Flexible Wearable Sensors Based in Carbon Nanotubes Reinforced Poly(Ethylene Glycol) Diglycidyl Ether (PEGDGE): Analysis of Strain Sensitivity and Proof of Concept
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials
2.2. Manufacturing of CNT/PEGDGE Nanocomposites
2.3. Characterization
2.3.1. Microstructural Characterization
2.3.2. Electrical Conductivity
2.3.3. Strain Monitoring Tests
3. Results and Discussion
3.1. Microstructural Characterization and Mechanical Properties
3.2. Electrical Conductivity Measurements
3.3. Strain Monitoring Analysis
3.4. Proof of Concept of Human Motion Monitoring
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Basri, R.; Chiu, W. Numerical analysis on the interaction of guided Lamb waves with a local elastic stiffness reduction in quasi-isotropic composite plate structures. Compos. Struct. 2004, 66, 87–99. [Google Scholar] [CrossRef]
- Majumder, M.; Gangopadhyay, T.K.; Chakraborty, A.K.; Dasgupta, K.; Bhattacharya, D.K. Fibre Bragg gratings in structural health monitoring—Present status and applications. Sens. Actuators A Phys. 2008, 147, 150–164. [Google Scholar] [CrossRef]
- Crall, M.D.; Laney, S.G.; Keller, M.W. Multimodal Damage Detection in Self-Sensing Fiber Reinforced Composites. Adv. Funct. Mater. 2019, 29, 1806634. [Google Scholar] [CrossRef]
- Mostaani, F.; Moghbeli, M.R.; Karimian, H. Electrical conductivity, aging behavior, and electromagnetic interference (EMI) shielding properties of polyaniline/MWCNT nanocomposites. J. Thermoplast. Compos. Mater. 2018, 31, 1393–1415. [Google Scholar] [CrossRef]
- Chen, J.; Han, J.; Xu, D. Thermal and electrical properties of the epoxy nanocomposites reinforced with purified carbon nanotubes. Mater. Lett. 2019, 246, 20–23. [Google Scholar] [CrossRef]
- Ravindren, R.; Mondal, S.; Nath, K.; Das, N.C. Investigation of electrical conductivity and electromagnetic interference shielding effectiveness of preferentially distributed conductive filler in highly flexible polymer blends nanocomposites. Compos. Part A Appl. Sci. Manuf. 2019, 118, 75–89. [Google Scholar] [CrossRef]
- Karim, N.; Sarker, F.; Afroj, S.; Zhang, M.; Potluri, P.; Novoselov, K.S. Sustainable and Multifunctional Composites of Graphene-Based Natural Jute Fibers. Adv. Sustain. Syst. 2021, 2000228. [Google Scholar] [CrossRef]
- Hu, N.; Karube, Y.; Yan, C.; Masuda, Z.; Fukunaga, H. Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater. 2008, 56, 2929–2936. [Google Scholar] [CrossRef] [Green Version]
- Kuronuma, Y.; Takeda, T.; Shindo, Y.; Narita, F.; Wei, Z. Electrical resistance-based strain sensing in carbon nanotube/polymer composites under tension: Analytical modeling and experiments. Compos. Sci. Technol. 2012, 72, 1678–1682. [Google Scholar] [CrossRef]
- Cullinan, M.A.; Culpepper, M.L. Carbon nanotubes as piezoresistive microelectromechanical sensors: Theory and experiment. Phys. Rev. B 2010, 82, 115428. [Google Scholar] [CrossRef]
- Gong, S.; Zhu, Z. Giant piezoresistivity in aligned carbon nanotube nanocomposite: Account for nanotube structural distortion at crossed tunnel junctions. Nanoscale 2015, 7, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- Simmons, J.G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 1963, 34, 1793–1803. [Google Scholar] [CrossRef] [Green Version]
- Hu, N.; Masuda, Z.; Yan, C.; Yamamoto, G.; Fukunaga, H.; Hashida, T. The electrical properties of polymer nanocomposites with carbon nanotube fillers. Nanotechnology 2008, 19, 215701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiorillo, A.; Critello, C.; Pullano, S. Theory, technology and applications of piezoresistive sensors: A review. Sens. Actuators A Phys. 2018, 281, 156–175. [Google Scholar] [CrossRef]
