Critical Review on Toxicological Mechanisms Triggered by Inhalation of Alumina Nanoparticles on to the Lungs
Abstract
:1. Introduction
2. Clinical Studies on Health Effects after Inhalation of Alumina Particles
3. Animal Studies of Pulmonary Biological Effects Triggered by Alumina Nanoparticles
3.1. Nose-Only and Whole-Body Inhalation Exposures
3.2. Intratracheal or Intranasal Exposures
4. In Vitro Studies of Cytotoxic Mechanisms Induced by Alumina Nanoparticles Exposure on Lung Cells
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Liu, S.; Tian, J.; Zhang, W. Fabrication and application of nanoporous anodic aluminum oxide: A review. Nanotechnology 2021, 32, 222001. [Google Scholar] [CrossRef] [PubMed]
- Jacukowicz-Sobala, I.; Ociński, D.; Kociołek-Balawejder, E. Iron and aluminium oxides containing industrial wastes as adsorbents of heavy metals: Application possibilities and limitations. Waste Manag. Res. 2015, 33, 612–629. [Google Scholar] [CrossRef]
- Hull, M.J.; Abraham, J.L. Aluminum welding fume-induced pneumoconiosis. Hum. Pathol. 2002, 33, 819–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, D.M.; Brown, A.M.; Willitsford, A.H.; Dinello-Fass, R.; Airola, M.B.; Siegrist, K.M.; Thomas, M.E.; Chang, Y. Lidar measurements of solid rocket propellant fire particle plumes. Appl. Opt. 2016, 55, 4657–4669. [Google Scholar] [CrossRef] [PubMed]
- Riediker, M.; Zink, D.; Kreyling, W.; Oberdörster, G.; Elder, A.; Graham, U.; Lynch, I.; Duschl, A.; Ichihara, G.; Ichihara, S.; et al. Particle toxicology and health—Where are we? Part. Fibre Toxicol. 2019, 16, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, M.; Zou, H.; Gao, X.; Chang, B.; Tang, S.; Zhang, M. Workplace exposure to airborne alumina nanoparticles associated with separation and packaging processes in a pilot factory. Environ. Sci. Process. Impacts 2015, 17, 656–666. [Google Scholar] [CrossRef]
- Cho, W.S.; Duffin, R.; Thielbeer, F.; Bradley, M.; Megson, I.L.; Macnee, W.; Poland, C.A.; Tran, C.L.; Donaldson, K. Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. Toxicol. Sci. 2012, 126, 469–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, D.; Milton, R.; Perry, K.M.A.; Thompson, D.R. Effect of Aluminium and Alumina on the Lung in Grinders of Duralumin Aeroplane Propellers. Occup. Environ. Med. 1944, 1, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Sikkeland, L.; Alexis, N.E.; Fry, R.C.; Martin, E.; Danielsen, T.E.; Søstrand, P.; Kongerud, J. Inflammation in induced sputum after aluminium oxide exposure: An experimental chamber study. Occup. Environ. Med. 2016, 73, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Buchman, J.T.; Hudson-Smith, N.V.; Landy, K.M.; Haynes, C.L. Understanding nanoparticle toxicity mechanisms to inform redesign strategies to reduce environmental impact. Accounts Chem. Res. 2019, 52, 1632–1642. [Google Scholar] [CrossRef] [PubMed]
- Vallyathan, V.; Bergeron, W.N.; Robichaux, P.A.; Craighead, J.E. Pulmonary fibrosis in an aluminum arc welder. Chest 1982, 81, 372–374. [Google Scholar] [CrossRef] [PubMed]
- Kuman Oyman, E.; Hatman, E.A.; Karagül, D.A.; Kılıçaslan, Z. A current example of historical cases: Occupational pulmonary aluminosis. Turk. Thorac. J. 2021, 22, 83–85. [Google Scholar] [CrossRef]
