The Role of Beta-Adrenergic Receptors in Depression and Resilience
Abstract
:1. Introduction
2. Distribution and Biological Functions of Beta-Adrenergic Receptors
3. Functional Role of Beta-Adrenergic Receptors in Depression and Antidepressant Effects
4. Functional Role of Beta-Adrenergic Receptors in Resilience to Stress
5. Resilience Promotion as a Conceptually Novel Strategy for Depression Treatment
6. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Malhi, G.S.; Mann, J.J. Depression. Lancet 2018, 392, 2299–2312. [Google Scholar] [CrossRef]
- Racagni, G.; Popoli, M. Cellular and molecular mechanisms in the long-term action of antidepressants. Dialogues Clin. Neurosci. 2008, 10, 385–400. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R.C.; Berglund, P.; Demler, O.; Jin, R.; Koretz, D.; Merikangas, K.R.; Rush, A.J.; Walters, E.E.; Wang, P.S. The epidemiology of major depressive disorder: Results from the National Comorbidity Survey Replication (NCS-R). JAMA 2003, 289, 3095–3105. [Google Scholar] [CrossRef] [PubMed]
- Segal, D.S.; Kuczenski, R.; Mandell, A.J. Theoretical implications of drug-induced adaptive regulation for a biogenic amine hypothesis of affective disorder. Biol. Psychiatry 1974, 9, 147–159. [Google Scholar]
- Monteggia, L.M.; Malenka, R.C.; Deisseroth, K. Depression: The best way forward. Nature 2014, 515, 200–201. [Google Scholar] [CrossRef]
- Berman, R.M.; Cappiello, A.; Anand, A.; Oren, D.A.; Heninger, G.R.; Charney, D.S.; Krystal, J.H. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry 2000, 47, 351–354. [Google Scholar] [CrossRef]
- Price, R.B.; Nock, M.K.; Charney, D.S.; Mathew, S.J. Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biol. Psychiatry 2009, 66, 522–526. [Google Scholar] [CrossRef]
- Autry, A.E.; Adachi, M.; Nosyreva, E.; Na, E.S.; Los, M.F.; Cheng, P.F.; Kavalali, E.T.; Monteggia, L.M. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 2011, 475, 91–95. [Google Scholar] [CrossRef]
- Heifets, B.D.; Malenka, R.C. Disruptive Psychopharmacology. JAMA Psychiatry 2019, 76, 775–776. [Google Scholar] [CrossRef]
- Nestler, E.J.; Waxman, S.G. Resilience to Stress and Resilience to Pain: Lessons from Molecular Neurobiology and Genetics. Trends Mol. Med. 2020, 26, 924–935. [Google Scholar] [CrossRef]
- Han, M.H.; Nestler, E.J. Neural Substrates of Depression and Resilience. Neurother. J. Am. Soc. Exp. NeuroTher. 2017, 14, 677–686. [Google Scholar] [CrossRef] [Green Version]
- Friedman, A.K.; Juarez, B.; Ku, S.M.; Zhang, H.; Calizo, R.C.; Walsh, J.J.; Chaudhury, D.; Zhang, S.; Hawkins, A.; Dietz, D.M.; et al. KCNQ channel openers reverse depressive symptoms via an active resilience mechanism. Nat. Commun. 2016, 7, 11671. [Google Scholar] [CrossRef]
- Tan, A.; Costi, S.; Morris, L.S.; Van Dam, N.T.; Kautz, M.; Whitton, A.E.; Friedman, A.K.; Collins, K.A.; Ahle, G.; Chadha, N.; et al. Effects of the KCNQ channel opener ezogabine on functional connectivity of the ventral striatum and clinical symptoms in patients with major depressive disorder. Mol. Psychiatry 2020, 25, 1323–1333. [Google Scholar] [CrossRef] [PubMed]
