Rapid and Sensitive Point of Care Detection of MRSA Genomic DNA by Nanoelectrokinetic Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Capacitive Sensing of Sensor Surface Nano-Topology
2.2. DNA Enrichment by Dielectrophoresis (DEP)
2.3. Reagents, Sensor and Sample Preparation
3. Results and Discussion
3.1. Nanostructured Probe Layer on Electrode Surface
3.2. Optimization of Assay Time
3.3. Sensor Sensitivity and Specificity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fojta, M.; Daňhel, A.; Havran, L.; Vyskočil, V. Recent Progress in Electrochemical Sensors and Assays for DNA Damage and Repair. TrAC Trends Anal. Chem. 2016, 79, 160–167. [Google Scholar] [CrossRef]
- Millan, K.M.; Mikkelsen, S.R. Sequence-Selective Biosensor for DNA Based on Electroactive Hybridization Indicators. Anal. Chem. 1993, 65, 2317–2323. [Google Scholar] [CrossRef]
- Mohanty, S.P.; Kougianos, E. Biosensors: A Tutorial Review. IEEE Potentials 2006, 25, 35–40. [Google Scholar] [CrossRef]
- Rafique, B.; Iqbal, M.; Mehmood, T.; Shaheen, M.A. Electrochemical DNA Biosensors: A Review. Sens. Rev. 2019, 39, 34–50. [Google Scholar] [CrossRef]
- Moreno-Hagelsieb, L.; Lobert, P.E.; Pampin, R.; Bourgeois, D.; Remacle, J.; Flandre, D. Sensitive DNA Electrical Detection Based on Interdigitated Al/Al2O3 Microelectrodes. Sens. Actuators B Chem. 2004, 98, 269–274. [Google Scholar] [CrossRef]
- Xu, L.; Liang, W.; Wen, Y.; Wang, L.; Yang, X.; Ren, S.; Jia, N.; Zuo, X.; Liu, G. An Ultrasensitive Electrochemical Biosensor for the Detection of MecA Gene in Methicillin-Resistant Staphylococcus Aureus. Biosens. Bioelectron. 2018, 99, 424–430. [Google Scholar] [CrossRef]
- Liu, M.; Xiang, H.; Hua, E.; Wang, L.; Jing, X.; Cao, X.; Sheng, S.; Xie, G. Ultrasensitive Electrochemical Biosensor for the Detection of the MecA Gene Sequence in Methicillin Resistant Strains of Staphylococcus Aureus Employing Gold Nanoparticles. Anal. Lett. 2014, 47, 579–591. [Google Scholar] [CrossRef]
- Yue, H.; Zhou, Y.; Wang, P.; Wang, X.; Wang, Z.; Wang, L.; Fu, Z. A Facile Label-Free Electrochemiluminescent Biosensor for Specific Detection of Staphylococcus Aureus Utilizing the Binding between Immunoglobulin G and Protein A. Talanta 2016, 153, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Berggren, C.; Stålhandske, P.; Brundell, J.; Johansson, G. A Feasibility Study of a Capacitive Biosensor for Direct Detection of DNA Hybridization. Electroanalysis 1999, 11, 156–160. [Google Scholar] [CrossRef]
- Khaliliazar, S.; Ouyang, L.; Piper, A.; Chondrogiannis, G.; Hanze, M.; Herland, A.; Hamedi, M.M. Electrochemical Detection of Genomic DNA Utilizing Recombinase Polymerase Amplification and Stem-Loop Probe. ACS Omega 2020, 5, 12103–12109. [Google Scholar] [CrossRef] [PubMed]
- Abdul Rashid, J.I.; Yusof, N.A.; Abdullah, J.; Hashim, U.; Hajian, R. Surface Modifications to Boost Sensitivities of Electrochemical Biosensors Using Gold Nanoparticles/Silicon Nanowires and Response Surface Methodology Approach. J. Mater. Sci. 2016, 51, 1083–1097. [Google Scholar] [CrossRef]
- Lee, K.-H.; Lee, J.-O.; Sohn, M.-J.; Lee, B.; Choi, S.-H.; Kim, S.K.; Yoon, J.-B.; Cho, G.-H. One-Chip Electronic Detection of DNA Hybridization Using Precision Impedance-Based CMOS Array Sensor. Biosens. Bioelectron. 2010, 26, 1373–1379. [Google Scholar] [CrossRef]
- Wu, J.; Islam, N. A Simple Method to Integrate In Situ Nano-Particle Focusing With Cantilever Detection. IEEE Sens. J. 2007, 7, 957–958. [Google Scholar] [CrossRef]
- Cui, H.; Li, S.; Yuan, Q.; Wadhwa, A.; Eda, S.; Chambers, M.; Ashford, R.; Jiang, H.; Wu, J. An AC Electrokinetic Impedance Immunosensor for Rapid Detection of Tuberculosis. Analyst 2013, 138, 7188–7196. [Google Scholar] [CrossRef]