- Smolkova, P.; Nakladalova, M. The etiology of occupational pulmonary aluminosis—The past and the present. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2014, 158, 535–538. [Google Scholar] [CrossRef] [Green Version]
- Bourgois, A.; Saurat, D.; de Araujo, S.; Boyard, A.; Guitard, N.; Renault, S.; Fargeau, F.; Frederic, C.; Peyret, E.; Flahaut, E.; et al. Nose-only inhalations of high-dose alumina nanoparticles/hydrogen chloride gas mixtures induce strong pulmonary pro-inflammatory response: A pilot study. Inhal. Toxicol. 2021, 33, 308–324. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Chung, Y.H.; Seo, D.S.; Choi, H.S.; Lim, C.H. Twenty-eight-day repeated inhalation toxicity study of aluminum oxide nanoparticles in male sprague-dawley rats. Toxicol. Res. 2018, 34, 343–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Yang, H.; Wu, S.; Meng, Q.; Sun, H.; Lu, R.; Cui, J.; Zheng, Y.; Chen, W.; Zhang, R.; et al. Suppression of PTPN6 exacerbates aluminum oxide nanoparticle-induced COPD-like lesions in mice through activation of STAT pathway. Part. Fibre Toxicol. 2017, 14, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jederlinic, P.J.; Abraham, J.L.; Churg, A.; Himmelstein, J.S.; Epler, G.R.; Gaensler, E.A. Pulmonary fibrosis in aluminum oxide workers. Investigation of nine workers, with pathologic examination and microanalysis in three of them. Am. Rev. Respir. Dis. 1990, 142, 1179–1184. [Google Scholar] [CrossRef]
- Townsend, M.C.; Enterline, P.E.; Sussman, N.B.; Bonney, T.B.; Rippey, L.L. Pulmonary function in relation to total dust exposure at a bauxite refinery and alumina-based chemical products plant. Am. Rev. Respir. Dis. 1985, 132, 1174–1180. [Google Scholar]
- Schwarz, Y.; Kivity, S.; Fischbein, A.; Abraham, J.L.; Fireman, E.; Moshe, S.; Dannon, Y.; Topilsky, M.; Greif, J. Evaluation of workers exposed to dust containing hard metals and aluminum oxide. Am. J. Ind. Med. 1998, 34, 177–182. [Google Scholar] [CrossRef]
- Edling, C.; Jarvholm, B.; Andersson, L.; Axelson, O. Mortality and cancer incidence among workers in an abrasive manufacturing industry. Br. J. Ind. Med. 1987, 44, 57–59. [Google Scholar] [CrossRef] [Green Version]
- Sjogren, B.; Ulfvarson, U. Respiratory symptoms and pulmonary function among welders working with aluminum, stainless steel and railroad tracks. Scand. J. Work Environ. Health 1985, 11, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Antonini, J.M.; Roberts, J.R.; Schwegler-Berry, D.; Mercer, R.R. Comparative microscopic study of human and rat lungs after overexposure to welding fume. Ann. Occup. Hyg. 2013, 57, 1167–1179. [Google Scholar] [PubMed] [Green Version]
- OECD/OCDE. Guidance Document on Acute Inhalation Toxicity Testing; OECD Publishing: Paris, France, 2009. [Google Scholar]
- OECD/OECD. Ligne Directrice de L’ocde pour les Essais de Produits Chimiques—Toxicité Aiguë par Inhalation; OECD Publishing: Paris, France, 2009. [Google Scholar]
- OCDE/OECD. Ligne Directrice de L’ocde pour les Essais de Produits Chimiques—Toxicité Subaiguë par Inhalation: Étude Sur 28 Jours; OECD Publishing: Paris, France, 2009. [Google Scholar]
- Frohlich, E.; Salar-Behzadi, S. Toxicological assessment of inhaled nanoparticles: Role of in vivo, ex vivo, in vitro, and in silico studies. Int. J. Mol. Sci. 2014, 15, 4795–4822. [Google Scholar] [CrossRef] [PubMed]
