Metabolic Syndrome Is Associated with Low Diet Quality Assessed by the Healthy Eating Index-2015 (HEI-2015) and Low Concentrations of High-Density Lipoprotein Cholesterol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection Criteria (Study Participants)
2.2. Clinical (Biochemical) and Anthropometric Evaluation
2.3. Dietary Assessment
2.4. Diet Quality
2.5. Other Covariates
2.6. Statistical Analysis
3. Results
3.1. Study Population and Characteristics
3.2. HEI-2015
3.3. Quintiles—HEI-2015
3.4. Radar Graphs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans. 8th Edition. December 2015. Available online: http://health.gov/dietaryguidelines/2015/guidelines/ (accessed on 28 September 2022).
- Orchard, T.S.; Andridge, R.R.; Yee, L.D.; Lustberg, M.B. Diet quality, inflammation, and quality of life in breast cancer survivors: A cross-sectional analysis of pilot study data. J. Acad. Nutr. Diet. 2018, 118, 578–588. [Google Scholar] [CrossRef]
- Cruz, R.D.; Park, S.Y.; Shvetsov, Y.; Boushey, C.; Monroe, K.; Le Marchand, L.; Maskarinec, G. Association of diet quality and breast cancer incidence in the multiethnic cohort (MEC). Curr. Dev. Nutr. 2020, 4 (Suppl. 2), 318. [Google Scholar] [CrossRef]
- Panizza, C.E.; Shvetsov, Y.B.; Harmon, B.E.; Wilkens, L.R.; Le Marchand, L.; Haiman, C.; Reedy, J.; Boushey, C.J. Testing the predictive validity of the Healthy Eating Index-2015 in the Mutliethnic Cohort: Is the score associated with a reduced risk of all-cause and cause-specific mortality? Nutrients 2018, 10, 452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berube, L.T.; Messito, M.J.; Woolf, K.; Deierlein, A.; Gross, R. Correlates of prenatal diet quality in low-income Hispanic women. J. Acad. Nutr. Diet. 2019, 119, 1284–1295. [Google Scholar] [CrossRef] [PubMed]
- Edefonti, V.; Di Maso, M.; Tomaino, L.; Parpinel, M.; Garavello, W.; Serraino, D.; Ferraroni, M.; Crispo, A.; La Vecchia, C.; Bravi, F. Diet quality as measured by the Healthy Eating Index 2015 and oral and pharyngeal cancer risk. J. Acad. Nutr. Diet. 2022, 122, 1677–1687.e5. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Fang, A.-P.; Wang, X.-Y.; Lan, Q.-Y.; Liao, G.-C.; Liu, Z.-Y.; Zhang, D.-M.; Zhang, Y.-Y.; Chen, Y.-M.; Zhu, H.-L. Adherence to the Chinese or American Dietary Guidelines is associated with a lower risk of primary liver cancer in China: A case-control study. Nutrients 2018, 10, 1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Paula Matos Souza, J.; de Lima, M.M.; Martins Horta, P. Diet quality among the Brazilian population and associated socioeconomic and demographic factors: Analysis from the National Dietary Survey 2008–2009. J. Acad. Nutr. Diet. 2019, 119, 1866–1874. [Google Scholar] [CrossRef]
- Pérez-Tepayo, S.; Rodriguez-Ramirez, S.; Unar-Munguía, M.; Shamah-Levy, T. Trends in the dietary patterns of Mexican adults by sociodemographic characteristics. Nutr. J. 2020, 19, 51. [Google Scholar] [CrossRef]
- Leung, C.W.; Tester, J.M. The association between food insecurity and diet quality varies by race/ethicity: An analysis of National Health and Nutrition Examination Survey 2011-2014. Results. J. Acad. Nutr. Diet. 2019, 119, 1676–1686. [Google Scholar] [CrossRef]