- Tang, Z.; Li, Y.; Huang, P.; Wang, H.; Hu, N.; Fu, S. Comprehensive evaluation of the piezoresistive behavior of carbon nanotube-based composite strain sensors. Compos. Sci. Technol. 2021, 208, 108761. [Google Scholar] [CrossRef]
- Camilli, L.; Passacantando, M. Advances on sensors based on carbon nanotubes. Chemosensors 2018, 6, 62. [Google Scholar] [CrossRef] [Green Version]
- Hu, N.; Fukunaga, H.; Atobe, S.; Liu, Y.; Li, J. Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites. Sensors 2011, 11, 10691–10723. [Google Scholar]
- Sánchez-Romate, X.F.; Artigas, J.; Jiménez-Suárez, A.; Sánchez, M.; Güemes, A.; Ureña, A. Critical parameters of carbon nanotube reinforced composites for structural health monitoring applications: Empirical results versus theoretical predictions. Compos. Sci. Technol. 2019, 171, 44–53. [Google Scholar] [CrossRef]
- Sánchez-Romate, X.F.; Moriche, R.; Jiménez-Suárez, A.; Sánchez, M.; Prolongo, S.G.; Güemes, A.; Ureña, A. Highly sensitive strain gauges with carbon nanotubes: From bulk nanocomposites to multifunctional coatings for damage sensing. Appl. Surf. Sci. 2017, 424, 213–221. [Google Scholar] [CrossRef]
- Karim, N.; Afroj, S.; Tan, S.; He, P.; Fernando, A.; Carr, C.; Novoselov, K.S. Scalable production of graphene-based wearable e-textiles. ACS Nano 2017, 11, 12266–12275. [Google Scholar] [CrossRef]
- Mendes, R.G.; Wróbel, P.S.; Bachmatiuk, A.; Sun, J.; Gemming, T.; Liu, Z.; Rümmeli, M.H. Carbon nanostructures as a multi-functional platform for sensing applications. Chemosensors 2018, 6, 60. [Google Scholar] [CrossRef] [Green Version]
- Pei, Z.; Zhang, Q.; Liu, Y.; Zhao, Y.; Dong, X.; Zhang, Y.; Sang, S. A high gauge-factor wearable strain sensor array via 3D printed mold fabrication and size optimization of silver-coated carbon nanotubes. Nanotechnology 2020, 31, 305501. [Google Scholar] [CrossRef] [PubMed]
- Shajari, S.; Mahmoodi, M.; Rajabian, M.; Karan, K.; Sundararaj, U.; Sudak, L.J. Highly Sensitive and Stretchable Carbon Nanotube/Fluoroelastomer Nanocomposite with a Double-Percolated Network for Wearable Electronics. Adv. Electron. Mater. 2020, 6, 1901067. [Google Scholar] [CrossRef]
- Karim, N.; Afroj, S.; Leech, D.; Abdelkader, A.M. Flexible and Wearable Graphene-Based E-Textiles. Oxide Electron. 2021, 21–49. [Google Scholar] [CrossRef]
- Ke, K.; McMaster, M.; Christopherson, W.; Singer, K.D.; Manas-Zloczower, I. Highly sensitive capacitive pressure sensors based on elastomer composites with carbon filler hybrids. Compos. Part A Appl. Sci. Manuf. 2019, 126, 105614. [Google Scholar] [CrossRef]
- Tang, Z.; Jia, S.; Zhou, C.; Li, B. 3D Printing of Highly Sensitive and Large-Measurement-Range Flexible Pressure Sensors with a Positive Piezoresistive Effect. ACS Appl. Mater. Interfaces 2020, 12, 28669–28680. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; D’hooge, D.R.; Cardon, L. Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application. Prog. Mater. Sci. 2020, 114, 100617. [Google Scholar] [CrossRef]
- Sánchez-Romate, X.F.; Sans, A.; Jiménez-Suárez, A.; Campo, M.; Ureña, A. Prolongo SG. Highly Multifunctional GNP/Epoxy Nanocomposites: From Strain-Sensing to Joule Heating Applications. Nanomaterials 2020, 10, 2431. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Zhai, S.; Tang, S.; Zhou, X.; Yu, D.; Wang, X. Investigation into the toughening mechanism of epoxy reinforced with multi-wall carbon nanotubes. E-Polym. 2015, 15, 335–343. [Google Scholar] [CrossRef]