- Tornling, G.; Blaschke, E.; Eklund, A. Long term effects of alumina on components of bronchoalveolar lavage fluid from rats. Br. J. Ind. Med. 1993, 50, 172–175. [Google Scholar] [CrossRef] [Green Version]
- Kwon, J.-T.; Seo, G.-B.; Lee, M.; Kim, H.-M.; Shim, I.; Jo, E.; Kim, P.; Choi, K. Pulmonary toxicity assessment of aluminum oxide nanoparticles via nasal instillation exposure. Korean J. Environ. Health Sci. 2013, 39, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Ess, S.M.; Steinegger, A.F.; Ess, H.J.; Schlatter, C. Experimental study on the fibrogenic properties of different types of alumina. Am. Ind. Hyg. Assoc. J. 1993, 54, 360–370. [Google Scholar] [CrossRef]
- El-Hussainy, E.H.M.; Hussein, A.M.; Abdel-Aziz, A.; El-Mehasseb, I. Effects of aluminum oxide (Al2O3) nanoparticles on ECG, myocardial inflammatory cytokines, redox state, and connexin 43 and lipid profile in rats: Possible cardioprotective effect of gallic acid. Can. J. Physiol. Pharmacol. 2016, 94, 868–878. [Google Scholar] [CrossRef]
- Radziun, E.; Wilczynska, J.D.; Ksiazek, I.; Nowak, K.; Anuszewska, E.L.; Kunicki, A.; Olszyna, A.; Zabkowski, T. Assessment of the cytotoxicity of aluminium oxide nanoparticles on selected mammalian cells. Toxicol. Vitr. 2011, 25, 1694–1700. [Google Scholar] [CrossRef]
- Bohme, S.; Stark, H.J.; Meissner, T.; Springer, A.; Reemtsma, T.; Kuhnel, D.; Busch, W. Quantification of Al2O3 nanoparticles in human cell lines applying inductively coupled plasma mass spectrometry (neb-ICP-MS, LA-ICP-MS) and flow cytometry-based methods. J. Nanopart. Res. 2014, 16, 2592. [Google Scholar] [CrossRef]
- Kim, I.S.; Baek, M.; Choi, S.J. Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells. J. Nanosci. Nanotechnol. 2010, 10, 3453–3458. [Google Scholar] [CrossRef]
- Park, E.J.; Lee, G.H.; Yoon, C.; Jeong, U.; Kim, Y.; Cho, M.H.; Kim, D.W. Biodistribution and toxicity of spherical aluminum oxide nanoparticles. J. Appl. Toxicol. 2016, 36, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Otero-Gonzalez, L.; Sierra-Alvarez, R.; Boitano, S.; Field, J.A. Application and validation of an impedance-based real time cell analyzer to measure the toxicity of nanoparticles impacting human bronchial epithelial cells. Environ. Sci. Technol. 2012, 46, 10271–10278. [Google Scholar] [CrossRef] [PubMed]
- Simon-Vazquez, R.; Lozano-Fernandez, T.; Davila-Grana, A.; Gonzalez-Fernandez, A. Analysis of the activation routes induced by different metal oxide nanoparticles on human lung epithelial cells. Future Sci. OA 2016, 2, FSO118. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Chen, L.; Thompson, D.M.; Montoya, L.D. Effect of particle size on in vitro cytotoxicity of titania and alumina nanoparticles. J. Exp. Nanosci. 2014, 9, 625–638. [Google Scholar] [CrossRef] [Green Version]
- Tsaousi, A.; Jones, E.; Case, C.P. The in vitro genotoxicity of orthopaedic ceramic (Al2O3) and metal (CoCr alloy) particles. Mutat. Res. 2010, 697, 1–9. [Google Scholar] [CrossRef]
- Bourgois, A.; Crouzier, D.; Legrand, F.X.; Raffin, F.; Boyard, A.; Girleanu, M.; Favier, A.L.; Francois, S.; Dekali, S. Alumina nanoparticles size and crystalline phase impact on cytotoxic effect on alveolar epithelial cells after simple or HCl combined exposures. Toxicol. Vitr. 2019, 59, 135–149. [Google Scholar] [CrossRef]
