Long-Term Excessive Dietary Phosphate Intake Increases Arterial Blood Pressure, Activates the Renin–Angiotensin–Aldosterone System, and Stimulates Sympathetic Tone in Mice
Abstract
:1. Introduction
2. Material and Methods
2.1. Animals
2.2. Biochemical Analysis
2.3. RNA Isolation and Quantitative RT-PCR
2.4. Echocardiography
2.5. Central Arterial and Cardiac Pressure Measurements and Augmentation Index
2.6. Histological Evaluation
2.7. Urinary Catecholamine Measurement
2.8. Statistical Analysis
3. Results
3.1. Mice Maintained on CPD for 14 Months have Increased Levels of FGF23, but Normal Kidney Function
3.2. High Phosphate Intake in Aged Mice Leads to Hypertension, but Not Left Ventricular Hypertrophy
3.3. Chronically Elevated Dietary Phosphate Intake Stimulates the Renin–Angiotensin–Aldosterone System and Increases Sympathetic Activity
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peacock, M. Phosphate Metabolism in Health and Disease. Calcif. Tissue Res. 2020, 108, 3–15. [Google Scholar] [CrossRef]
- Foley, R.N.; Parfrey, P.S.; Sarnak, M.J. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am. J. Kidney Dis. 1998, 32, S112–S119. [Google Scholar] [CrossRef] [PubMed]
- Go, A.S.; Chertow, G.M.; Fan, D.; McCulloch, C.E.; Hsu, C.Y. Chronic Kidney Disease and the Risks of Death, Cardiovascular Events, and Hospitalization. N. Engl. J. Med. 2004, 351, 1296–1305. [Google Scholar] [CrossRef]
- Chang, A.R.; Grams, M.E. Serum Phosphorus and Mortality in the Third National Health and Nutrition Examination Survey (NHANES III): Effect Modification by Fasting. Am. J. Kidney Dis. 2014, 64, 567–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Cui, Y.; Yogendranath, P.; Wang, N. Blood pressure and heart rate variability are linked with hyperphosphatemia in chronic kidney disease patients. Chrono-Int. 2018, 35, 1329–1334. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef] [PubMed]
- Shang, D.; Xie, Q.; Ge, X.; Yan, H.; Tian, J.; Kuang, D.; Hao, C.H.; Zhu, T. Hyperphosphatemia as an independent risk factor for coronary artery calcification progression in peritoneal dialysis patients. BMC Nephrol. 2015, 16, 107. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, R.; Sullivan, L.; Fox, C.S.; Wang, T.J.; D’Agostino, R.B.; Gaziano, J.M.; Vasan, R.S. Relations of Serum Phosphorus and Calcium Levels to the Incidence of Cardiovascular Disease in the Community. Arch. Intern. Med. 2007, 167, 879–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, R.N.; Collins, A.J.; Herzog, C.A.; Ishani, A.; Kalra, P.A. Serum Phosphate and Left Ventricular Hypertrophy in Young Adults: The Coronary Artery Risk Development in Young Adults Study. Kidney Blood Press. Res. 2009, 32, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, J.; Scanni, R.; Bestmann, L.; Hulter, H.N.; Krapf, R. A Controlled Increase in Dietary Phosphate Elevates BP in Healthy Human Subjects. J. Am. Soc. Nephrol. 2018, 29, 2089–2098. [Google Scholar] [CrossRef] [PubMed]
- Mills, K.T.; Stefanescu, A.; He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.K.; Jeemon, P.; Stevens, K.K.; Mccallum, L.; Hastie, C.E.; Schneider, A.; Jardine, A.G.; Mark, P.B.; Padmanabhan, S. Association between serum phosphate and calcium, long-term blood pressure, and mortality in treated hypertensive adults. J. Hypertens. 2015, 33, 2046–2053. [Google Scholar] [CrossRef]