- Li, S.; Cui, H.; Yuan, Q.; Wu, J.; Wadhwa, A.; Eda, S.; Jiang, H. AC Electrokinetics-Enhanced Capacitive Immunosensor for Point-of-Care Serodiagnosis of Infectious Diseases. Biosens. Bioelectron. 2014, 51, 437–443. [Google Scholar] [CrossRef]
- Hughes, M.P.; Morgan, H. Dielectrophoretic Characterization and Separation of Antibody-Coated Submicrometer Latex Spheres. Anal. Chem. 1999, 71, 3441–3445. [Google Scholar] [CrossRef]
- Arumugam, P.U.; Chen, H.; Cassell, A.M.; Li, J. Dielectrophoretic Trapping of Single Bacteria at Carbon Nanofiber Nanoelectrode Arrays. J. Phys. Chem. A 2007, 111, 12772–12777. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Wu, J.; Fikrig, E.; Wang, P.; Chen, J.; Eda, S.; Terry, P. Unamplified RNA Sensor for On-Site Screening of Zika Virus Disease in a Limited Resource Setting. ChemElectroChem 2017, 4, 485–489. [Google Scholar] [CrossRef]
- Cheng, C.; Oueslati, R.; Wu, J.; Chen, J.; Eda, S. Capacitive DNA Sensor for Rapid and Sensitive Detection of Whole Genome Human Herpesvirus-1 DsDNA in Serum. Electrophoresis 2017, 38, 1617–1623. [Google Scholar] [CrossRef] [PubMed]
- Kokkinos, C.; Economou, A.; Prodromidis, M.I. Electrochemical Immunosensors: Critical Survey of Different Architectures and Transduction Strategies. TrAC Trends Anal. Chem. 2016, 79, 88–105. [Google Scholar] [CrossRef]
- Oueslati, R.; Cheng, C.; Wu, J.; Chen, J. Highly Sensitive and Specific On-Site Detection of Serum Cocaine by a Low Cost Aptasensor. Biosens. Bioelectron. 2018, 108, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Wang, S.; Wu, J.; Yu, Y.; Li, R.; Eda, S.; Chen, J.; Feng, G.; Lawrie, B.; Hu, A. Bisphenol A Sensors on Polyimide Fabricated by Laser Direct Writing for Onsite River Water Monitoring at Attomolar Concentration. ACS Appl. Mater. Interfaces 2016, 8, 17784–17792. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, P.E.; Whitman, L.J. Detection Limits for Nanoscale Biosensors. Nano Lett. 2005, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Cheng, C.; Yuan, Q.; Oueslati, R.; Zhang, J.; Chen, J.; Almeida, R. Simple, Fast and Highly Sensitive Detection of Gram-Negative Bacteria by A Novel Electrical Biosensor. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Honolulu, HI, USA, 17–21 July 2018; pp. 1279–1282. [Google Scholar] [CrossRef]
- Wu, J. Interactions of Electrical Fields with Fluids:Laboratory-on-a-Chip Applications. IET Nanobiotechnol. 2008, 2, 14–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, K.; Wu, J. Numerical Study of in Situ Preconcentration for Rapid and Sensitive Nanoparticle Detection. Biomicrofluidics 2010, 4, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Yuan, Q.; Morshed, B.I.; Ke, C.; Wu, J.; Jiang, H. Dielectrophoretic Responses of DNA and Fluorophore in Physiological Solution by Impedimetric Characterization. Biosens. Bioelectron. 2013, 41, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Islam, N.; Eda, S.; Wu, J. Optimization of an AC Electrokinetics Immunoassay Lab-Chip for Biomedical Diagnostics. Microfluid. Nanofluid. 2017, 21, 35. [Google Scholar] [CrossRef]
- Lenshof, A.; Laurell, T. Continuous Separation of Cells and Particles in Microfluidic Systems. Chem. Soc. Rev. 2010, 39, 1203. [Google Scholar] [CrossRef]
- Zhang, J.; Oueslati, R.; Cheng, C.; Zhao, L.; Chen, J.; Almeida, R.; Wu, J. Rapid, Highly Sensitive Detection of Gram-Negative Bacteria with Lipopolysaccharide Based Disposable Aptasensor. Biosens. Bioelectron. 2018, 112, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Morgan, H.; Green, N.G. Dielectrophoretic Manipulation of Rod-Shaped Viral Particles. J. Electrost. 1997, 42, 279–293. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.; Huang, J.; Oueslati, R.; Jiang, Y.; Chen, J.; Li, S.; Dai, S.; He, Q.; Wu, J. A Single-Step DNAzyme Sensor for Ultra-Sensitive and Rapid Detection of Pb2+ Ions. Electrochim. Acta 2021, 368, 137551. [Google Scholar] [CrossRef]