- Luecking, C.T.; Mazzucca, S.; Vaughn, A.E.; Ward, D.S. Contributions of early care and education programs to diet quality in children aged 3 to 4 years in Central North Carolina. J. Acad. Nutr. Diet. 2020, 120, 386–394. [Google Scholar] [CrossRef] [Green Version]
- Raffaoul, A.; Goodman, S.; Hammond, D.; Kirkpatrick, S.I. Weight management efforts, but not weight perceptions, are associated with dietary quality among youth and young adults in Canada. J. Acad. Nutr. Diet. 2021, 121, 942–951. [Google Scholar] [CrossRef] [PubMed]
- Boutté, A.K.; Turner-McGrievy, G.M.; Wilcox, S.; Liu, J.; Eberth, J.M.; Kaczynski, A.T. Stress and depressive symptoms are not associated with overall diet quality, but are associated with aspects of diet quality in pregnant women in South Carolina. J. Acad. Nutr. Diet. 2021, 121, 1785–1792. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Bao, W.; Liu, B.; Caan, B.J.; Lane, D.S.; Millen, A.E.; Simon, M.S.; Thomson, C.A.; Tinker, L.F.; Van Horn, L.V.; et al. Changes in overall diet quality in relation to survival in postmenopausal women with breast cancer: Results from the Women’s Health Initiative. J. Acad. Nutr. Diet. 2018, 118, 1855–1863. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.G.; Walk, A.M.; Cannavale, C.N.; Flemming, I.R.; Thompson, S.V.; Reeser, G.R.; Holscher, H.D.; Khan, N.A. Dietary choline is related to neural efficiency during a selective attention task among middle-aged adults with overweight and obesity. Nutr. Neurosci. 2021, 24, 269–278. [Google Scholar] [CrossRef]
- McClure, S.T.; Schlechter, H.; Oh, S.; White, K.; Wu, B.; Maruthur, N.M.; Yeh, H.C.; Miller, E.R.; Appel, L.J. Dietary intake of adults with and without diabetes: Results from NHANES 2013-2016. BMJ Open Diabetes Res. Care 2020, 8, e001681. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhao, Y.; Nie, J.; Xu, H.; Yu, C.; Wang, S. Higher HEI-2015 score is associated with reduced risk of depression: Result from NHANES 2005-2016. Nutrients 2021, 13, 348. [Google Scholar] [CrossRef] [PubMed]
- Hassani Zadeh, S.; Nadjarzadeh, A.; Mirzaei, M.; Salehi-Abargouei, A.; Hosseinzadeh, M. Adherence to healthy eating index-2015 and metabolic syndrome in a large sample of Iranian adults. Nutr. Food Sci. 2021, 51, 749–762. [Google Scholar] [CrossRef]
- Khodarahmi, M.; Asghari-Jafarabadi, M.; Abbasalizad Farhangi, M. A structural equation modeling approach for the association of a healthy eating index with metabolic syndrome and cardio-metabolic risk factors among obese individuals. PLoS ONE 2019, 14, e0219193. [Google Scholar] [CrossRef]
- Bednarek-Tupikowska, G.; Matczak-Giemza, M.; Kubicka, E.; Krzyżanowska-Świniarska, B. Metaboliczna otyłość u osób z prawidłową masą ciała. Endokrynol. Otył. Zab. Przem. Mat 2007, 3, 55–61. [Google Scholar]
- Pacholczyk, M.; Ferenc, T.; Kowalski, J. Zespół metaboliczny. Część I: Definicje i kryteria rozpoznania zespołu metabolicznego. Epidemiologia oraz związek z ryzykiem chorób sercowo-naczyniowych. Postep. Hig. Med. Dosw. 2008, 62, 530–542. [Google Scholar]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed]
- Pałkowska, E.; Bartnikowska, E.; Owsiak, D. Wykorzystanie diety ubogoenergetycznej o zmodyfikowanym składzie puli kwasów tłuszczowych w terapii zespołu metabolicznego. Rocz. Panstw. Zakl. Hig. 2012, 63, 163–169. [Google Scholar]