- Costi, S.; Morris, L.S.; Kirkwood, K.A.; Hoch, M.; Corniquel, M.; Vo-Le, B.; Iqbal, T.; Chadha, N.; Pizzagalli, D.A.; Whitton, A.; et al. Impact of the KCNQ2/3 Channel Opener Ezogabine on Reward Circuit Activity and Clinical Symptoms in Depression: Results From a Randomized Controlled Trial. Am. J. Psychiatry 2021, 178, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Costi, S.; Han, M.H.; Murrough, J.W. The Potential of KCNQ Potassium Channel Openers as Novel Antidepressants. CNS Drugs 2022, 36, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Friedman, A.K.; Walsh, J.J.; Juarez, B.; Ku, S.M.; Chaudhury, D.; Wang, J.; Li, X.; Dietz, D.M.; Pan, N.; Vialou, V.F.; et al. Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience. Science 2014, 344, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, V.; Han, M.H.; Graham, D.L.; Berton, O.; Renthal, W.; Russo, S.J.; Laplant, Q.; Graham, A.; Lutter, M.; Lagace, D.C.; et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 2007, 131, 391–404. [Google Scholar] [CrossRef] [PubMed]
- Nutt, D.J. Relationship of neurotransmitters to the symptoms of major depressive disorder. J. Clin. Psychiatry 2008, 69 (Suppl. E1), 4–7. [Google Scholar]
- Belmaker, R.H.; Agam, G. Major depressive disorder. N. Engl. J. Med. 2008, 358, 55–68. [Google Scholar] [CrossRef]
- Bremner, J.D. Traumatic stress: Effects on the brain. Dialogues Clin. Neurosci. 2006, 8, 445–461. [Google Scholar] [CrossRef]
- Morris, L.S.; McCall, J.G.; Charney, D.S.; Murrough, J.W. The role of the locus coeruleus in the generation of pathological anxiety. Brain Neurosci. Adv. 2020, 4, 2398212820930321. [Google Scholar] [CrossRef] [PubMed]
- Olson, V.G.; Rockett, H.R.; Reh, R.K.; Redila, V.A.; Tran, P.M.; Venkov, H.A.; Defino, M.C.; Hague, C.; Peskind, E.R.; Szot, P.; et al. The role of norepinephrine in differential response to stress in an animal model of posttraumatic stress disorder. Biol. Psychiatry 2011, 70, 441–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grueschow, M.; Stenz, N.; Thörn, H.; Ehlert, U.; Breckwoldt, J.; Brodmann Maeder, M.; Exadaktylos, A.K.; Bingisser, R.; Ruff, C.C.; Kleim, B. Real-world stress resilience is associated with the responsivity of the locus coeruleus. Nat. Commun. 2021, 12, 2275. [Google Scholar] [CrossRef]
- Pitman, R.K.; Rasmusson, A.M.; Koenen, K.C.; Shin, L.M.; Orr, S.P.; Gilbertson, M.W.; Milad, M.R.; Liberzon, I. Biological studies of post-traumatic stress disorder. Nat. Rev. Neurosci. 2012, 13, 769–787. [Google Scholar] [CrossRef]
- Zhang, H.; Chaudhury, D.; Nectow, A.R.; Friedman, A.K.; Zhang, S.; Juarez, B.; Liu, H.; Pfau, M.L.; Aleyasin, H.; Jiang, C.; et al. alpha1- and beta3-Adrenergic Receptor-Mediated Mesolimbic Homeostatic Plasticity Confers Resilience to Social Stress in Susceptible Mice. Biol. Psychiatry 2019, 85, 226–236. [Google Scholar] [CrossRef]
- Isingrini, E.; Perret, L.; Rainer, Q.; Amilhon, B.; Guma, E.; Tanti, A.; Martin, G.; Robinson, J.; Moquin, L.; Marti, F.; et al. Resilience to chronic stress is mediated by noradrenergic regulation of dopamine neurons. Nat. Neurosci. 2016, 19, 560–563. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, L.A.; Luo, L. Organization of the locus coeruleus-norepinephrine system. Curr. Biol. 2015, 25, R1051–R1056. [Google Scholar] [CrossRef]
- Ruan, Y.; Böhmer, T.; Jiang, S.; Gericke, A. The Role of Adrenoceptors in the Retina. Cells 2020, 9, 2594. [Google Scholar] [CrossRef]
- Pradel, K.; Blasiak, T.; Solecki, W.B. Adrenergic Receptor Agonists’ Modulation of Dopaminergic and Non-dopaminergic Neurons in the Ventral Tegmental Area. Neuroscience 2018, 375, 119–134. [Google Scholar] [CrossRef]
