Recent Development in Nanomaterial-Based Electrochemical Sensors for Cholesterol Detection
Abstract
:1. Introduction
2. Principle
3. Nanomaterials for Cholesterol Sensing
3.1. Nanomaterials for Enzymatic Electrochemical Sensing of Cholesterol
Material | Substrate | Linear Range (μM) | LOD (μM) | Sensitivity(μA mM−1 cm−2) | KM (μM) | Stability | Potential (V) | Reference Electrode | pH | Response Time (s) | Electrolyte | Detection Method | Enzyme/Redox Agent | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | Days | Temp. (°C) | ||||||||||||||
Enzymatic | ||||||||||||||||
Pt | Si | 2–486 | 2 | 132 | – | 79 | 21 | – | 0.3 | Ag/AgCl | 7.4 | – | 1 M PBS | CE, ChOx, peroxidase | [34] | |
Pt-PANI | Polyimide | 1000–12,000 | 440 | – | – | 93 | 7 | 4 | 0.425 | Ag/AgCl | 7.0 | ~4 | 0.1 M PBS | A | ChOx | [36] |
Pt/rGO/PABA | SPCE | 250–400 | 40.5 | 15.94 | 3820 | 88 | 7 | 4 | +0.50 | Ag/AgCl | 7.4 | 0.1 M PBS | A | ChOx | [30] | |
Ag | GCE | 100–20,000 | 25.8 | – | 1660 | – | – | – | −0.5 | Ag/AgCl ink | 7.4 | – | 0.05 M PBS | A | ChOx | [37] |
Au | SPCE | 0.013–12.950 | 0.0078 | – | – | 75 | 5 min | 4 | −0.5 | Ag/AgCl | 8.6 | 300 | 0.1 M HNO3 + 0.6 M KNO3 | LSV | ChOx, CE | [35] |
Au-PPy | Pt | 5–25 | 25 | 1.6 | – | 30 | 30 | 4 | −0.2 | Ag/AgCl | 7.0 | – | 0.05 M PBS | A | ChOx, CE | [32] |
Bi2O2CO3 | Au-glass | 50–7400 | 10 | 139.5 | 190 | 94 | 42 | – | 0.25 | Ag/AgCl (Sat. KCl) | 7.4 | 4 | 0.1 M PBS | A | ChOx | [38] |
NiO | Si | 120–10,230 | 100 | 45 | – | – | – | – | 0.5 | Ag/AgCl | 7.0 | – | 0.05 M PBS | A | ChOx | [39] |
Ag-B-Diamond | Paper | 10–700 | 6.4 | 49.61 | 6480 | – | −0.7 | Ag/AgCl (Sat. KCl) | 7.4 | – | 0.05 M PBS | A | ChOx | [31] | ||
MoS2-Au | GCE | 0.5–48 | 0.26 | 4460 | 0.325 | 92.1 | 15 | – | 0.3 | SCE | 7.0 | – | 0.05 M PBS | A | ChOx | [40] |
Au-GO | SPCE | 0.000026–12.95 | 0.0000026 | 0.084 | – | 86 | 15 | 0.2 | Ag/AgCl | 8.6 | 120 | 0.1 M HNO3 + 0.6 M KNO3 + 0.1 M KCl | LSV | ChOx, CE | [14] | |
Ag-GO-CS | ITO | 10,340 | 11 | 13.628 | 2813 | – | – | – | −0.45 | Ag/AgCl (Sat. KCl) | 7.0 | 0.01 MPBS | A | ChOx | [41] | |
Graphene/PVP/PANI | Paper | 50–100 | 1 | 34.77 | – | 89.1 | 14 | – | 0.6 | Ag/AgCl (Ink) | 7.0 | – | 0.1 M PBS | A | ChOx | [42] |
G-C3N4H+–PPy | GCE | 20–5000 | 8.0 | 645.7 | 52 | 94 | 45 | 4 | +0.17 | SCE | 7.4 | ~3 | 0.1 M PBS | A | ChOx | [43] |
PTBA | PGE | 0.8–4.8 | 0.22 | 0.21 | – | 90 | 35 | −0.7 | Ag/AgCl | 7.4 | 2 | 0.05 M PBS | A | FAD, ChOx | [44] | |
Prussian blue | SPCE | 0–15,000 | 0.2 | 2.1 | – | – | – | – | 0 | Ag/AgCl | 7.0 | 200 | 0.05 M PBS + 0.1 M KCl | A | ChOx | [3] |