- Timoteo, A.T. Diet in patients with metabolic syndrome: What is the ideal macronutrient composition? Rev. Port. Cardiol. 2018, 37, 1001–1006. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Khan, N.; Alkharfy, K.M.; Al-Attas, O.S.; Alokail, M.S.; Alfawaz, H.A.; Alothman, A.; Vanhoutte, P.M. Selected Dietary Nutrients and the Prevalence of Metabolic Syndrome in Adult Males and Females in Saudi Arabia: A Pilot Study. Nutrients 2013, 5, 4587–4604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberti, K.G.; Zimmet, P.; Shaw, J.; IDF Epidemiology Task Force Consensus Group. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366, 1059–106227. [Google Scholar] [CrossRef]
- Dehghan, M.; Ilow, R.; Zatonska, K.; Szuba, A.; Zhang, X.; Mente, A.; Regulska-Ilow, B. Development, reproducibility and validity of the food frequency questionnaire in the Poland arm of the Prospective Urban and Rural Epidemiological (PURE) study. J. Hum. Nutr. Diet. 2012, 25, 225–232. [Google Scholar] [CrossRef]
- Szponar, L.; Wolnicka, K.; Rychlik, E. Album of Photographs of Food Products and Dishes; National Food and Nutrition Institute: Warsaw, Poland, 2000. [Google Scholar]
- Kunachowicz, H.; Przygoda, B.; Nadolna, I.; Iwanow, K. Food Composition and Nutritional Value Tables, 2nd ed.; Wydawnictwo Lekarskie PZWL: Warsaw, Poland, 2019. [Google Scholar]
- Reedy, J.; Lerman, J.L.; Krebs-Smith, S.M.; Kirkpatrick, S.I.; Pannucci, T.E.; Wilson, M.M.; Subar, A.F.; Kahle, L.L.; Tooze, J.A. Evaluation of the Healthy Eating Index-2015. J. Acad. Nutr. Diet. 2018, 118, 1622–1633. [Google Scholar] [CrossRef]
- WHO Consultation on Obesity; World Health Organization. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation. Available online: https://apps.who.int/iris/handle/10665/42330 (accessed on 12 May 2022).
- Krebs-Smith, S.; Wilson, M.; Reedy, J. Visualization of dietary patterns. FASEB J. 2015, 29, 131.2. [Google Scholar] [CrossRef]
- National Cancer Institute. Visualization and Interpretation of HEI Scores. Available online: https://epi.grants.cancer.gov/hei/interpret-visualize-hei-scores.html (accessed on 20 May 2022).
- Ma, C.-M.; Lu, N.; Wang, R.; Liu, X.-L.; Lu, Q.; Yin, F.-Z. Three novel obese indicators perform better in monitoring management of metabolic syndrome in type 2 diabetes. Sci. Rep. 2017, 7, 9843. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Han, G.; Wang, L.; Ding, H.; Wang, C.; Ping, X.; Dong, C.; Zhang, D.; Dai, Y.; Li, N.; et al. 25-hydroxyvitamin D levels are inversely related to metabolic syndrome risk profile in northern Chinese subjects without vitamin D supplementation. Diabetol. Metab. Syndr. 2022, 14, 23. [Google Scholar] [CrossRef] [PubMed]
- Guembe, M.K.; Fernandez-Lazaro, C.I.; Sayon-Orea, C.; Toledo, E.; Moreno-Iribas, C.; RIVANA Study Investigators. Risk for cardiovascular disease associated with metabolic syndrome and its components: A 13-year prospective study in the RIVANA cohort. Cardiovasc. Diabetol. 2020, 19, 195. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tao, L.; Cao, K.; Wang, Z.; Chen, D.; Guo, J.; Zhu, H.; Yang, X.; Wang, Y.; Wang, J.; et al. Association of high-density lipoprotein with development of metabolic syndrome components: A five-year follow in adults. BMC Public Health 2015, 15, 412. [Google Scholar] [CrossRef] [PubMed]