- Stemmelin, J.; Cohen, C.; Terranova, J.P.; Lopez-Grancha, M.; Pichat, P.; Bergis, O.; Decobert, M.; Santucci, V.; Françon, D.; Alonso, R.; et al. Stimulation of the beta3-Adrenoceptor as a novel treatment strategy for anxiety and depressive disorders. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2008, 33, 574–587. [Google Scholar] [CrossRef]
- Purves, D. Neuroscience; Sinauer Associates: Sunderland, MA, USA, 2004. [Google Scholar]
- Wang, Y.; Zhao, M.; Shi, Q.; Xu, B.; Zhu, C.; Li, M.; Mir, V.; Bers, D.M.; Xiang, Y.K. Monoamine Oxidases Desensitize Intracellular β(1)AR Signaling in Heart Failure. Circ. Res. 2021, 129, 965–967. [Google Scholar] [CrossRef] [PubMed]
- Wearing, O.H.; Nelson, D.; Ivy, C.M.; Crossley, D.A., 2nd; Scott, G.R. Adrenergic control of the cardiovascular system in deer mice native to high altitude. Curr. Res. Physiol. 2022, 5, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Fu, A.; Li, X.; Zhao, B. Role of beta1-adrenoceptor in the basolateral amygdala of rats with anxiety-like behavior. Brain Res. 2008, 1211, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Silberman, Y.; Ariwodola, O.J.; Weiner, J.L. β1-adrenoceptor activation is required for ethanol enhancement of lateral paracapsular GABAergic synapses in the rat basolateral amygdala. J. Pharmacol. Exp. Ther. 2012, 343, 451–459. [Google Scholar] [CrossRef]
- Liu, S.; Xiu, J.; Zhu, C.; Meng, K.; Li, C.; Han, R.; Du, T.; Li, L.; Xu, L.; Liu, R.; et al. Fat mass and obesity-associated protein regulates RNA methylation associated with depression-like behavior in mice. Nat. Commun. 2021, 12, 6937. [Google Scholar] [CrossRef]
- Large, V.; Hellström, L.; Reynisdottir, S.; Lönnqvist, F.; Eriksson, P.; Lannfelt, L.; Arner, P. Human beta-2 adrenoceptor gene polymorphisms are highly frequent in obesity and associate with altered adipocyte beta-2 adrenoceptor function. J. Clin. Investig. 1997, 100, 3005–3013. [Google Scholar] [CrossRef]
- Ferrer-Lorente, R.; Cabot, C.; Fernández-López, J.A.; Alemany, M. Combined effects of oleoyl-estrone and a beta3-adrenergic agonist (CL316,243) on lipid stores of diet-induced overweight male Wistar rats. Life Sci. 2005, 77, 2051–2058. [Google Scholar] [CrossRef]
- Collins, S. β-Adrenergic Receptors and Adipose Tissue Metabolism: Evolution of an Old Story. Annu. Rev. Physiol. 2022, 84, 1–16. [Google Scholar] [CrossRef]
- Babol, K.; Błasiak, J. Beta3-adrenergic receptor. Postepy Biochem. 2005, 51, 80–87. [Google Scholar]
- González-Soltero, R.; Blanco Fernández de Valderrama, M.J.; González-Soltero, E.; Larrosa, M. Can study of the ADRB3 gene help improve weight loss programs in obese individuals? Endocrinol. Diabetes Nutr. 2021, 68, 66–73. [Google Scholar] [CrossRef]
- Goudie-DeAngelis, E.M.; Abdelhamid, R.E.; Nunez, M.G.; Kissel, C.L.; Kovács, K.J.; Portoghese, P.S.; Larson, A.A. Modulation of musculoskeletal hyperalgesia by brown adipose tissue activity in mice. Pain 2016, 157, 2561–2570. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.D.; Reinert, A.; Bulley, S. The function of β3-adrenergic receptors in resistance-sized arteries. FASEB J. 2022, 36 (Suppl. S1), 3663. [Google Scholar] [CrossRef]
- Rang, H.P. Pharmacology; Churchill Livingstone: Edinburgh, UK; New York, NY, USA, 2003. [Google Scholar]