- Mirzajani, H.; Cheng, C.; Wu, J.; Chen, J.; Eda, S.; Najafi Aghdam, E.; Badri Ghavifekr, H. A Highly Sensitive and Specific Capacitive Aptasensor for Rapid and Label-Free Trace Analysis of Bisphenol A (BPA) in Canned Foods. Biosens. Bioelectron. 2017, 89, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cheng, C.; Wu, J.; Eda, S.; Guo, Y. A Low Cost and Palm-Size Analyzer for Rapid and Sensitive Protein Detection by AC Electrokinetics Capacitive Sensing. Biosens. Bioelectron. 2017, 90, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Minunni, M.; Tombelli, S.; Scielzi, R.; Mannelli, I.; Mascini, M.; Gaudiano, C. Detection of β-Thalassemia by a DNA Piezoelectric Biosensor Coupled with Polymerase Chain Reaction. Anal. Chim. Acta 2003, 481, 55–64. [Google Scholar] [CrossRef]
- Cui, H.; Cheng, C.; Wu, J.; Eda, S. Rapid Detection of Progesterone by Commercially Available Microelectrode Chips. In Proceedings of the IEEE SENSORS 2013, Baltimore, MD, USA, 3–6 November 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Cui, H.; Cheng, C.; Lin, X.; Wu, J.; Chen, J.; Eda, S.; Yuan, Q. Rapid and Sensitive Detection of Small Biomolecule by Capacitive Sensing and Low Field AC Electrothermal Effect. Sens. Actuators B Chem. 2016, 226, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, J.; Wu, J.; Qi, H.; Wang, C.; Fang, X.; Cheng, C.; Yang, W. Rapid Detection of Ultra-Trace Nanoparticles Based on ACEK Enrichment for Semiconductor Manufacturing Quality Control. Microfluid. Nanofluid. 2019, 23, 2. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, Y.; Xia, X.; Wu, J.; Almeida, R.; Eda, S.; Qi, H. An On-Site, Highly Specific Immunosensor for Escherichia Coli Detection in Field Milk Samples from Mastitis-Affected Dairy Cattle. Biosens. Bioelectron. 2020, 165, 112366. [Google Scholar] [CrossRef]
Reference | Technique | Testing Solution | LOD 1 and DNA Size | Dynamic Range | Assay Time | Sensor Portability |
---|---|---|---|---|---|---|
[5] | Capacitance measurement | Labeled: Au-nanoparticles | 0.2 nM dsDNA (150 bps) | 0.2–20 nM | 7 m | Not portable (Lab-based) |
[6] | Cyclic Voltammetry | 10 mM PBS (pH 7.4) with 0.1 M KCl and 5 mM [Fe(CN)6]3−/4− | 57 fM (after PCR) | ------- | 4 h | Not portable (PCR lab based) |
[7] | DPV 2 | 2 × SSC | 23 pM (after PCR) | 50 to 250 pM | 2 h | Not portable |
[8] | EIS 3 | 0.1 M PBS containing 5 mM [Fe(CN)6]3−/4− | 100 fM DNA (short) | ---- | 30 m | Not portable (Autolab measurement) |
This work | Capacitance measurement | 0.5 × SSC | 16 aM (2.8 Mbps) | 0.4 fM–0.4 pM | 10 s | Portable: ABC readout system |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oueslati, R.; Jiang, Y.; Chen, J.; Wu, J. Rapid and Sensitive Point of Care Detection of MRSA Genomic DNA by Nanoelectrokinetic Sensors. Chemosensors 2021, 9, 97. https://doi.org/10.3390/chemosensors9050097
Oueslati R, Jiang Y, Chen J, Wu J. Rapid and Sensitive Point of Care Detection of MRSA Genomic DNA by Nanoelectrokinetic Sensors. Chemosensors. 2021; 9(5):97. https://doi.org/10.3390/chemosensors9050097
Chicago/Turabian StyleOueslati, Rania, Yu Jiang, Jiangang Chen, and Jayne Wu. 2021. "Rapid and Sensitive Point of Care Detection of MRSA Genomic DNA by Nanoelectrokinetic Sensors" Chemosensors 9, no. 5: 97. https://doi.org/10.3390/chemosensors9050097
APA StyleOueslati, R., Jiang, Y., Chen, J., & Wu, J. (2021). Rapid and Sensitive Point of Care Detection of MRSA Genomic DNA by Nanoelectrokinetic Sensors. Chemosensors, 9(5), 97. https://doi.org/10.3390/chemosensors9050097