- Mani, P.; Ren, H.Y.; Neeland, I.J.; McGuire, D.K.; Ayers, C.R.; Khera, A.; Rohatgi, A. The association between HDL particle concentration and incident metabolic syndrome in the multi-ethnic Dallas Heart Study. Diabetes Metab. Syndr. 2017, 11 (Suppl. 1), 175–179. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarian, D.; Micha, R.; Wallace, S. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: A systematic review and meta-analysis of randomized controlled trials. PLoS Med. 2010, 7, e1000252. [Google Scholar] [CrossRef] [Green Version]
- Gayet-Boyer, C.; Tenenhaus-Aziza, F.; Prunet, C.; Marmonier, C.; Malpuech-Brugère, C.; Lamarche, B.; Chardigny, J.M. Is there a linear relationship between the dose of ruminant trans-fatty acids and cardiovascular risk markers in healthy subjects: Results from a systematic review and meta-regression of randomised clinical trials. Br. J. Nutr. 2014, 112, 1914–1922. [Google Scholar] [CrossRef] [Green Version]
- Nordmann, A.J.; Nordmann, A.; Briel, M.; Keller, U.; Yancy, W.S., Jr.; Brehm, B.J.; Bucher, H.C. Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: A meta-analysis of randomized controlled trials. Arch. Intern Med. 2006, 166, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Kastorini, C.M.; Milionis, H.J.; Esposito, K.; Giugliano, D.; Goudevenos, J.A.; Panagiotakos, D.B. The effect of Mediterranean diet on metabolic syndrome and its components: A meta-analysis of 50 studies and 534,906 individuals. J. Am. Coll. Cardiol. 2011, 57, 1299–1313. [Google Scholar] [CrossRef] [Green Version]
- Rimm, E.B.; Williams, P.; Fosher, K.; Criqui, M.; Stampfer, M.J. Moderate alcohol intake and lower risk of coronary heart disease: Meta-analysis of effects on lipids and haemostatic factors. BMJ 1999, 319, 1523–1528. [Google Scholar] [CrossRef] [Green Version]
- Zomer, E.; Gurusamy, K.; Leach, R.; Trimmer, C.; Lobstein, T.; Morris, S.; James, W.P.T.; Finer, N. Interventions that cause weight loss and the impact on cardiovascular risk factors: A systematic review and meta-analysis. Obes. Rev. 2016, 17, 1001–1011. [Google Scholar] [CrossRef] [PubMed]
- Shaw, K.; Gennat, H.; O’Rourke, P.; Del Mar, C. Exercise for overweight or obesity. Cochrane Database Syst. Rev. 2006, 4, CD003817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, G.A.; Kelley, K.S. Impact of progressive resistance training on lipids and lipoproteins in adults: A meta-analysis of randomized controlled trials. Prev. Med. 2009, 48, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Noguchi, Y.; Fukui, T. The effects of cessation from cigarette smoking on the lipid and lipoprotein profiles: A meta-analysis. Prev. Med. 2003, 37, 283–290. [Google Scholar] [CrossRef]
- Agarwal, S.; Fulgoni, V.L., III. Intake of potatoes is associated with higher diet quality, and improved nutrient intake and adequacy among US adolescents: NHANES 2001-2018 Analysis. Nutrients 2021, 13, 2614. [Google Scholar] [CrossRef]
- Richter, C.K.; Skulas-Ray, A.C.; Champagne, C.M.; Kris-Etherton, P.M. Plant protein and animal proteins: Do they differentially affect cardiovascular disease risk? Adv. Nutr. 2015, 6, 712–728. [Google Scholar] [CrossRef] [Green Version]