- Pacini, E.S.A.; Satori, N.A.; Jackson, E.K.; Godinho, R.O. Extracellular cAMP-Adenosine Pathway Signaling: A Potential Therapeutic Target in Chronic Inflammatory Airway Diseases. Front. Immunol. 2022, 13, 866097. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Niiya, R.; Ito, Y.; Kato, Y.; Onoue, S. Comparative characterization of β-adrenoceptors in the bladder, heart, and lungs of rats: Alterations in spontaneously hypertensive rats. J. Pharmacol. Sci. 2022, 148, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Philipson, L.H. beta-Agonists and metabolism. J. Allergy Clin. Immunol. 2002, 110, S313–S317. [Google Scholar] [CrossRef]
- Sun, X.; Wang, X.; Zhou, H.C.; Zheng, J.; Su, Y.X.; Luo, F. β3-adrenoceptor activation exhibits a dual effect on behaviors and glutamate receptor function in the prefrontal cortex. Behav. Brain Res. 2021, 412, 113417. [Google Scholar] [CrossRef]
- Burch, E.A., Jr.; Goldschmidt, T.J. Depression in the elderly: A beta-adrenergic receptor dysfunction? Int. J. Psychiatry Med. 1983, 13, 207–213. [Google Scholar] [CrossRef]
- Manji, H.; Brown, J.H. The antidepressant effect of beta-adrenoreceptor subsensitivity: A brief review and clinical implications. Can. J. Psychiatry 1987, 32, 788–797. [Google Scholar] [CrossRef]
- Leonard, B.E. Noradrenaline in basic models of depression. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 1997, 7 (Suppl. S1), S11–S16, discussion S71–S13. [Google Scholar] [CrossRef]
- Butterweck, V. Mechanism of action of St John’s wort in depression: What is known? CNS Drugs 2003, 17, 539–562. [Google Scholar] [CrossRef]
- Van Waarde, A.; Vaalburg, W.; Doze, P.; Bosker, F.J.; Elsinga, P.H. PET imaging of beta-adrenoceptors in human brain: A realistic goal or a mirage? Curr. Pharm. Des. 2004, 10, 1519–1536. [Google Scholar] [CrossRef] [PubMed]
- Covelli, V.; Passeri, M.E.; Leogrande, D.; Jirillo, E.; Amati, L. Drug targets in stress-related disorders. Curr. Med. Chem. 2005, 12, 1801–1809. [Google Scholar] [CrossRef] [PubMed]
- Jeanningros, R.; Mazzola, P.; Azorin, J.M.; Samuelian-Massa, C.; Tissot, R. Beta-adrenoceptor density of intact mononuclear leukocytes in subgroups of depressive disorders. Biol. Psychiatry 1991, 29, 789–798. [Google Scholar] [CrossRef]
- Pandey, G.N.; Janicak, P.G.; Davis, J.M. Decreased beta-adrenergic receptors in the leukocytes of depressed patients. Psychiatry Res. 1987, 22, 265–273. [Google Scholar] [CrossRef]
- Mazzola-Pomietto, P.; Azorin, J.M.; Tramoni, V.; Jeanningros, R. Relation between lymphocyte beta-adrenergic responsivity and the severity of depressive disorders. Biol. Psychiatry 1994, 35, 920–925. [Google Scholar] [CrossRef]
- Carstens, M.E.; Engelbrecht, A.H.; Russell, V.A.; Aalbers, C.; Gagiano, C.A.; Chalton, D.O.; Taljaard, J.J. Beta-adrenoceptors on lymphocytes of patients with major depressive disorder. Psychiatry Res. 1987, 20, 239–248. [Google Scholar] [CrossRef]
- Mazzola, P.; Jeanningros, R.; Azorin, J.M.; Aligne, L.; Tissot, R. Early decrease in density of mononuclear leukocyte beta-adrenoceptors in depressed patients following amineptine treatment: Possible relation to clinical efficiency. Prog. Neuropsychopharmacol. Biol. Psychiatry 1991, 15, 357–367. [Google Scholar] [CrossRef]
- Srivastava, N.; Barthwal, M.K.; Dalal, P.K.; Agarwal, A.K.; Nag, D.; Seth, P.K.; Srimal, R.C.; Dikshit, M. A study on nitric oxide, beta-adrenergic receptors and antioxidant status in the polymorphonuclear leukocytes from the patients of depression. J. Affect. Disord. 2002, 72, 45–52. [Google Scholar] [CrossRef]
- Fan, X.D. Function of lymphocyte beta-adrenergic receptor in depression. Zhonghua Shen Jing Jing Shen Ke Za Zhi 1992, 25, 322–324. [Google Scholar]
