Slower Growth during Lactation Rescues Early Cardiovascular and Adipose Tissue Hypertrophy Induced by Fetal Undernutrition in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Maternal Undernutrition (MUN) Model and Cross-Fostering Protocol
2.2. Experimental Protocols
2.3. Breast Milk Collection and Measurements
2.4. Transthoracic Echocardiography
2.5. Aorta Structure by Confocal Microscopy
2.6. Adipocyte Size and Browning
2.7. Statistical Analysis
3. Results
3.1. Proteins and Fats in Breast Milk
3.2. Body Growth Gain
3.3. Perivascular Adipocyte Size and Type
3.4. Heart Structure and Function
3.5. Thoracic Aorta Structure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barker, D.; Osmond, C. Infant Mortality, Childhood Nutrition, and Ischaemic Heart Disease in England and Wales. Lancet 1986, 1, 1077–1081. [Google Scholar] [CrossRef]
- Barker, D. Fetal Origins of Coronary Heart Disease. BMJ 1995, 311, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Hult, M.; Tornhammar, P.; Ueda, P.; Chima, C.; Bonamy, A.-K.E.; Ozumba, B.; Norman, M. Hypertension, Diabetes and Overweight: Looming Legacies of the Biafran Famine. PLoS ONE 2010, 5, e13582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roseboom, T.J.; van der Meulen, J.H.; Osmond, C.; Barker, D.J.; Ravelli, A.C.; Schroeder-Tanka, J.M.; van Montfrans, G.A.; Michels, R.P.; Bleker, O.P. Coronary Heart Disease after Prenatal Exposure to the Dutch Famine, 1944–1945. Heart 2000, 84, 595–598. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Feng, X.; He, A.; Ding, Y.; Zhou, X.; Xu, Z. Prenatal Exposure to the Great Chinese Famine and Mid-Age Hypertension. PLoS ONE 2017, 12, e0176413. [Google Scholar] [CrossRef] [Green Version]
- Ashton, N. Perinatal Development and Adult Blood Pressure. Braz. J. Med. Biol. Res. 2000, 33, 731–740. [Google Scholar] [CrossRef] [Green Version]
- Morton, J.S.; Cooke, C.-L.; Davidge, S.T. In Utero Origins of Hypertension: Mechanisms and Targets for Therapy. Physiol. Rev. 2016, 96, 549–603. [Google Scholar] [CrossRef] [Green Version]
- Singhal, A.; Cole, T.J.; Fewtrell, M.; Deanfield, J.; Lucas, A. Is Slower Early Growth Beneficial for Long-Term Cardiovascular Health? Circulation 2004, 109, 1108–1113. [Google Scholar] [CrossRef]
- Eriksson, J.G. Early Growth and Coronary Heart Disease and Type 2 Diabetes: Findings from the Helsinki Birth Cohort Study (HBCS). Am. J. Clin. Nutr. 2011, 94, 1799S–1802S. [Google Scholar] [CrossRef] [Green Version]
- Woo, J.G. Infant Growth and Long-Term Cardiometabolic Health: A Review of Recent Findings. Curr. Nutr. Rep. 2019, 8, 29–41. [Google Scholar] [CrossRef]
- Kelishadi, R.; Haghdoost, A.A.; Jamshidi, F.; Aliramezany, M.; Moosazadeh, M. Low Birthweight or Rapid Catch-up Growth: Which Is More Associated with Cardiovascular Disease and Its Risk Factors in Later Life? A Systematic Review and Cryptanalysis. Paediatr. Int. Child. Health 2015, 35, 110–123. [Google Scholar] [CrossRef]
- Kesavan, K.; Devaskar, S.U. Intrauterine Growth Restriction: Postnatal Monitoring and Outcomes. Pediatr. Clin. N. Am. 2019, 66, 403–423. [Google Scholar] [CrossRef] [PubMed]
- Picó, C.; Reis, F.; Egas, C.; Mathias, P.; Matafome, P. Lactation as a Programming Window for Metabolic Syndrome. Eur J. Clin. Investig. 2021, 51, e13482. [Google Scholar] [CrossRef] [PubMed]