- Zhubi-Bakija, F.; Bajraktari, G.; Bytyçi, I.; Mikhailidis, D.P.; Henein, M.Y.; Latkovskis, G.; Rexhaj, Z.; Zhubi, E.; Banach, M.; on behalf of the International Lipid Panel (ILEP). The impact of type of dietary protein, animal versus vegetable, in modifying cardiometabolic risk factors: A position paper from the International Lipid Expert Panel (ILEP). Clin. Nutr. 2021, 40, 255–276. [Google Scholar] [CrossRef]
- Micha, R.; Wallace, S.K.; Mozaffarian, D. Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus: A systematic review and meta-analysis. Circulation 2010, 121, 2271–2283. [Google Scholar] [CrossRef] [Green Version]
- Azemati, B.; Rajaram, S.; Jaceldo-Siegl, K.; Haddad, E.H.; Shavlik, D.; Fraser, G.E. Dietary animal to plant protein ratio is associated with risk factors of metabolic syndrome in participants of the AHS-2 Calibration Study. Nutrients 2021, 13, 4296. [Google Scholar] [CrossRef]
- Gadjil, M.D.; Anderson, C.A.M.; Kandula, N.R.; Kanaya, A.A.M. Dietary patterns are associated with metabolic syndrome risk factors in South Asians living in the United States. J. Nutr. 2015, 145, 1211–1217. [Google Scholar]
- Hosseini-Esfahani, F.; Hosseinpour-Niazi, S.; Asghari, G.; Bahadoran, Z.; Moslehi, N.; Golzarand, M.; Ejtahedet, H.-S.; Mimiran, P.; Azizi, F. Nutrition and Cardio-Metabolic Risk Factors: Findings from 20 Years of the Tehran Lipid and Glucose Study. Int. J. Endocrinol. Metab. 2018, 16 (Suppl. 4), e84772. [Google Scholar] [CrossRef] [Green Version]
- Viguiliouk, E.; Kendall, C.W.C.; Kahleová, H.; Rahelić, D.; Salas-Salvadó, J.; Choo, V.L.; Mejia, S.B.; Stewart, S.E.; Leiter, L.A.; Jenkins, D.J.; et al. Effect of vegetarian dietary patterns on cardiometabolic risk factors in diabetes: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. 2019, 38, 1133–1145. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Bolca, S.; Vandevijvere, S.; De Vriese, S.; Mouratidou, T.; De Neve, M.; Polet, A.; Van Oyen, H.; Van Camp, J.; De Backer, G.; et al. Plant and animal protein intake and its association with overweight and obesity among the Belgian population. Br. J. Nutr. 2011, 105, 1106–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soliman, G.A. Dietary fiber, atherosclerosis, and cardiovascular disease. Nutrients 2019, 11, 1155. [Google Scholar] [CrossRef] [PubMed]
- Byrne, C.; Chambers, E.; Morrison, D.; Frost, G. The role of short chain fatty acids in appetite regulation and energy homeostasis. Int. J. Obes. 2015, 39, 1331–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Chang, Y. Association of dietary fiber intake with metabolic syndrome among aduly cancer survivors: A population-based cross-sectional study. Sci. Rep. 2021, 11, 11794. [Google Scholar] [CrossRef]
- Chen, J.P.; Chen, G.C.; Wang, X.P.; Qin, L.; Bai, Y. Dietary fiber and metabolic syndrome: A meta-analysis and review of related mechanisms. Nutrients 2017, 10, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mensink, R.P.; World Health Organization. Effects of Saturated Fatty Acids on Serum Lipids and Lipoproteins: A Systematic Review and Regression Analysis. 2016. Available online: https://apps.who.int.iris/handle/10665/246104 (accessed on 23 April 2022).