- Oesterling, E.; Chopra, N.; Gavalas, V.; Arzuaga, X.; Lim, E.J.; Sultana, R.; Butterfield, D.A.; Bachas, L.; Hennig, B. Alumina nanoparticles induce expression of endothelial cell adhesion molecules. Toxicol. Lett. 2008, 178, 160–166. [Google Scholar] [CrossRef]
- Yun, J.; Yang, H.; Li, X.; Sun, H.; Xu, J.; Meng, Q.; Wu, S.; Zhang, X.; Yang, X.; Li, B.; et al. Up-regulation of miR-297 mediates aluminum oxide nanoparticle-induced lung inflammation through activation of Notch pathway. Environ. Pollut. 2020, 259, 113839. [Google Scholar] [CrossRef]
- Sliwinska, A.; Kwiatkowski, D.; Czarny, P.; Milczarek, J.; Toma, M.; Korycinska, A.; Szemraj, J.; Sliwinski, T. Genotoxicity and cytotoxicity of ZnO and Al2O3 nanoparticles. Toxicol. Mech. Methods 2015, 25, 176–183. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Ge, C.; Duncan, J.; He, K.; Adeosun, S.O.; Xi, H.; Peng, H.; Niu, Q. Alumina at 50 and 13 nm nanoparticle sizes have potential genotoxicity. J. Appl. Toxicol. 2017, 37, 1053–1064. [Google Scholar] [CrossRef]
- Rajiv, S.; Jerobin, J.; Saranya, V.; Nainawat, M.; Sharma, A.; Makwana, P.; Gayathri, C.; Bharath, L.; Singh, M.; Kumar, M.; et al. Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro. Hum. Exp. Toxicol. 2016, 35, 170–183. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Redding, J.E.; Wiley, P.A.; Wen, L.; McConnell, J.S.; Zhang, B. Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay. Chemosphere 2010, 79, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yokel, R.A.; Hennig, B.; Toborek, M. Manufactured aluminum oxide nanoparticles decrease expression of tight junction proteins in brain vasculature. J. Neuroimmune Pharmacol. 2008, 3, 286–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinardell, M.P.; Sordé, A.; Díaz, J.; Baccarin, T.; Mitjans, M. Comparative effects of macro-sized aluminum oxide and aluminum oxide nanoparticles on erythrocyte hemolysis: Influence of cell source, temperature, and size. J. Nanoparticle Res. 2015, 17, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sadiq, I.M.; Chowdhury, B.; Chandrasekaran, N.; Mukherjee, A. Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles. Nanomedicine 2009, 5, 282–286. [Google Scholar] [CrossRef]
- Benke, G.; Abramson, M.; Sim, M. Exposures in the alumina and primary aluminium industry: An historical review. Ann. Occup. Hyg. 1998, 42, 173–189. [Google Scholar] [CrossRef]
- Holz, O.; Richter, K.; Jörres, R.A.; Speckin, P.; Mücke, M.; Magnussen, H. Changes in sputum composition between two inductions performed on consecutive days. Thorax 1998, 53, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Mazzoli-Rocha, F.; Santos, A.N.D.; Fernandes, S.; Normando, V.M.F.; Malm, O.; Saldiva, P.H.N.; Picanço-Diniz, D.L.W.; Faffe, D.S.; Zin, W.A. Pulmonary function and histological impairment in mice after acute exposure to aluminum dust. Inhal. Toxicol. 2010, 22, 861–867. [Google Scholar] [CrossRef]
- Rivera Gil, P.; Oberdörster, G.; Elder, A.; Puntes, V.; Parak, W.J. Correlating physico-chemical with toxicological properties of nanoparticles: The present and the future. ACS Nano 2010, 4, 5527–5531. [Google Scholar] [CrossRef]
- Piriyawong, V.; Thongpool, V.; Asanithi, P.; Limsuwan, P. Preparation and characterization of alumina nanoparticles in deionized water using laser ablation technique. J. Nanomater. 2012, 2012, 2. [Google Scholar] [CrossRef] [Green Version]