- Wright, A.F.; Crichton, D.N.; Loudon, J.B.; Morten, J.E.; Steel, C.M. Beta-adrenoceptor binding defects in cell lines from families with manic-depressive disorder. Ann. Hum. Genet. 1984, 48, 201–214. [Google Scholar] [CrossRef]
- Firouzabadi, N.; Raeesi, R.; Zomorrodian, K.; Bahramali, E.; Yavarian, I. Beta Adrenoceptor Polymorphism and Clinical Response to Sertraline in Major Depressive Patients. J. Pharm. Pharm. Sci. 2017, 20, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Firouzabadi, N.; Asadpour, R.; Zomorrodian, K. Association Study of the Beta-Adrenergic Receptor Genetic Variant Gly389Arg and Fluoxetine Response in Major Depression. Galen. Med. J. 2020, 9, e1781. [Google Scholar] [CrossRef]
- Stahl, S.M. Neuroendocrine markers of serotonin responsivity in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 1992, 16, 655–659. [Google Scholar] [CrossRef]
- Werstiuk, E.S.; Coote, M.; Griffith, L.; Shannon, H.; Steiner, M. Effects of electroconvulsive therapy on peripheral adrenoceptors, plasma, noradrenaline, MHPG and cortisol in depressed patients. Br. J. Psychiatry 1996, 169, 758–765. [Google Scholar] [CrossRef]
- Cooper, S.J.; Kelly, J.G.; King, D.J. Adrenergic receptors in depression. Effects of electroconvulsive therapy. Br. J. Psychiatry 1985, 147, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Simon, P.; Lecrubier, Y.; Jouvent, R.; Puech, A.J.; Allilaire, J.F.; Widlöcher, D. Experimental and clinical evidence of the antidepressant effect of a beta-adrenergic stimulant. Psychol. Med. 1978, 8, 335–338. [Google Scholar] [CrossRef]
- Lerer, B.; Ebstein, R.P.; Belmaker, R.H. Subsensitivity of human beta-adrenergic adenylate cyclase after salbutamol treatment of depression. Psychopharmacology 1981, 75, 169–172. [Google Scholar] [CrossRef]
- Lecrubier, Y.; Puech, A.J.; Frances, H.; Jouvent, R.; Widlöcher, D.; Simon, P. Beta-adrenergic stimulation and antidepressant activity. Acta Psychiatr. Scand. Suppl. 1981, 290, 173–178. [Google Scholar] [CrossRef]
- Perrone, M.G.; Santandrea, E.; Bleve, L.; Vitale, P.; Colabufo, N.A.; Jockers, R.; Milazzo, F.M.; Sciarroni, A.F.; Scilimati, A. Stereospecific synthesis and bio-activity of novel beta(3)-adrenoceptor agonists and inverse agonists. Bioorg. Med. Chem. 2008, 16, 2473–2488. [Google Scholar] [CrossRef]
- Little, K.Y.; Clark, T.B.; Ranc, J.; Duncan, G.E. Beta-adrenergic receptor binding in frontal cortex from suicide victims. Biol. Psychiatry 1993, 34, 596–605. [Google Scholar] [CrossRef]
- Stockmeier, C.A.; Meltzer, H.Y. Beta-adrenergic receptor binding in frontal cortex of suicide victims. Biol. Psychiatry 1991, 29, 183–191. [Google Scholar] [CrossRef]
- Klimek, V.; Rajkowska, G.; Luker, S.N.; Dilley, G.; Meltzer, H.Y.; Overholser, J.C.; Stockmeier, C.A.; Ordway, G.A. Brain noradrenergic receptors in major depression and schizophrenia. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 1999, 21, 69–81. [Google Scholar] [CrossRef]
- Little, K.Y.; Ranc, J.; Gilmore, J.; Patel, A.; Clark, T.B. Lack of pineal beta-adrenergic receptor alterations in suicide victims with major depression. Psychoneuroendocrinology 1997, 22, 53–62. [Google Scholar] [CrossRef]
- De Paermentier, F.; Crompton, M.R.; Katona, C.L.; Horton, R.W. beta-adrenoceptors in brain and pineal from depressed suicide victims. Pharmacol. Toxicol. 1992, 71 (Suppl. S1), 86–95. [Google Scholar] [CrossRef]
- De Paermentier, F.; Lowther, S.; Crompton, M.R.; Katona, C.L.; Horton, R.W. Beta-adrenoceptors in human pineal glands are unaltered in depressed suicides. J. Psychopharmacol. 1997, 11, 295–299. [Google Scholar] [CrossRef]