- Gila-Diaz, A.; Arribas, S.M.; Algara, A.; Martín-Cabrejas, M.A.; López de Pablo, Á.L.; Sáenz de Pipaón, M.; Ramiro-Cortijo, D. A Review of Bioactive Factors in Human Breastmilk: A Focus on Prematurity. Nutrients 2019, 11, 1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, P.D.; Anderson, L.N.; Dai, D.D.W.; Parkin, P.C.; Maguire, J.L.; Birken, C.S.; TARGet Kids! Collaboration The Association of Breastfeeding Duration and Early Childhood Cardiometabolic Risk. J. Pediatr. 2018, 192, 80–85.e1. [Google Scholar] [CrossRef] [PubMed]
- Pluymen, L.P.M.; Wijga, A.H.; Gehring, U.; Koppelman, G.H.; Smit, H.A.; van Rossem, L. Breastfeeding and Cardiometabolic Markers at Age 12: A Population-Based Birth Cohort Study. Int. J. Obes. 2019, 43, 1568–1577. [Google Scholar] [CrossRef]
- Quigley, M.; Embleton, N.D.; McGuire, W. Formula versus Donor Breast Milk for Feeding Preterm or Low Birth Weight Infants. Cochrane Database Syst. Rev. 2018, 6, CD002971. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, P.; López De Pablo, A.L.; García-Prieto, C.F.; Somoza, B.; Quintana-Villamandos, B.; Gómez De Diego, J.J.; Gutierrez-Arzapalo, P.Y.; Ramiro-Cortijo, D.; González, M.C.; Arribas, S.M. Long Term Effects of Fetal Undernutrition on Rat Heart. Role of Hypertension and Oxidative Stress. PLoS ONE 2017, 12, e0171544. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Arzapalo, P.Y.; Rodríguez-Rodríguez, P.; Ramiro-Cortijo, D.; López de Pablo, A.L.; López-Giménez, M.R.; Condezo-Hoyos, L.; Greenwald, S.E.; González, M.d.C.; Arribas, S.M. Role of Fetal Nutrient Restriction and Postnatal Catch-up Growth on Structural and Mechanical Alterations of Rat Aorta. J. Physiol. 2018, 596, 5791–5806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munoz-Valverde, D.; Rodríguez-Rodríguez, P.; Gutierrez-Arzapalo, P.Y.; López de Pablo, A.L.; Carmen González, M.; López-Giménez, R.; Somoza, B.; Arribas, S.M. Effect of Fetal Undernutrition and Postnatal Overfeeding on Rat Adipose Tissue and Organ Growth at Early Stages of Postnatal Development. Physiol. Res. 2015, 64, 547–559. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, P.; López de Pablo, A.L.; Condezo-Hoyos, L.; Martín-Cabrejas, M.A.; Aguilera, Y.; Ruiz-Hurtado, G.; Gutierrez-Arzapalo, P.Y.; Ramiro-Cortijo, D.; Fernández-Alfonso, M.S.; González, M.D.C.; et al. Fetal Undernutrition Is Associated with Perinatal Sex-Dependent Alterations in Oxidative Status. J. Nutr. Biochem. 2015, 26, 1650–1659. [Google Scholar] [CrossRef] [Green Version]
- Miranda, R.A.; da Silva Franco, C.C.; de Oliveira, J.C.; Barella, L.F.; Tófolo, L.P.; Ribeiro, T.A.; Pavanello, A.; da Conceição, E.P.S.; Torrezan, R.; Armitage, J.; et al. Cross-Fostering Reduces Obesity Induced by Early Exposure to Monosodium Glutamate in Male Rats. Endocrine 2017, 55, 101–112. [Google Scholar] [CrossRef]
- Herreid, E.O.; Harmon, C. A Study of Methods of Obtaining Milk Samples for Estimating Milk Fat by the Mojonnier Method. J. Dairy Sci. 1944, 27, 33–38. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Quintana-Villamandos, B.; Gomez de Diego, J.J.; Delgado-Martos, M.J.; Muñoz-Valverde, D.; Soto-Montenegro, M.L.; Desco, M.; Delgado-Baeza, E. Dronedarone Produces Early Regression of Myocardial Remodelling in Structural Heart Disease. PLoS ONE 2017, 12, e0188442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Chazotte, B. Labeling Mitochondria with MitoTracker Dyes. Cold Spring Harb. Protoc. 2011, 2011, 990–992. [Google Scholar] [CrossRef] [PubMed]