- Matori, K.A.; Wah, L.C.; Hashim, M.; Ismail, I.; Zaid, M.H. Phase transformations of α-alumina made from waste aluminum via a precipitation technique. Int. J. Mol. Sci. 2012, 13, 16812–16821. [Google Scholar] [CrossRef]
- Meda, L.; Marra, G.; Galfetti, L.; Inchingalo, S.; Severini, F.; de Luca, L. Nano-composites for rocket solid propellants. Compos. Sci. Technol. 2005, 65, 769–773. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal. Transduct. Target Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamkanfi, M.; Dixit, V.M. Mechanisms and functions of inflammasomes. Cell 2014, 157, 1013–1022. [Google Scholar] [CrossRef] [Green Version]
- Barnes, P.J. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2016, 138, 16–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saperstein, S.; Huyck, H.; Kimball, E.; Johnston, C.; Finkelstein, J.; Pryhuber, G. The effects of interleukin-1beta in tumor necrosis factor-alpha-induced acute pulmonary inflammation in mice. Mediators Inflamm. 2009, 2009, 958658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamcakova-Dodd, A.; Stebounova, L.V.; O’Shaughnessy, P.T.; Kim, J.S.; Grassian, V.H.; Thorne, P.S. Murine pulmonary responses after sub-chronic exposure to aluminum oxide-based nanowhiskers. Part. Fibre Toxicol. 2012, 9, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirela, S.V.; Miousse, I.R.; Lu, X.; Castranova, V.; Thomas, T.; Qian, Y.; Bello, D.; Kobzik, L.; Koturbash, I.; Demokritou, P. Effects of laser printer-emitted engineered nanoparticles on cytotoxicity, chemokine expression, reactive oxygen species, dna methylation, and dna damage: A comprehensive in vitro analysis in human small airway epithelial cells, macrophages, and lymphoblasts. Environ. Health Perspect. 2016, 124, 210–219. [Google Scholar] [PubMed] [Green Version]
- Osei, E.T.; Booth, S.; Hackett, T.L. What have in vitro co-culture models taught us about the contribution of epithelial-mesenchymal interactions to airway inflammation and remodeling in asthma? Cells 2020, 9, 1694. [Google Scholar] [CrossRef] [PubMed]
- Doryab, A.; Taskin, M.B.; Stahlhut, P.; Groll, J.; Schmid, O. Real-time measurement of cell mechanics as a clinically relevant readout of an in vitro lung fibrosis model established on a bioinspired basement membrane. Adv. Mater. 2022, 34, 2205083. [Google Scholar] [CrossRef]
- Barosova, H.; Maione, A.G.; Septiadi, D.; Sharma, M.; Haeni, L.; Balog, S.; O’Connell, O.; Jackson, G.R.; Brown, D.; Clippinger, A.J.; et al. Use of epialveolar lung model to predict fibrotic potential of multiwalled carbon nanotubes. ACS Nano 2020, 14, 3941–3956. [Google Scholar] [CrossRef] [PubMed]
- Kasper, J.Y.; Hermanns, M.I.; Unger, R.E.; Kirkpatrick, C.J. A responsive human triple-culture model of the air-blood barrier: Incorporation of different macrophage phenotypes. J. Tissue Eng. Regen. Med. 2017, 11, 1285–1297. [Google Scholar] [CrossRef] [PubMed]
References | Studied Atmospheres | Population (Size) | Health/Biological Effects | Particle Size | Particle Concentration | Exposure Time |
---|---|---|---|---|---|---|