- E Olivo, R.; Hale, S.L.; Diamantidis, C.J.; A Bhavsar, N.; Tyson, C.C.; Tucker, K.L.; Carithers, T.; Kestenbaum, B.; Muntner, P.; Tanner, R.M.; et al. Dietary Phosphorus and Ambulatory Blood Pressure in African Americans: The Jackson Heart Study. Am. J. Hypertens. 2018, 32, 94–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moe, S.M.; Chen, N.X. Pathophysiology of Vascular Calcification in Chronic Kidney Disease. Circ. Res. 2004, 95, 560–567. [Google Scholar] [CrossRef] [Green Version]
- Jono, S.; McKee, M.D.; Murry, C.E.; Shioi, A.; Nishizawa, Y.; Mori, K.; Morii, H.; Giachelli, C.M. Phosphate Regulation of Vascular Smooth Muscle Cell Calcification. Circ. Res. 2000, 87, E10–E17. [Google Scholar] [CrossRef]
- Giachelli, C.M. Vascular Calcification: In Vitro Evidence for the Role of Inorganic Phosphate. J. Am. Soc. Nephrol. 2003, 14, S300–S304. [Google Scholar] [CrossRef] [Green Version]
- Van, T.V.; Watari, E.; Taketani, Y.; Kitamura, T.; Shiota, A.; Tanaka, T.; Tanimura, A.; Harada, N.; Nakaya, Y.; Yamamoto, H.; et al. Dietary phosphate restriction ameliorates endothelial dysfunction in adenine-induced kidney disease rats. J. Clin. Biochem. Nutr. 2012, 51, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Sancho, J.J.; Rouco, J.; Riera-Vidal, R.; Sitges-Serra, A. Long-term effects of parathyroidectomy for primary hyperparathyroidism on arterial hypertension. World J. Surg. 1992, 16, 732–735. [Google Scholar] [CrossRef] [PubMed]
- Bozic, M.; Panizo, S.; Sevilla, M.A.; Riera, M.; Soler, M.J.; Pascual, J.; Lopez, I.; Freixenet, M.; Fernandez, E.; Valdivielso, J.M. High phosphate diet increases arterial blood pressure via a parathyroid hormone mediated increase of renin. J. Hypertens. 2014, 32, 1822–1832. [Google Scholar] [CrossRef] [Green Version]
- Jowsey, J.; Reiss, E.; Canterbury, J.M. Long-Term Effects of High Phosphate Intake on Parathyroid Hormone Levels and Bone Metabolism. Acta Orthop. Scand. 1974, 45, 801–808. [Google Scholar] [CrossRef]
- Demeter, J.G.; A De Jong, S.; Oslapas, R.; Ernst, K.; Hessel, P.; Jarosz, H.; Smith, M.; Nayyar, R.; Lawrence, A.M.; Paloyan, E. High phosphate diet-induced primary hyperparathyroidism: An animal model. Surgery 1991, 110. [Google Scholar]
- Richter, B.; Kapanadze, T.; Weingärtner, N.; Walter, S.; Vogt, I.; Grund, A.; Schmitz, J.; Bräsen, J.H.; Limbourg, F.P.; Haffner, D.; et al. High phosphate-induced progressive proximal tubular injury is associated with the activation of Stat3/Kim-1 signaling pathway and macrophage recruitment. Faseb J. 2022, 36, e22407. [Google Scholar] [CrossRef] [PubMed]
- Latic, N.; Zupcic, A.; Frauenstein, D.; Erben, R.G. Activation of RAAS Signaling Contributes to Hypertension in Aged Hyp Mice. Biomedicines 2022, 10, 1691. [Google Scholar] [CrossRef]
- Andrukhova, O.; Slavic, S.; Zeitz, U.; Riesen, S.C.; Heppelmann, M.S.; Ambrisko, T.D.; Markovic, M.; Kuebler, W.M.; Erben, R.G. Vitamin D Is a Regulator of Endothelial Nitric Oxide Synthase and Arterial Stiffness in Mice. Mol. Endocrinol. 2014, 28, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Peitzsch, M.; Pelzel, D.; Glöckner, S.; Prejbisz, A.; Fassnacht, M.; Beuschlein, F.; Januszewicz, A.; Siegert, G.; Eisenhofer, G. Simultaneous liquid chromatography tandem mass spectrometric determination of urinary free metanephrines and catecholamines, with comparisons of free and deconjugated metabolites. Clin. Chim. Acta 2013, 418, 50–58. [Google Scholar] [CrossRef]