- Sánchez-Romate, X.F.; Moriche, R.; Jiménez-Suárez, A.; Sánchez, M.; Güemes, A.; Ureña, A. An approach using highly sensitive carbon nanotube adhesive films for crack growth detection under flexural load in composite structures. Compos. Struct. 2019, 224, 111087. [Google Scholar] [CrossRef]
- Martin, C.; Sandler, J.; Shaffer, M.; Schwarz, M.; Bauhofer, W.; Schulte, K.; Windle, A.H. Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites. Compos. Sci. Technol. 2004, 64, 2309–2316. [Google Scholar] [CrossRef]
- Kovacs, J.Z.; Velagala, B.S.; Schulte, K.; Bauhofer, W. Two percolation thresholds in carbon nanotube epoxy composites. Compos. Sci. Technol. 2007, 67, 922–928. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Romate, X.F.; Jimenez-Suarez, A.; Sanchez, M.; Guemes, A.; Urena, A. Novel approach to percolation threshold on electrical conductivity of carbon nanotube reinforced nanocomposites. Rsc Adv. 2016, 6, 43418–43428. [Google Scholar] [CrossRef]
Sample Nomenclature | wt.% MWCNTs | Curing Cycle |
---|---|---|
0.01 CNT-140 °C-8 h | 0.01 | 140 °C for 8 h |
0.01 CNT-160 °C-4 h | 160 °C for 4 h | |
0.01 CNT-160 °C-5 h | 160 °C for 5 h | |
0.01 CNT-180 °C-3 h | 180 °C for 3 h | |
0.05 CNT-140 °C-8 h | 0.05 | 140 °C for 8 h |
0.05 CNT-160 °C-4 h | 160 °C for 4 h | |
0.05 CNT-160 °C-5 h | 160 °C for 5 h | |
0.05 CNT-180 °C-3 h | 180 °C for 3 h | |
0.1 CNT-140 °C-8 h | 0.1 | 140 °C for 8 h |
0.1 CNT-160 °C-4 h | 160 °C for 4 h | |
0.1 CNT-160 °C-5 h | 160 °C for 5 h | |
0.1 CNT-180 °C-3 h | 180 °C for 3 h |
GF Silver Ink Attached Wires | GF Embedded Wires | ||||||
---|---|---|---|---|---|---|---|
Strain | 5% | 20% | 30% | 5% | 20% | 30% | |
Sample | |||||||
0.01 CNT-140 °C-8 h | - | - | |||||
0.01 CNT-160 °C-4 h | 3.4 | 11.5 | 33.8 | 3.1 | 3.7 | 4.2 | |
0.01 CNT-160 °C-5 h | 8.1 | 16.9 | - | 3.3 | 11.5 | - | |
0.01 CNT-180 °C-3 h | 7.7 | - | - | 3.8 | - | - | |
0.05 CNT-140 °C-8 h | - | - | |||||
0.05 CNT-160 °C-4 h | 19.8 | 26.6 | 54.9 | 4.2 | 5.9 | 7.5 | |
0.05 CNT-160 °C-5 h | 5 | 9.8 | - | 2.7 | 6.9 | - | |
0.05 CNT-180 °C-3 h | 5 | 217 | - | 5 | 13 | - | |
0.1 CNT-140 °C-8 h | - | 0.3 | 5 (100%) * | 126 (175%) * | |||
0.1 CNT-160 °C-4 h | 4.4 | 27.1 | 112.1 | 2.8 | 3.8 | 8.4 | |
0.1 CNT-160 °C-5 h | 8.5 | 149.1 | - | 1.9 | 5.4 | 28.6 | |
0.1 CNT-180 °C-3 h | 2 | 14.8 | - | 1.4 | 7.7 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
del Bosque, A.; Sánchez-Romate, X.F.; Sánchez, M.; Ureña, A. Flexible Wearable Sensors Based in Carbon Nanotubes Reinforced Poly(Ethylene Glycol) Diglycidyl Ether (PEGDGE): Analysis of Strain Sensitivity and Proof of Concept. Chemosensors 2021, 9, 158. https://doi.org/10.3390/chemosensors9070158
del Bosque A, Sánchez-Romate XF, Sánchez M, Ureña A. Flexible Wearable Sensors Based in Carbon Nanotubes Reinforced Poly(Ethylene Glycol) Diglycidyl Ether (PEGDGE): Analysis of Strain Sensitivity and Proof of Concept. Chemosensors. 2021; 9(7):158. https://doi.org/10.3390/chemosensors9070158
Chicago/Turabian Styledel Bosque, Antonio, Xoan F. Sánchez-Romate, María Sánchez, and Alejandro Ureña. 2021. "Flexible Wearable Sensors Based in Carbon Nanotubes Reinforced Poly(Ethylene Glycol) Diglycidyl Ether (PEGDGE): Analysis of Strain Sensitivity and Proof of Concept" Chemosensors 9, no. 7: 158. https://doi.org/10.3390/chemosensors9070158
APA Styledel Bosque, A., Sánchez-Romate, X. F., Sánchez, M., & Ureña, A. (2021). Flexible Wearable Sensors Based in Carbon Nanotubes Reinforced Poly(Ethylene Glycol) Diglycidyl Ether (PEGDGE): Analysis of Strain Sensitivity and Proof of Concept. Chemosensors, 9(7), 158. https://doi.org/10.3390/chemosensors9070158