Sikkeland et al., 2016 [9] | Al2O3 particles | Healthy volunteers (15) | Increases in neutrophils, total proteins, and IL-8 concentrations in the sputum. Localized respiratory effects, no systemic effect. | 3.2 μm | 3.9 mg/m3 | 2 h |
Jederlinic et al., 1990 [17] | Complex aerosols containing Al2O3 particles | Workers (9) | Prevalence of pulmonary fibrosis 300 times higher than that observed in the general population | Unknown | Unknown | 25 years |
Hull et al., 2002 [3] | Aluminum welding fumes | Workers (2) | Pneumoconiosis cases | 10 nm–1 μm (Al, aggregates) | Unknown | 22–24 years |
Vallyathan et al., 1982 [11] | Aluminum welding fumes | Worker (1) | Pulmonary fibrosis case | Unknown | Unknown | Unknown |
Townsend et al., 1985 [18] | Aluminum welding fumes (containing mainly Al2O3 particles) | Workers (1142) | Higher frequency of respiratory diseases, such as chronic obstructive pulmonary disease (COPD). Decrease in lung function. | Unknown | Unknown | Unknown |
Schwarz et al., 1998 [19] | Complex aerosols containing Al2O3 particles and hard metals | Workers (14) | Diffuse pulmonary interstitial inflammatory changes in five workers (2 asymptomatic, 1 symptomatic with giant cell inflammation, and 2 with local inflammation). | Unknown | Unknown | Unknown |
Hunter et al., 1944 [8] | Complex aerosols containing aluminum and alumina NPs | Workers (50) | Respiratory symptoms (cough, shortness of breath). No proven correlation with appearance of respiratory diseases. | 0.23–0.5 μm (Total particles) | 400–2430 /cm3 (Total particles) | 6–39 years |
Edling et al., 1987 [20] | Complex aerosols containing alumina particles, silicon carbides, and formaldehyde | Workers (521) | No increase in total or cancer mortality nor incidence of non-malignant respiratory disease. | Unknown | 1 mg/m3 (Total particles) | 25 years |
Sjorgen et al., 1985 [21] | Aluminum welding fumes | Workers (259) | Respiratory symptoms with no alteration of lung function. | <1 μm (Total particles) | 0–42 mg/m3 (Total particles) | 1–41 years |
References | Exposure Method | Animal Model | Biological Effects | Primary Particle Size | Particle Concentration | Particle Crystallinity | Exposure Time |
---|---|---|---|---|---|---|---|
Kim et al., 2018 [15] | Nose-only inhalation | Rats | Pro-inflammatory effects. Increases in neutrophils, lymphocytes, LDH, TNF-α, and IL-6 in BALF. Histopathological lesions with alveolar macrophage accumulation. | 11.94 nm | 0.2–5 mg/m3 | Unknown | 28 days (5 days/week) |
Bourgois et al., 2021 [14] | Nose-only inhalation | Rats | Pro-inflammatory effects. Increases in neutrophils, macrophages, IL-1β, TNF-α, GRO/KC, and MIP-2 in BALF. Histopathological lesions with neutrophil accumulation at the interstitial and alveolar level, as well as by a thickening of alveolar partitions. | 13 nm | 20–22.1 mg/m3 | γ/δ | 4 h; 4 h/day during 4 days |
Li et al., 2017 [16] | Whole-body inhalation | Mice | Emphysema, small airway remodeling, enhanced inflammation, and apoptosis. PTN6 down-regulation, STAT3 phosphorylation, and PDCD4 apoptotic marker increased expression. Increases in IL-6 and IL-33 concentrations in BALF. COPD-like lesions. | 40 nm | 0.4 mg/m3 | Unknown | 7 days |
Tornling et al., 1993 [27] | Intra-tracheal instillation | Rats | Increases in neutrophils, macrophages, and fibronectin concentrations in BALF. Persistence of this phenomenon 12 months after intra-tracheal instillation. | 4.37 μm | 40 mg | γ/α | _ |