- Henning, S.J.; Chang, S.S.; Gisel, E.G. Ontogeny of Feeding Controls in Suckling and Weanling Rats. Am. J. Physiol 1979, 237, R187–R191. [Google Scholar] [CrossRef]
- Phuthong, S.; Reyes-Hernández, C.G.; Rodríguez-Rodríguez, P.; Ramiro-Cortijo, D.; Gil-Ortega, M.; González-Blázquez, R.; González, M.C.; López de Pablo, A.L.; Arribas, S.M. Sex Differences in Placental Protein Expression and Efficiency in a Rat Model of Fetal Programming Induced by Maternal Undernutrition. Int. J. Mol. Sci 2020, 22, 237. [Google Scholar] [CrossRef] [PubMed]
- Prentice, A.M.; Goldberg, G.R.; Prentice, A. Body Mass Index and Lactation Performance. Eur. J. Clin. Nutr. 1994, 48 (Suppl. 3), S78–S86; discussion S86–S89. [Google Scholar]
- Kugananthan, S.; Gridneva, Z.; Lai, C.T.; Hepworth, A.R.; Mark, P.J.; Kakulas, F.; Geddes, D.T. Associations between Maternal Body Composition and Appetite Hormones and Macronutrients in Human Milk. Nutrients 2017, 9, 252. [Google Scholar] [CrossRef] [PubMed]
- Palou, M.; Torrens, J.M.; Castillo, P.; Sánchez, J.; Palou, A.; Picó, C. Metabolomic Approach in Milk from Calorie-Restricted Rats during Lactation: A Potential Link to the Programming of a Healthy Phenotype in Offspring. Eur. J. Nutr 2020, 59, 1191–1204. [Google Scholar] [CrossRef] [PubMed]
- Briffa, J.F.; O’Dowd, R.; Moritz, K.M.; Romano, T.; Jedwab, L.R.; McAinch, A.J.; Hryciw, D.H.; Wlodek, M.E. Uteroplacental Insufficiency Reduces Rat Plasma Leptin Concentrations and Alters Placental Leptin Transporters: Ameliorated with Enhanced Milk Intake and Nutrition. J. Physiol. 2017, 595, 3389–3407. [Google Scholar] [CrossRef] [Green Version]
- Langley-Evans, S.C.; Bellinger, L.; McMullen, S. Animal Models of Programming: Early Life Influences on Appetite and Feeding Behaviour. Matern. Child. Nutr. 2005, 1, 142–148. [Google Scholar] [CrossRef]
- de Blasio, M.J.; Gatford, K.L.; Robinson, J.S.; Owens, J.A. Placental Restriction of Fetal Growth Reduces Size at Birth and Alters Postnatal Growth, Feeding Activity, and Adiposity in the Young Lamb. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R875–R886. [Google Scholar] [CrossRef]
- Bellinger, L.; Sculley, D.V.; Langley-Evans, S.C. Exposure to Undernutrition in Fetal Life Determines Fat Distribution, Locomotor Activity and Food Intake in Ageing Rats. Int J. Obes. 2006, 30, 729–738. [Google Scholar] [CrossRef] [Green Version]
- Gouldsborough, I.; Black, V.; Johnson, I.T.; Ashton, N. Maternal Nursing Behaviour and the Delivery of Milk to the Neonatal Spontaneously Hypertensive Rat. Acta Physiol. Scand. 1998, 162, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Konieczna, J.; García, A.P.; Sánchez, J.; Palou, M.; Palou, A.; Picó, C. Oral Leptin Treatment in Suckling Rats Ameliorates Detrimental Effects in Hypothalamic Structure and Function Caused by Maternal Caloric Restriction during Gestation. PLoS ONE 2013, 8, e81906. [Google Scholar] [CrossRef] [Green Version]
- Schuster, S.; Hechler, C.; Gebauer, C.; Kiess, W.; Kratzsch, J. Leptin in Maternal Serum and Breast Milk: Association with Infants’ Body Weight Gain in a Longitudinal Study over 6 Months of Lactation. Pediatr. Res. 2011, 70, 633–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikeda, K.; Maretich, P.; Kajimura, S. The Common and Distinct Features of Brown and Beige Adipocytes. Trends Endocrinol. Metab. 2018, 29, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Kuryłowicz, A.; Puzianowska-Kuźnicka, M. Induction of Adipose Tissue Browning as a Strategy to Combat Obesity. Int. J. Mol. Sci 2020, 21, 6241. [Google Scholar] [CrossRef]
