M.G.; Weinstock-Guttman, B. Effect of ocrelizumab on leptomeningeal inflammation and humoral response to Epstein-Barr virus in multiple sclerosis. A pilot study. Mult. Scler. Relat. Disord. 2022, 67, 104094. [Google Scholar] [CrossRef]
- Montalban, X.; Hauser, S.L.; Kappos, L.; Arnold, D.L.; Bar-Or, A.; Comi, G.; de Seze, J.; Giovannoni, G.; Hartung, H.-P.; Hemmer, B.; et al. Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis. N. Engl. J. Med. 2017, 376, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Hauser, S.L.; Bar-Or, A.; Comi, G.; Giovannoni, G.; Hartung, H.-P.; Hemmer, B.; Lublin, F.; Montalban, X.; Rammohan, K.W.; Selmaj, K.; et al. Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N. Engl. J. Med. 2017, 376, 221–234. [Google Scholar] [CrossRef]
- Hauser, S.L.; Bar-Or, A.; Cohen, J.A.; Comi, G.; Correale, J.; Coyle, P.K.; Cross, A.H.; de Seze, J.; Leppert, D.; Montalban, X.; et al. Ofatumumab versus Teriflunomide in Multiple Sclerosis. N. Engl. J. Med. 2020, 383, 546–557. [Google Scholar] [CrossRef] [PubMed]
- Naegelin, Y.; Naegelin, P.; von Felten, S.; Lorscheider, J.; Sonder, J.; Uitdehaag, B.M.J.; Scotti, B.; Zecca, C.; Gobbi, C.; Kappos, L.; et al. Association of Rituximab Treatment With Disability Progression Among Patients With Secondary Progressive Multiple Sclerosis. JAMA Neurol. 2019, 76, 274–281. [Google Scholar] [CrossRef]
- Brand, R.M.; Friedrich, V.; Diddens, J.; Pfaller, M.; Romana de Franchis, F.; Radbruch, H.; Hemmer, B.; Steiger, K.; Lehmann-Horn, K. Anti-CD20 Depletes Meningeal B Cells but Does Not Halt the Formation of Meningeal Ectopic Lymphoid Tissue. Neurol.-Neuroimmunol. Neuroinflamm. 2021, 8, e1012. [Google Scholar] [CrossRef] [PubMed]
- Mitsdoerffer, M.; Di Liberto, G.; Dötsch, S.; Sie, C.; Wagner, I.; Pfaller, M.; Kreutzfeldt, M.; Fräßle, S.; Aly, L.; Knier, B.; et al. Formation and immunomodulatory function of meningeal B cell aggregates in progressive CNS autoimmunity. Brain 2021, 144, 1697–1710. [Google Scholar] [CrossRef] [PubMed]
- Brand, R.M.; Diddens, J.; Friedrich, V.; Pfaller, M.; Radbruch, H.; Hemmer, B.; Steiger, K.; Lehmann-Horn, K. Siponimod Inhibits the Formation of Meningeal Ectopic Lymphoid Tissue in Experimental Autoimmune Encephalomyelitis. Neurol.-Neuroimmunol. Neuroinflamm. 2022, 9, e1117. [Google Scholar] [CrossRef] [PubMed]
- Gentile, A.; Musella, A.; Bullitta, S.; Fresegna, D.; De Vito, F.; Fantozzi, R.; Piras, E.; Gargano, F.; Borsellino, G.; Battistini, L.; et al. Siponimod (BAF312) prevents synaptic neurodegeneration in experimental multiple sclerosis. J. Neuroinflamm. 2016, 13, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, C.; Tian, D.; Ren, X.; Ding, S.; Jia, M.; Xin, M.; Thareja, S. The development of Bruton’s tyrosine kinase (BTK) inhibitors from 2012 to 2017: A mini-review. Eur. J. Med. Chem. 2018, 151, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Estupiñán, H.Y.; Berglöf, A.; Zain, R.; Smith, C.I.E. Comparative Analysis of BTK Inhibitors and Mechanisms Underlying Adverse Effects. Front. Cell Dev. Biol. 2021, 9, 630942. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, P.; Kim, S.; Reyes, A.A.; Grenningloh, R.; Boschert, U.; Absinta, M.; Pardo, C.; Van Zijl, P.; Zhang, J.; Calabresi, P.A. Imaging meningeal inflammation in CNS autoimmunity identifies a therapeutic role for BTK inhibition. Brain 2021, 144, 1396–1408. [Google Scholar] [CrossRef] [PubMed]
- Montalban, X.; Arnold, D.L.; Weber, M.S.; Staikov, I.; Piasecka-Stryczynska, K.; Willmer, J.; Martin, E.C.; Dangond, F.; Syed, S.; Wolinsky, J.S. Placebo-Controlled Trial of an Oral BTK Inhibitor in Multiple Sclerosis. N. Engl. J. Med. 2019, 380, 2406–2417. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kee, R.; Naughton, M.; McDonnell, G.V.; Howell, O.W.; Fitzgerald, D.C. A Review of Compartmentalised Inflammation and Tertiary Lymphoid Structures in the Pathophysiology of Multiple Sclerosis. Biomedicines 2022, 10, 2604. https://doi.org/10.3390/biomedicines10102604
Kee R, Naughton M, McDonnell GV, Howell OW, Fitzgerald DC. A Review of Compartmentalised Inflammation and Tertiary Lymphoid Structures in the Pathophysiology of Multiple Sclerosis. Biomedicines. 2022; 10(10):2604. https://doi.org/10.3390/biomedicines10102604
Chicago/Turabian StyleKee, Rachael, Michelle Naughton, Gavin V. McDonnell, Owain W. Howell, and Denise C. Fitzgerald. 2022. "A Review of Compartmentalised Inflammation and Tertiary Lymphoid Structures in the Pathophysiology of Multiple Sclerosis" Biomedicines 10, no. 10: 2604. https://doi.org/10.3390/biomedicines10102604
APA StyleKee, R., Naughton, M., McDonnell, G. V., Howell, O. W., & Fitzgerald, D. C. (2022). A Review of Compartmentalised Inflammation and Tertiary Lymphoid Structures in the Pathophysiology of Multiple Sclerosis. Biomedicines, 10(10), 2604. https://doi.org/10.3390/biomedicines10102604