- Abosamak, N.R.; Shahin, M.H. Beta 2 Receptor Agonists/Antagonists. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Sears, M.R. Adverse effects of beta-agonists. J. Allergy Clin. Immunol. 2002, 110, S322–S328. [Google Scholar] [CrossRef] [PubMed]
- Frishman, W.H. Beta-adrenergic receptor blockers. Adverse effects and drug interactions. Hypertension 1988, 11, Ii21. [Google Scholar] [CrossRef] [PubMed]
- Ajimura, C.M.; Jagan, N.; Morrow, L.E.; Malesker, M.A. Drug Interactions with Oral Inhaled Medications. J. Pharm. Technol. 2018, 34, 273–280. [Google Scholar] [CrossRef]
- Consoli, D.; Leggio, G.M.; Mazzola, C.; Micale, V.; Drago, F. Behavioral effects of the β3 adrenoceptor agonist SR58611A: Is it the putative prototype of a new class of antidepressant/anxiolytic drugs? Eur. J. Pharmacol. 2007, 573, 139–147. [Google Scholar] [CrossRef]
- Overstreet, D.H.; Stemmelin, J.; Griebel, G. Confirmation of antidepressant potential of the selective beta3 adrenoceptor agonist amibegron in an animal model of depression. Pharm. Biochem. Behav. 2008, 89, 623–626. [Google Scholar] [CrossRef]
- Abdelkader, N.F.; Saad, M.A.; Abdelsalam, R.M. Neuroprotective effect of nebivolol against cisplatin-associated depressive-like behavior in rats. J. Neurochem. 2017, 141, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Chuang, J.C.; Krishnan, V.; Yu, H.G.; Mason, B.; Cui, H.; Wilkinson, M.B.; Zigman, J.M.; Elmquist, J.K.; Nestler, E.J.; Lutter, M. A beta3-adrenergic-leptin-melanocortin circuit regulates behavioral and metabolic changes induced by chronic stress. Biol. Psychiatry 2010, 67, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
- Waal, H.J. Propranolol-induced depression. Br. Med. J. 1967, 2, 50. [Google Scholar] [CrossRef] [PubMed]
- Oppenheim, G. Propranolol-induced depression: Mechanism and management. Aust. N. Z. J. Psychiatry 1983, 17, 400–402. [Google Scholar] [CrossRef] [PubMed]
- Thiessen, B.Q.; Wallace, S.M.; Blackburn, J.L.; Wilson, T.W.; Bergman, U. Increased prescribing of antidepressants subsequent to beta-blocker therapy. Arch. Intern. Med. 1990, 150, 2286–2290. [Google Scholar] [CrossRef]
- Nolan, B.T. Acute suicidal depression associated with use of timolol. JAMA 1982, 247, 1567. [Google Scholar] [CrossRef]
- Ramaswamy, S.; Dahl, E.; Sattar, S.P.; Petty, F. Sotalol-induced depression. Ann. Pharmacother. 2004, 38, 1321–1322. [Google Scholar] [CrossRef]
- Orlando, R.G. Clinical depression associated with betaxolol. Am. J. Ophthalmol. 1986, 102, 275. [Google Scholar] [CrossRef]
- Liu, X.; Lou, X.; Cheng, X.; Meng, Y. Impact of metoprolol treatment on mental status of chronic heart failure patients with neuropsychiatric disorders. Drug Des. Devel. Ther. 2017, 11, 305–312. [Google Scholar] [CrossRef]
- Shah, R.; Babar, A.; Patel, A.; Dortonne, R.; Jordan, J. Metoprolol-Associated Central Nervous System Complications. Cureus 2020, 12, e8236. [Google Scholar] [CrossRef]
- Krystal, J.H.; Neumeister, A. Noradrenergic and serotonergic mechanisms in the neurobiology of posttraumatic stress disorder and resilience. Brain Res. 2009, 1293, 13–23. [Google Scholar] [CrossRef]
- Charney, D.S. Psychobiological mechanisms of resilience and vulnerability: Implications for successful adaptation to extreme stress. Am. J. Psychiatry 2004, 161, 195–216. [Google Scholar] [CrossRef] [PubMed]