- Ying, T.; Golden, T.; Cheng, L.; Ishibashi, J.; Seale, P.; Simmons, R.A. Neonatal IL-4 Exposure Decreases Adipogenesis of Male Rats into Adulthood. Am. J. Physiol. Endocrinol. Metab. 2021, 320, E1148–E1157. [Google Scholar] [CrossRef]
- Koenen, M.; Hill, M.A.; Cohen, P.; Sowers, J.R. Obesity, Adipose Tissue and Vascular Dysfunction. Circ. Res. 2021, 128, 951–968. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, P.; Ramiro-Cortijo, D.; Reyes-Hernández, C.G.; López de Pablo, A.L.; González, M.C.; Arribas, S.M. Implication of Oxidative Stress in Fetal Programming of Cardiovascular Disease. Front. Physiol. 2018, 9, 602. [Google Scholar] [CrossRef] [Green Version]
- Chabowska-Kita, A.; Kozak, L.P. The Critical Period for Brown Adipocyte Development: Genetic and Environmental Influences. Obesity 2016, 24, 283–290. [Google Scholar] [CrossRef]
- Hanschkow, M.; Boulet, N.; Kempf, E.; Bouloumié, A.; Kiess, W.; Stein, R.; Körner, A.; Landgraf, K. Expression of the Adipocyte Progenitor Markers MSCA1 and CD36 Is Associated With Adipose Tissue Function in Children. J. Clin. Endocrinol. Metab. 2022, 107, e836–e851. [Google Scholar] [CrossRef]
- Loncar, D. Convertible Adipose Tissue in Mice. Cell Tissue Res. 1991, 266, 149–161. [Google Scholar] [CrossRef]
- Gil-Ortega, M.; Martín-Ramos, M.; Arribas, S.M.; González, M.C.; Aránguez, I.; Ruiz-Gayo, M.; Somoza, B.; Fernández-Alfonso, M.S. Arterial Stiffness Is Associated with Adipokine Dysregulation in Non-Hypertensive Obese Mice. Vascul Pharmacol. 2016, 77, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Yu, T.; Zhang, Y.; Li, L.; Qu, M.; Wang, J.; Dong, F.; Zhang, L.; Wang, F.; Zhang, F.; et al. Prenatal High-Sucrose Diet Induced Vascular Dysfunction in Thoracic Artery of Fetal Offspring. Mol. Nutr. Food Res. 2021, 65, e2100072. [Google Scholar] [CrossRef]
- Villarroya, F.; Cereijo, R.; Gavaldà-Navarro, A.; Villarroya, J.; Giralt, M. Inflammation of Brown/Beige Adipose Tissues in Obesity and Metabolic Disease. J. Intern. Med. 2018, 284, 492–504. [Google Scholar] [CrossRef] [Green Version]
- Becher, T.; Palanisamy, S.; Kramer, D.J.; Eljalby, M.; Marx, S.J.; Wibmer, A.G.; Butler, S.D.; Jiang, C.S.; Vaughan, R.; Schöder, H.; et al. Brown Adipose Tissue Is Associated with Cardiometabolic Health. Nat. Med. 2021, 27, 58–65. [Google Scholar] [CrossRef]
- Gutiérrez-Arzapalo, P.Y.; Rodríguez-Rodríguez, P.; Ramiro-Cortijo, D.; Gil-Ortega, M.; Somoza, B.; de Pablo, Á.L.L.; González, M.C.; Arribas, S.M. Fetal Undernutrition Induces Resistance Artery Remodeling and Stiffness in Male and Female Rats Independent of Hypertension. Biomedicines 2020, 8, 424. [Google Scholar] [CrossRef]
- Masoumy, E.P.; Sawyer, A.A.; Sharma, S.; Patel, J.A.; Gordon, P.M.K.; Regnault, T.R.H.; Matushewski, B.; Weintraub, N.L.; Richardson, B.; Thompson, J.A.; et al. The Lifelong Impact of Fetal Growth Restriction on Cardiac Development. Pediatr. Res. 2018, 84, 537–544. [Google Scholar] [CrossRef]
- Arima, Y.; Fukuoka, H. Developmental Origins of Health and Disease Theory in Cardiology. J. Cardiol. 2020, 76, 14–17. [Google Scholar] [CrossRef]