- Monserrat-Mesquida, M.; Quetglas-Llabrés, M.; Capó, X.; Bouzas, C.; Mateos, D.; Pons, A.; Tur, J.A.; Sureda, A. Metabolic Syndrome is Associated with Oxidative Stress and Proinflammatory State. Antioxidants 2020, 9, 236. [Google Scholar] [CrossRef] [Green Version]
- Hooper, L.; Martin, N.; Abdelhamid, A.; Davey, S.G. Reduction in saturated fat intake for cardiovascular disease. Cochrane Databese Syst. Rev. 2015, 6, CD011737. [Google Scholar] [CrossRef]
- Julibert, A.; del Mar Bibiloni, M.; Tur, J.A. Dietary fat intake and metabolic syndrome in adults: A systematic review. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 887–905. [Google Scholar] [CrossRef]
- Hoyas, I.; Leon-Sanz, M. Nutritional challenges in metabolic syndrome. J. Clin. Med. 2019, 8, 1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McEwen, B.; Morel-Kopp, M.C.; Tofler, G.; Ward, C. Effect of omega-3 fish oil on cardiovascular risk in diabetes. Diabetes Educ. 2010, 36, 565–584. [Google Scholar] [CrossRef]
- Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.R.; et al. 2016 ESC/EAS guidelines for the management of dyslipidaemias. Kardiol. Pol. 2016, 74, 1234–1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez Steele, E.; Juul, F.; Neri, D.; Rauber, F.; Monteiro, C.A. Dietary share of ultra-processed foods and metabolic syndrome in the US adult population. Prev. Med. 2019, 125, 40–48. [Google Scholar] [CrossRef]
- Zinöcker, M.K.; Lindseth, I.A. The Western Diet-Microbiome-Host Interaction and Its Role in Metabolic Disease. Nutrients 2018, 10, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boulangé, C.L.; Neves, A.L.; Chilloux, J.; Nicholson, J.K.; Dumas, M.-E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016, 8, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fardet, A. Minimally processed foods are more satiating and less hyperglycemic than ultra-processed foods: A preliminary study with 98 ready-to-eat foods. Food Funct. 2016, 18, 2338–2346. [Google Scholar] [CrossRef] [PubMed]
Total ** (n = 535) | Study Group (n = 215) | Control Group (n = 320) | p Value | |
---|---|---|---|---|
Characteristic | Mean score ± SD | |||
Age [lata] | 58.39 ± 11.71 | 58.48 ± 14.65 | 58.33 ± 9.26 | 0.509 |
BMI [kg/m2] | 28.45 ± 5.87 | 32.05 ± 6.25 | 26.04 ± 4.12 | <0.001 |
n (%) | ||||
Male gender | 198 (37.0%) | 88 (40.9 %) | 110 (34.4%) | 0.124 |
Metabolic syndrome components | Mean score ± SD | |||
HDL-c (mg/dL) | 57.06 ± 20.93 | 42.35 ± 15.23 | 66.95 ± 18.27 | <0.001 |
TGs (mg/dL) | 122.21 ± 71.39 | 163.45 ± 89.98 | 94.50 ± 34.41 | <0.001 |
glucose (mg/dL) | 101.16 ± 32.78 | 116.95 ± 46.47 | 90.55 ± 8.32 | <0.001 |
waist circumference (cm) | 92.56 ± 16.51 | 104.94 ± 15.11 | 84.25 ± 11.43 | <0.001 |
systolic blood pressure (mm Hg) | 133.68 ± 17.08 | 133.68 ± 18.27 | 133.68 ± 16.27 | 0.833 |
diastolic blood pressure (mm Hg) | 83.31 ± 10.29 | 83.87 ± 11.20 | 82.93 ± 9.64 | 0.48 |
Variables | Total **(n = 535) | Women (n = 337) | Men (n = 198) |
---|---|---|---|
Odds ratio (95% CI) | Odds ratio (95% CI) | Odds ratio (95% CI) | |
Low HDL-c * | 126.77 (63.31–253.82) | 82.72 (37.48–182.55) | 342.00 (74.39–1572.23) |
High TG * | 45.84 (25.61–82.06) | 43.63 (20.36–93.50) | 50.03 (20.07–124.73) |