Cho et al., 2012 [7] | Intra-tracheal instillation | Rats | Increase in neutrophil concentration. Hemolytic potential of alumina NPs. | 6.3 nm | 150 cm2 (0.5 mL at 300 cm2/mL) | Unknown | _ |
Kwon et al., 2013 [28] | Nasal instillation | Rats | Increase in total proteins, LDH, IL-6, and TNF-α concentrations in BALF. | Unknown | 1–40 mg/kg | Unknown | _ |
Ess et al., 1993 [29] | Intra-tracheal instillation | Rats | Particles usually used for the manufacture of aluminum (α and γ) had no fibrotic effect, whereas other particles tested could induce this type of lesion. No link between cytotoxicity and fibrotic effect. | <11 μm | 50 mg/0.5 mL 1% suspension | α, γ, δ, and χ | _ |
El-Hussainy et al., 2016 [30] | Intra-tracheal instillation | Rats | ECG disorders and an increase in myocardial (LDH, triglycerides, creatine phosphokinase, cholesterol, nitric oxide) and inflammatory (TNF-α) damage markers in blood serums. Decrease in antioxidants (reduced glutathione and superoxide dismutase) in animal serum. | 11 nm | 30 mg/kg/day | α | 14 days |
References | Cell Model | Biological Effects | Primary Particle Size | Particle Concentration | Particle Crystallinity | Exposure Time |
---|---|---|---|---|---|---|
Radziun et al., 2011 [31] | Murine fibroblasts (L929 cell line) and normal human skin fibroblasts (BJ cells) | No decrease in cell viability or apoptosis induction. NPs internalization in both cell types. | 50–80 nm | 10–400 µg/mL | γ | 24 h |
Bohme et al., 2014 [32] | Human alveolar epithelial cells (A549 cell line) and human skin keratinocytes (HaCaT cell line) | Internalization in cell cytoplasm, no detection in cell nuclei, no cytotoxicity. | 14 nm 111 nm 750 nm | 10–50 mg/L | α and α/δ | 24 h |
Kim et al., 2010 [33] | Human lung cell lines (A549 carcinoma cells and L-132 normal cells) | Lower cytotoxicity of NPs of alumina compared to the other metal oxide NPs tested (CeO2, TiO2, and ZnO). | 20 nm | 0.5–1000 µg/mL | Unknown | 24 h, 48 h, and 72 h |
Park et al., 2016 [34] | Six human cell lines, including bronchial epithelial BEAS-2B cells | γ-aluminum oxide hydroxide nanoparticles induced greatest toxicity compared to γ- and α- Al2O3 NPs. | 180–200 nm | 5 and 20 µg/mL | α and γ | 24 h |
Otero-Gonzalez et al., 2012 [35] | Human bronchial epithelial cells (169HBE14o- cell line) | Decrease in normalized cell index and cell viability at the highest concentrations. | <50 nm | 100–1000 mg/mL | Unknown | 48 h |
Simon-Vazquez et al., 2016 [36] | Human pleural cells (NCI-H460 cell line) | No modification of normalized cell index. | 14 nm | 15, 63, and 500 µg/mL | Unknown | 48 h |
Wei et al., 2014 [37] | Human alveolar epithelial cells (A549 cell line) | Smallest NPs more cytotoxic (inhibition of cell proliferation). Hydrodynamic diameter does not influence cytotoxicity. Al2O3 NPs more cytotoxic compared to TiO2 NPs. | 10 and 50 nm | 0.1–10 mg/mL | γ and γ/δ | 2 and 5 days |
Tsaousi et al., 2010 [38] | Primary human fibroblasts | No induction of micronuclei and no increase in DNA double-strand breaks. Size and shape of Al2O3 nano-objects do not influence genotoxicity (micronuclei and chromosomal aberration). | 0.2 nm and 2 µm and alumina fibers (0.9 µm diameter, 12.03 µm length) | 1.33–133.33 µg/cm2 | Unknown | 24 h |