- Vieira-Rocha, M.S.; Sousa, J.B.; Rodríguez-Rodríguez, P.; Arribas, S.M.; Diniz, C. Elevated Vascular Sympathetic Neurotransmission and Remodelling Is a Common Feature in a Rat Model of Foetal Programming of Hypertension and SHR. Biomedicines 2022, 10, 1902. [Google Scholar] [CrossRef]
Male | C-on-C | M-on-M | M-on-C | C-on-M | p-Value |
End-diastolic diameter (mm) | 2.92 [2.12; 3.07] | 1.82 [1.75; 2.41] | 2.55 [2.45; 2.55] | 2.54 [2.49; 2.66] | 0.358 |
End-systolic diameter (mm) | 0.66 [0.49; 0.81] | 0.36 [0.22; 0.36] | 0.48 [0.44; 0.51] | 0.84 [0.62; 1.06] | 0.219 |
Female | C-on-C | M-on-M | M-on-C | C-on-M | p-Value |
End-diastolic diameter (mm) | 2.51 [2.15; 3.10] | 2.55 [2.48; 2.70] | 2.52 [2.30; 3.01] | 2.74 [2.13; 2.90] | 0.536 |
End-systolic diameter (mm) | 0.62 [0.48; 0.71] | 0.66 [0.66; 0.66] | 0.70 [0.60; 0.89] | 0.73 [0.62; 0.78] | 0.528 |
Male | Female | ||||
---|---|---|---|---|---|
Alterations Induced by MUN | Reversal by CF in Lactation | Alterations Induced by MUN | Reversal by CF in Lactation | ||
Body growth gain | Weight from day 1 to 14 | Accelerated | Yes | ns | - |
Weight from day 15 to 21 | ns | - | Accelerated | No | |
Length from day 1 to 14 | ns | - | ns | - | |
Length from day 15 to 21 | Decelerated | No | Decelerated | Yes | |
Adiposity | Size of adipocyte | Increased | Yes | ns | - |
% Mitotracker-positive | Decreased | Yes | Decreased | Yes | |
Heart structure and function | Posterior wall thickness | ns | - | ns | - |
Septum thickness | Increased | Yes | ns | - | |
End-diastolic diameter | ns | - | ns | - | |
End-systolic diameter | ns | - | ns | - | |
Systolic function | ns | - | ns | - | |
Diastolic function | Decreased | Yes | ns | - | |
Thoracic aorta structure | Internal diameter | Increased | Yes | ns | - |
External diameter | Increased | Yes | ns | - | |
Wall cross-sectional | Increased | Yes | ns | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Rodríguez, P.; Monedero-Cobeta, I.; Ramiro-Cortijo, D.; Puthong, S.; Quintana-Villamandos, B.; Gil-Ramírez, A.; Cañas, S.; Ruvira, S.; Arribas, S.M. Slower Growth during Lactation Rescues Early Cardiovascular and Adipose Tissue Hypertrophy Induced by Fetal Undernutrition in Rats. Biomedicines 2022, 10, 2504. https://doi.org/10.3390/biomedicines10102504
Rodríguez-Rodríguez P, Monedero-Cobeta I, Ramiro-Cortijo D, Puthong S, Quintana-Villamandos B, Gil-Ramírez A, Cañas S, Ruvira S, Arribas SM. Slower Growth during Lactation Rescues Early Cardiovascular and Adipose Tissue Hypertrophy Induced by Fetal Undernutrition in Rats. Biomedicines. 2022; 10(10):2504. https://doi.org/10.3390/biomedicines10102504
Chicago/Turabian StyleRodríguez-Rodríguez, Pilar, Ignacio Monedero-Cobeta, David Ramiro-Cortijo, Sophida Puthong, Begoña Quintana-Villamandos, Alicia Gil-Ramírez, Silvia Cañas, Santiago Ruvira, and Silvia M. Arribas. 2022. "Slower Growth during Lactation Rescues Early Cardiovascular and Adipose Tissue Hypertrophy Induced by Fetal Undernutrition in Rats" Biomedicines 10, no. 10: 2504. https://doi.org/10.3390/biomedicines10102504
APA StyleRodríguez-Rodríguez, P., Monedero-Cobeta, I., Ramiro-Cortijo, D., Puthong, S., Quintana-Villamandos, B., Gil-Ramírez, A., Cañas, S., Ruvira, S., & Arribas, S. M. (2022). Slower Growth during Lactation Rescues Early Cardiovascular and Adipose Tissue Hypertrophy Induced by Fetal Undernutrition in Rats. Biomedicines, 10(10), 2504. https://doi.org/10.3390/biomedicines10102504