Hyperglycaemia * | 30.58 (18.16–51.49) | 29.60 (15.13–57.90) | 31.71 (13.81–72.82) |
Increased WC | 16.20 (9.30–28.22) | 16.05 (7.47–34.51) | 18.95 (8.29–43.29) |
High BP and/or SBP * | 5.50 (3.22–9.39) | 5.40 (2.85–10.21) | 5.40 (1.98–14.70) |
Study Group (n = 215) | Control Group (n = 320) | p Value | Women (n = 337) | Men (n = 198) | p Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
HEI-2015 (0–100) | Median | Range | Median | Range | Median | Range | Median | Range | ||
66.0 | 41.0–93.0 | 68.0 | 41.0–89.0 | 68.0 | 41.0–93.0 | 65.0 | 41.0–89.0 | |||
HEI-2015 Component scores (maximum score) | Mean score ± SD | Mean score ± SD | ||||||||
Total fruits (5) | 4.49 ± 0.94 | 4.62 ± 0.85 | 0.074 | 4.68 ± 0.79 | 4.38 ± 1.01 | <0.0001 | ||||
Whole fruits (5) | 4.88 ± 0.50 | 4.91 ± 0.46 | 0.558 | 4.93 ± 0.41 | 4.84 ± 0.57 | 0.032 | ||||
Total vegetables (5) | 4.83 ± 0.48 | 4.75 ± 0.62 | 0.117 | 4.82 ± 0.51 | 4.72 ± 0.65 | 0.038 | ||||
Green and beans (5) | 3.91 ± 1.32 | 3.97 ± 1.24 | 0.790 | 4.07 ± 1.24 | 3.74 ± 1.31 | 0.003 | ||||
Whole grains (10) | 4.67 ± 3.89 | 5.07 ± 3.61 | 0.104 | 5.20 ± 3.68 | 4.42 ± 3.77 | 0.018 | ||||
Dairy (10) | 3.14 ± 1.32 | 3.12 ± 1.38 | 0.852 | 3.21 ± 1.38 | 2.99 ± 1.30 | 0.063 | ||||
Total Protein Foods (5) | 4.53 ± 0.70 | 4.38 ± 0.90 | 0.128 | 4.41 ± 0.87 | 4.49 ± 0.76 | 0.386 | ||||
Seafood and plant proteins (5) | 3.38 ± 1.48 | 3.98 ± 1.28 | <0.0001 | 3.71 ± 1.43 | 3.79 ± 1.34 | 0.641 | ||||
Fatty acids (10) | 1.76 ± 2.20 | 1.67 ± 2.12 | 0.721 | 1.70 ± 2.16 | 1.72 ± 2.14 | 0.732 | ||||
Refined grains (10) | 8.33 ± 2.33 | 8.68 ± 2.43 | 0.002 | 8.69 ± 2.38 | 8.27 ± 2.40 | 0.005 | ||||
Sodium (10) | 8.56 ± 2.30 | 9.08 ± 1.66 | 0.013 | 8.85 ± 1.96 | 8.90 ± 1.96 | 0.892 | ||||
Added sugars (10) | 8.81 ± 1.79 | 8.78 ± 1.57 | 0.208 | 8.84 ± 1.58 | 8.71 ± 1.78 | 0.669 | ||||
Saturated fats (10) | 3.73 ± 2.95 | 3.75 ± 3.06 | 0.909 | 3.73 ± 3.08 | 3.77 ± 2.91 | 0.845 | ||||
Total score (100) | 65.04 ± 9.71 | 66.75 ± 8.88 | 0.015 | 66.83 ± 8.99 | 64.75 ± 9.57 | 0.006 |
Women with MetS (n = 20) | Women without MetS (n = 43) | ||
---|---|---|---|
Quintile 5 | Quintile 5 | p Value * | |
Median HEI-2015 score | 80.0 | 77.0 | 0.030 |
Metabolic syndrome components | Mean score ± SD | ||
HDL-c (mg/dL) | 46.95 ± 20.29 | 75.65 ± 15.66 | <0.0001 |
TGs (mg/dL) | 152.75 ± 73.89 | 88.98 ± 31.58 | 0.0002 |
glucose (mg/dL) | 108.20 ± 29.85 | 88.33 ± 7.07 | 0.0352 |
waist circumference (cm) | 102.15 ± 17.24 | 79.33 ± 11.13 | <0.0001 |
systolic blood pressure (mm Hg) | 138.40 ± 15.53 | 133.31 ± 17.50 | 0.223 |
diastolic blood pressure (mm Hg) | 84.45 ± 11.82 | 82.65 ± 10.55 | 0.451 |
Men with MetS (n = 14) | Men without MetS (n = 23) | ||
Quintile 5 | Quintile 5 | p Value * | |
Median HEI-2015 score | 77.5 | 77.0 | 0.270 |
Metabolic syndrome components | Mean score ± SD | ||
HDL-c (mg/dL) | 35.86 ± 7.13 | 58.61 ± 15.16 | <0.0001 |
TGs (mg/dL) | 201.07 ± 130.49 | 100.09 ± 39.70 | 0.0003 |
glucose (mg/dL) | 133.07 ± 47.24 | 95.42 ± 11.30 | 0.001 |
waist circumference (cm) | 107.86 ± 10.20 | 90.91 ± 9.30 | <0.0001 |
systolic blood pressure (mm Hg) | 140.64 ± 17.84 | 137.26 ± 17.21 | 0.377 |
diastolic blood pressure (mm Hg) | 85.68 ± 13.06 | 84.63 ± 9.54 | 0.588 |