Oesterling et al., 2008 [40] | Primary pulmonary artery endothelial cells, human umbilical vein endothelial cells, and monocytes | Increases in mRNA and protein expression of VCAM-1, ICAM-1, and ELAM-1 increased adhesion of activated monocytes. | 10–20 nm | 1–250 µg/mL | α/γ | 24 h |
Yun et al., 2020 [41] | Human bronchial epithelial cells | Up-regulation of homologous miRNA in Homo sapiens and Mus musculus miR-297. | 5–100 nm (scanning electron microscopy) | 50 and 250 μg/mL | Unknown | 24 h |
Sliwinska et al., 2015 [42] | Human peripheral blood lymphocytes | Increased single-strand breaks and oxidative DNA damage (2,6-diamino-4-hydroxy-5-N-methyl formamidopyrimidine and 7,8-dihydro-8-oxo-2′deoxyguanosine). | Unknown | From 10 μM to 1 mM | Unknown | 24 h |
Zhang et al., 2017 [43] | Chinese hamster lung fibroblasts, Salmonella typhimurium | Genotoxicity of Al2O3 NPs (Ames test, Comet test, Micronucleus assay, Sperm deformity test). Antioxidant decreases. | 13 nm; 50 nm | 0.5–5000 μg/mL | Unknown | 12 h, 24 h, and 48 h |
Rajiv et al., 2016 [44] | Human lymphocytes | Al2O3 NPs cause less damage to DNA than the other NPs studied (Co3O4, Fe2O3, and SiO2 NPs). Al2O3 NPs exposures induced significant increases in reactive oxygen species production. | <50 nm | 10–100 μg/mL | Unknown | 24 h |
Pan et al., 2010 [45] | Salmonella typhimurium | Negative reverse mutation assay: absence of mutagenic potential. | <50 nm | 10–1000 μg/plate | Unknown | 72 h |
Chen et al., 2008 [46] | Human Brain Microvascular Endothelial Cells (HBMEC cell line) | Decrease in the expression of tight junction proteins related to oxidative stress induced. | 8–12 nm | From 1 μM to 10 mM | Unknown | 24 h |
Vinardell et al., 2015 [47] | Erythrocytes (Human, Rat, Rabbit) | Hemolytic power of Al2O3 NPs. | 13 nm; <50 nm; Nanofibers (2–6 nm diameter, 200–400 nm length) | 2.5–40 mg/mL | Unknown | 1 h, 3 h, and 24 h |
Sadiq et al., 2009 [48] | Escherichia coli | Weak antimicrobial power at high concentration. | <50 nm | 10–1000 μg/mL | γ | 24 h |
Bourgois et al., 2019 [39] | Human alveolar epithelial cells (A549 cell line) | No effect on cell index, cell viability, reduced glutathione, and double DNA strand breaks. Internalization of NPs in cytoplasm. | 10 nm; 13 nm; 500 nm | 1.56–200 µg/cm2 | γ and γ/δ | 24 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dekali, S.; Bourgois, A.; François, S. Critical Review on Toxicological Mechanisms Triggered by Inhalation of Alumina Nanoparticles on to the Lungs. Biomedicines 2022, 10, 2664. https://doi.org/10.3390/biomedicines10102664
Dekali S, Bourgois A, François S. Critical Review on Toxicological Mechanisms Triggered by Inhalation of Alumina Nanoparticles on to the Lungs. Biomedicines. 2022; 10(10):2664. https://doi.org/10.3390/biomedicines10102664
Chicago/Turabian StyleDekali, Samir, Alexandra Bourgois, and Sabine François. 2022. "Critical Review on Toxicological Mechanisms Triggered by Inhalation of Alumina Nanoparticles on to the Lungs" Biomedicines 10, no. 10: 2664. https://doi.org/10.3390/biomedicines10102664
APA StyleDekali, S., Bourgois, A., & François, S. (2022). Critical Review on Toxicological Mechanisms Triggered by Inhalation of Alumina Nanoparticles on to the Lungs. Biomedicines, 10(10), 2664. https://doi.org/10.3390/biomedicines10102664