- Valentino, R.J.; Van Bockstaele, E. Endogenous Opioids: The Downside of Opposing Stress. Neurobiol. Stress 2015, 1, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Morilak, D.A.; Barrera, G.; Echevarria, D.J.; Garcia, A.S.; Hernandez, A.; Ma, S.; Petre, C.O. Role of brain norepinephrine in the behavioral response to stress. Prog. Neuropsychopharmacol. Biol. Psychiatry 2005, 29, 1214–1224. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Wang, W.; Wang, F.; Huang, J.H. Neuromodulator and Emotion Biomarker for Stress Induced Mental Disorders. Neural Plast. 2016, 2016, 2609128. [Google Scholar] [CrossRef]
- Cao, J.L.; Covington, H.E., 3rd; Friedman, A.K.; Wilkinson, M.B.; Walsh, J.J.; Cooper, D.C.; Nestler, E.J.; Han, M.H. Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action. J. Neurosci. Off. J. Soc. Neurosci. 2010, 30, 16453–16458. [Google Scholar] [CrossRef] [PubMed]
- Chaudhury, D.; Walsh, J.J.; Friedman, A.K.; Juarez, B.; Ku, S.M.; Koo, J.W.; Ferguson, D.; Tsai, H.C.; Pomeranz, L.; Christoffel, D.J.; et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 2013, 493, 532–536. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.J.; Friedman, A.K.; Sun, H.; Heller, E.A.; Ku, S.M.; Juarez, B.; Burnham, V.L.; Mazei-Robison, M.S.; Ferguson, D.; Golden, S.A.; et al. Stress and CRF gate neural activation of BDNF in the mesolimbic reward pathway. Nat. Neurosci. 2014, 17, 27–29. [Google Scholar] [CrossRef]
- Bagot, R.C.; Parise, E.M.; Pena, C.J.; Zhang, H.X.; Maze, I.; Chaudhury, D.; Persaud, B.; Cachope, R.; Bolanos-Guzman, C.A.; Cheer, J.F.; et al. Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nat. Commun. 2015, 6, 7062. [Google Scholar] [CrossRef]
- Wook Koo, J.; Labonte, B.; Engmann, O.; Calipari, E.S.; Juarez, B.; Lorsch, Z.; Walsh, J.J.; Friedman, A.K.; Yorgason, J.T.; Han, M.H.; et al. Essential Role of Mesolimbic Brain-Derived Neurotrophic Factor in Chronic Social Stress-Induced Depressive Behaviors. Biol. Psychiatry 2016, 80, 469–478. [Google Scholar] [CrossRef]
- Li, L.; Sun, H.; Ding, J.; Niu, C.; Su, M.; Zhang, L.; Li, Y.; Wang, C.; Gamper, N.; Du, X.; et al. Selective targeting of M-type potassium K(v) 7.4 channels demonstrates their key role in the regulation of dopaminergic neuronal excitability and depression-like behaviour. Br. J. Pharmacol. 2017, 174, 4277–4294. [Google Scholar] [CrossRef] [PubMed]
Beta-Adrenoceptor Subtypes | Distribution | Function/Effect | Reference |
---|---|---|---|
Beta-1 | Cardiac tissue | Heart rate, heart failure, hypotension | [31,32,33] |
The central nervous system, e.g., the basal lateral amygdala and the cerebral cortex | Psychiatric disorders, e.g., anxiety | [34,35] | |
Adipose tissue | Lipolysis | [31] | |
Salivary glands | Amylase release | [44] | |
Beta-2 | Smooth muscles e.g., in the bronchi, the veins, and the bladder | Smooth muscle relaxation-related effects | [43,45,46] |
Adipose tissue | Lipolysis and mental disorders, such as depression | [36,37] | |
Pancreas | Insulin and glucagon secretion | [47] | |
Beta-3 | Adipose tissue | Lipolysis | [38,39] |
Smooth muscles e.g., in the bronchi, the veins, bladder, and the gastrointestinal tract | Smooth muscle relaxation-related effects | [40] | |
Cardiac tissue | Heart failure and hypertension | [43] | |
The central nervous system, e.g., the ventral tegmental area and the prefrontal cortex | Psychiatric disorders, e.g., depression | [25,48] | |
Skeletal muscle | Thermogenesis | [40,41,42] |