- Kollenkirchen, U.; Fox, J.; Walters, M.R. Normocalcemia without hyperparathyroidism in vitamin D-deficient rats. J. Bone Miner. Res. 1991, 6, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.C.; Shi, M.; Cho, H.J.; Adams-Huet, B.; Paek, J.; Hill, K.; Shelton, J.; Amaral, A.P.; Faul, C.; Taniguchi, M.; et al. Klotho and Phosphate Are Modulators of Pathologic Uremic Cardiac Remodeling. J. Am. Soc. Nephrol. 2015, 26, 1290–1302. [Google Scholar] [CrossRef] [Green Version]
- Grabner, A.; Schramm, K.; Silswal, N.; Hendrix, M.; Yanucil, C.; Czaya, B.; Singh, S.; Wolf, M.; Hermann, S.; Stypmann, J.; et al. FGF23/FGFR4-mediated left ventricular hypertrophy is reversible. Sci. Rep. 2017, 7, 1993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fantin, F.; Mattocks, A.; Bulpitt, C.J.; Banya, W.; Rajkumar, C. Is augmentation index a good measure of vascular stiffness in the elderly? Age Ageing 2006, 36, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Blacher, J.; Safar, M.E. Large-artery stiffness, hypertension and cardiovascular risk in older patients. Nat. Clin. Pract. Cardiovasc. Med. 2005, 2, 450–455. [Google Scholar] [CrossRef]
- Safar, M.E. Arterial stiffness as a risk factor for clinical hypertension. Nat. Rev. Cardiol. 2017, 15, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Radloff, J.; Latic, N.; Pfeiffenberger, U.; Schüler, C.; Tangermann, S.; Kenner, L.; Erben, R.G. A phosphate and calcium-enriched diet promotes progression of 5/6-nephrectomy-induced chronic kidney disease in C57BL/6 mice. Sci. Rep. 2021, 11, 14868. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, A.; Feely, J. Review: Arterial stiffness and the renin-angiotensin-aldosterone system. J. Renin-Angiotensin-Aldosterone Syst. 2004, 5, 102–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bühler, F.R.; Laragh, J.H.; Baer, L.; Vaughan, E.D.; Brunner, H.R. Propranolol Inhibition of Renin Secretion. N. Engl. J. Med. 1972, 287, 1209–1214. [Google Scholar] [CrossRef]
- Miller, A.J.; Arnold, A.C. The renin–angiotensin system in cardiovascular autonomic control: Recent developments and clinical implications. Clin. Auton. Res. 2018, 29, 231–243. [Google Scholar] [CrossRef]
- Iliescu, R.; Lohmeier, T.E.; Tudorancea, I.; Laffin, L.; Bakris, G.L. Renal denervation for the treatment of resistant hypertension: Review and clinical perspective. Am. J. Physiol. Physiol. 2015, 309, F583–F594. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, H.; Safar, M.E. Influence of lifestyle modification on arterial stiffness and wave reflections*. Am. J. Hypertens. 2005, 18, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Kaess, B.M.; Rong, J.; Larson, M.G.; Hamburg, N.M.; Vita, J.A.; Levy, D.; Benjamin, E.J.; Vasan, R.S.; Mitchell, G.F. Aortic Stiffness, Blood Pressure Progression, and Incident Hypertension. JAMA 2012, 308, 875–881. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Moreno, J.M.; Herencia, C.; de Oca Addy, M.; Díaz-Tocados, J.M.; Vergara, N.; Gómez-Luna, M.J.; López-Argüello, S.D.; Camargo, A.; Peralbo-Santaella, E.; Rodríguez-Ortiz, M.E.; et al. High phosphate induces a pro-inflammatory response by vascular smooth muscle cells and modulation by vitamin D derivatives. Clin. Sci. 2017, 131, 1449–1463. [Google Scholar] [CrossRef]
- Andreis, D.T.; Singer, M. Catecholamines for inflammatory shock: A Jekyll-and-Hyde conundrum. Intensiv. Care Med. 2016, 42, 1387–1397. [Google Scholar] [CrossRef]
- Parasiliti-Caprino, M.; Obert, C.; Lopez, C.; Bollati, M.; Bioletto, F.; Bima, C.; Egalini, F.; Berton, A.; Prencipe, N.; Settanni, F.; et al. Association of Urine Metanephrine Levels with CardiometaBolic Risk: An Observational Retrospective Study. J. Clin. Med. 2021, 10, 1967. [Google Scholar] [CrossRef]