HEI-2015 Total Score | Glucose (mg/dL) | SBP (mm Hg) | DBP (mm Hg) | HDL-c (mg/dL) | TGs (mg/dL) | WC (cm) | ||
---|---|---|---|---|---|---|---|---|
Total ** | HEI-2015 total score | - | −0.035 | 0.023 | −0.029 | 0.120 * | −0.053 | −0.103 * |
glucose (mg/dL) | −0.035 | - | 0.166 * | 0.073 | −0.262 * | 0.229 * | 0.315 * | |
SBP (mm Hg) | 0.023 | 0.166 * | - | 0.643 * | −0.011 | 0.014 | 0.172 * | |
DBP (mm Hg) | −0.029 | 0.073 | 0.643 * | - | −0.109 * | 0.127 * | 0.217 * | |
HDL-c (mg/dL) | 0.120 * | −0.262 * | −0.011 | −0.109 * | - | −0.578 * | −0.596 * | |
TGs (mg/dL) | −0.053 | 0.229 * | 0.014 | 0.127 * | −0.578 * | - | 0.456 * | |
WC (cm) | −0.103 * | 0.315 * | 0.172 * | 0.217 * | −0.596 * | 0.456 * | - | |
Study group (with MetS) | HEI−2015 total score | - | 0.034 | 0.092 | 0.011 | −0.022 | 0.010 | −0.024 |
glucose (mg/dL) | 0.034 | - | 0.157 * | 0.053 | −0.192 * | 0.228 * | 0.254 * | |
SBP (mm Hg) | 0.092 | 0.157 * | - | 0.604 * | 0.011 | −0.052 | 0.157 * | |
DBP (mm Hg) | 0.011 | 0.053 | 0.604 * | - | −0.141 * | 0.148 * | 0.239 * | |
HDL-c (mg/dL) | −0.022 | −0.192 * | 0.011 | −0.141 * | - | −0.429 * | −0.251 * | |
TGs (mg/dL) | 0.010 | 0.228 * | −0.052 | 0.148 * | −0.429 * | - | 0.176 * | |
WC (cm) | −0.024 | 0.254 * | 0.157 * | 0.239 * | −0.251 * | 0.176 * | - | |
Control group (without MetS) | HEI−2015 total score | - | −0.072 | −0.029 | −0.054 | 0.105 | −0.014 | −0.082 |
glucose (mg/dL) | −0.072 | - | 0.171 * | 0.079 | −0.122 * | 0.032 | 0.157 * | |
SBP (mm Hg) | −0.029 | 0.171 * | - | 0.672 * | −0.062 | 0.083 | 0.277 * | |
DBP (mm Hg) | −0.054 | 0.079 | 0.672 * | - | −0.131 * | 0.124 * | 0.277 * | |
HDL-c (mg/dL) | 0.105 | −0.122 * | −0.062 | −0.131 * | - | −0.382 * | −0.395 * | |
TGs (mg/dL) | −0.014 | 0.032 | 0.083 | 0.124 * | −0.382 * | - | 0.282 * | |
WC (cm) | −0.082 | 0.157 * | 0.277 * | 0.277 * | −0.395 * | 0.282 * | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konikowska, K.; Bombała, W.; Szuba, A.; Różańska, D.; Regulska-Ilow, B. Metabolic Syndrome Is Associated with Low Diet Quality Assessed by the Healthy Eating Index-2015 (HEI-2015) and Low Concentrations of High-Density Lipoprotein Cholesterol. Biomedicines 2022, 10, 2487. https://doi.org/10.3390/biomedicines10102487
Konikowska K, Bombała W, Szuba A, Różańska D, Regulska-Ilow B. Metabolic Syndrome Is Associated with Low Diet Quality Assessed by the Healthy Eating Index-2015 (HEI-2015) and Low Concentrations of High-Density Lipoprotein Cholesterol. Biomedicines. 2022; 10(10):2487. https://doi.org/10.3390/biomedicines10102487
Chicago/Turabian StyleKonikowska, Klaudia, Wojciech Bombała, Andrzej Szuba, Dorota Różańska, and Bożena Regulska-Ilow. 2022. "Metabolic Syndrome Is Associated with Low Diet Quality Assessed by the Healthy Eating Index-2015 (HEI-2015) and Low Concentrations of High-Density Lipoprotein Cholesterol" Biomedicines 10, no. 10: 2487. https://doi.org/10.3390/biomedicines10102487
APA StyleKonikowska, K., Bombała, W., Szuba, A., Różańska, D., & Regulska-Ilow, B. (2022). Metabolic Syndrome Is Associated with Low Diet Quality Assessed by the Healthy Eating Index-2015 (HEI-2015) and Low Concentrations of High-Density Lipoprotein Cholesterol. Biomedicines, 10(10), 2487. https://doi.org/10.3390/biomedicines10102487