Agonists | Receptor Target | Administration Strategies | Behavioral Tests | Function | Animal Species | Reference |
---|---|---|---|---|---|---|
Methoxamine and CL316243 cocktail | Alpha-1 and Beta-3 | 0.02 μg and 0.6 μg, VTA infusion, 10 days | SIT | Antidepressant | mouse | Zhang et al. [25] |
SR58611A | Beta-3 | 1/3/10 mg/kg, i.p., 10 days | FST, SIT | Antidepressant | mouse/rat | Stemmelin et al. [30] |
SR58611A | Beta-3 | 5/10 mg/kg, i.p., 24/5/1 h prior to behavioral tests | FST, SIT | Antidepressant | rat | Consoli et al. [82] |
SR58611A | Beta-3 | 0.3/1.0/3.0 mg/kg, i.p., 14 days | FST | Antidepressant | rat | Overstreet et al. [83] |
Antagonist | Receptor Target | Administration Strategies | Behavioral Tests | Function | Animal Species | Reference |
---|---|---|---|---|---|---|
Nebivolol | Beta-1 | 10 mg/kg p.o., daily | OFT, FST | Antidepressant | rat | Abdelkader et al. [84] |
Cyclazosin and SR59230A | Alpha-1 and Beta-3 | 0.2 μg and 0.02 μg, VTA infusion, 10 days | SIT | Pro-depression | mouse | Zhang et al. [25] |
SR59230A | Beta-3 | 5 mg/kg i.p., twice daily for 10 days | SIT | Pro-depression | mouse | Chuang et al. [85] |
Agonists | Receptor Target | Administration Strategies | Clinical Symptom Evaluation | Patients | Reference |
---|---|---|---|---|---|
Salbutamol | Beta-2 | 1.5~6 mg intravenous infusion, 6~10 days | HDRS | MDD | Simon et al. and Lecrubier et al. [68,70] |
SR58611A | Beta-3 | 350 mg q12, 12 weeks | CGI-S, MADRS, HAM-A | MDD | Sanofi-NCT00252330 * |
Antagonists | Receptor Target | Administration Strategies | Clinical Symptom Evaluation | Patients | Reference |
---|---|---|---|---|---|
Propranolol | Non-selective | 45~120 mg daily, 2 weeks~3 months | Pro-depression * | Hypertension; angina- pectoris; other beta-blocker users | Waal et al., Oppenheim et al. and Thiessen et al. [86,87,88] |
Timolol | Non-selective | 0.25% twice a day, 3 months | Pro-depression * | Adult-onset diabetes and diabetic retinopathy | Nolan et al. [89] |
Sotalol | Non-selective | 80 mg twice daily, 4 months | Pro-depression * | ICD user | Ramaswamy et al. [90] |
Betaxolol | Beta-1 | One drop in each eye every 12 h | Pro-depression * | Glaucoma | Orlando et al. [91] |
Metoprolol | Beta-1 | 23.75 or 47.5 mg, qd PO, dose escalated with 23.75 mg each time until target heart rate < 70 bpm was achieved | HADS, CBI | Chronic heart failure | Liu et al. [92] |
Metoprolol | Beta-1 | 50/25/12.5 mg twice a day | Pro-depression * | Hypertension, hyperlipidemia, benign prostate hyperplasia, Barrett’s esophagus, mild dementia, and chronic back pain | Shah et al. [93] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Cui, M.; Cao, J.-L.; Han, M.-H. The Role of Beta-Adrenergic Receptors in Depression and Resilience. Biomedicines 2022, 10, 2378. https://doi.org/10.3390/biomedicines10102378
Zhang H, Cui M, Cao J-L, Han M-H. The Role of Beta-Adrenergic Receptors in Depression and Resilience. Biomedicines. 2022; 10(10):2378. https://doi.org/10.3390/biomedicines10102378
Chicago/Turabian StyleZhang, Hongxing, Mengqiao Cui, Jun-Li Cao, and Ming-Hu Han. 2022. "The Role of Beta-Adrenergic Receptors in Depression and Resilience" Biomedicines 10, no. 10: 2378. https://doi.org/10.3390/biomedicines10102378
APA StyleZhang, H., Cui, M., Cao, J.-L., & Han, M.-H. (2022). The Role of Beta-Adrenergic Receptors in Depression and Resilience. Biomedicines, 10(10), 2378. https://doi.org/10.3390/biomedicines10102378