- Grouzmann, E.; Lamine, F. Determination of catecholamines in plasma and urine. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Eisenhofer, G.; Friberg, P.; Pacak, K.; Goldstein, D.S.; Murphy, D.L.; Tsigos, C.; Quyyumi, A.A.; Brunner, H.G.; Lenders, J.W. Plasma metadrenalines: Do they provide useful information about sympatho-adrenal function and catecholamine metabolism? Clin. Sci. 1995, 88, 533–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coulson, J.M. The relationship between blood pressure variability and catecholamine metabolites: A pilot study. J. Hum. Hypertens. 2014, 29, 50–52. [Google Scholar] [CrossRef]
- Freundlich, M.; Gamba, G.; Rodriguez-Iturbe, B. Fibroblast growth factor 23—Klotho and hypertension: Experimental and clinical mechanisms. Pediatr. Nephrol. 2020, 36, 3007–3022. [Google Scholar] [CrossRef]
- Pi, M.; Ye, R.; Han, X.; Armstrong, B.; Liu, X.; Chen, Y.; Sun, Y.; Quarles, L.D. Cardiovascular Interactions between Fibroblast Growth Factor-23 and Angiotensin II. Sci. Rep. 2018, 8, 12398. [Google Scholar] [CrossRef]
- Dai, B.; David, V.; Martin, A.; Huang, J.; Li, H.; Jiao, Y.; Gu, W.; Quarles, L.D. A Comparative Transcriptome Analysis Identifying FGF23 Regulated Genes in the Kidney of a Mouse CKD Model. PLoS ONE 2012, 7, e44161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dörr, K.; Kammer, M.; Reindl-Schwaighofer, R.; Lorenz, M.; Marculescu, R.; Poglitsch, M.; Beitzke, D.; Oberbauer, R. The Effect of FGF23 on Cardiac Hypertrophy Is Not Mediated by Systemic Renin-Angiotensin- Aldosterone System in Hemodialysis. Front. Med. 2022, 9. [Google Scholar] [CrossRef]
- Oshima, N.; Onimaru, H.; Yamagata, A.; Ito, S.; Imakiire, T.; Kumagai, H. Rostral ventrolateral medulla neuron activity is suppressed by Klotho and stimulated by FGF23 in newborn Wistar rats. Auton. Neurosci. 2020, 224, 102640. [Google Scholar] [CrossRef] [Green Version]
- Kawai, M.; Kinoshita, S.; Shimba, S.; Ozono, K.; Michigami, T. Sympathetic Activation Induces Skeletal Fgf23 Expression in a Circadian Rhythm-dependent Manner. J. Biol. Chem. 2014, 289, 1457–1466. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latic, N.; Peitzsch, M.; Zupcic, A.; Pietzsch, J.; Erben, R.G. Long-Term Excessive Dietary Phosphate Intake Increases Arterial Blood Pressure, Activates the Renin–Angiotensin–Aldosterone System, and Stimulates Sympathetic Tone in Mice. Biomedicines 2022, 10, 2510. https://doi.org/10.3390/biomedicines10102510
Latic N, Peitzsch M, Zupcic A, Pietzsch J, Erben RG. Long-Term Excessive Dietary Phosphate Intake Increases Arterial Blood Pressure, Activates the Renin–Angiotensin–Aldosterone System, and Stimulates Sympathetic Tone in Mice. Biomedicines. 2022; 10(10):2510. https://doi.org/10.3390/biomedicines10102510
Chicago/Turabian StyleLatic, Nejla, Mirko Peitzsch, Ana Zupcic, Jens Pietzsch, and Reinhold G. Erben. 2022. "Long-Term Excessive Dietary Phosphate Intake Increases Arterial Blood Pressure, Activates the Renin–Angiotensin–Aldosterone System, and Stimulates Sympathetic Tone in Mice" Biomedicines 10, no. 10: 2510. https://doi.org/10.3390/biomedicines10102510
APA StyleLatic, N., Peitzsch, M., Zupcic, A., Pietzsch, J., & Erben, R. G. (2022). Long-Term Excessive Dietary Phosphate Intake Increases Arterial Blood Pressure, Activates the Renin–Angiotensin–Aldosterone System, and Stimulates Sympathetic Tone in Mice. Biomedicines, 10(10), 2510. https://doi.org/10.3390/biomedicines10102510