Nonenzymatic | ||||||||||||||||
ZnO | Si | 1000–9000 | 1780 | 4.2 | – | 95.3 | 21 | – | – | Ag/AgCl | 7.4 | – | 20 M PBS | A | – | [45] |
Ag-ZnO | Si | 1000–9000 | 184 | 135.5 | – | 95.3 | 21 | – | – | Ag/AgCl | 7.4 | – | 0.02 M PBS | CV | – | [45] |
Cu2O-TiO2 | Ti | 24.4–622 | 0.05 | 6034.04 | – | 95 | 21 | – | −0.46 | Ag/AgCl | 7.0 | 3 | 0.1 M PBS | A | – | [46] |
NiO/graphene | GCE | 2–40 | 0.13 | 40.6 | – | – | – | – | – | Ag/AgCl | – | 5 | 1 MKOH | A | – | [47] |
GO-MIP | GCE | 0.0001–10 | 0.0001 | – | – | – | – | – | Ag/AgCl (Sat. KCl) | 5.0 | 2 | 0.1 M PBS | CV | – | [48] | |
PANI/MWCNTs/Starch | CPE | 32–5000 | 10 | 800 | – | – | – | – | – | Ag/AgCl (Sat. KCl) | – | 4–6 | 0.1 M PBS | A | – | [49] |
Redox mediator nonenzymatic | ||||||||||||||||
MWCNTs- β-CD | SPCE | 0.001–3 | 0.0005 | – | – | – | – | – | −0.23–0.53 | Ag/AgCl | 7.4 | – | PBS | DPV | Ferricyanide | [22] |
Β-CD@N-GQD | GCE | 0.5–100 | 0.08 | – | – | 87 | 21 | – | 0–0.4 | Ag/AgCl | 7.0 | 600 | 0.01 M PBS | DPV | Ferrocene | [50] |
β-CD-PNAANI-GO | GCE | 1.0–50 | 0.50 | – | – | 85.6 | 30 | 4 | −0.7–0.7 | SCE | 7.0 | – | 0.1 M PBS | DPV | MB | [51] |
Redox mediator enzymatic | ||||||||||||||||
Au/rGO-PAMAM | Au | 0.4–15,360 | 0.002 | – | – | 80 | – | – | 0.2 | SCE | 8.0 | – | 0.1 M HNO3 + 0.6 M KNO3 | LSV | ChOx, CE, Ferrocene | [52] |
PTH | GCE | 25–125 | 6.3 | 0.00018 | – | 90 | 30 | 4 | −0.4–0.4 | Ag/AgCl (Sat. KCl) | 7.0 | – | 0.05 M PBS | DPV | ChOx/HRP/HQ | [53] |
3.2. Nanomaterials in Nonenzymatic Electrochemical Cholesterol Sensing
3.3. Nanomaterials in Electrochemical Cholesterol Sensing with Redox Mediators
4. Challenges
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stone, N.J.; Robinson, J.G.; Lichtenstein, A.H.; Merz, C.N.B.; Blum, C.B.; Eckel, R.H.; Goldberg, A.C.; Gordon, D.; Levy, D.; Lloyd-Jones, D.M.; et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: A report of the American college of cardiology/American heart association task force on practice guidelines. J. Am. Coll. Cardiol. 2014, 63, 2889–2934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardiovascular Diseases, (n.d.). Available online: https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1 (accessed on 21 April 2021).
- Cinti, S.; Arduini, F.; Moscone, D.; Palleschi, G.; Gonzalez-Macia, L.; Killard, A.J. Cholesterol biosensor based on inkjet-printed Prussian blue nanoparticle-modified screen-printed electrodes. Sens. Actuators B Chem. 2015, 221, 187–190. [Google Scholar] [CrossRef]
- Gofman, J.W.; Lindgren, F.; Elliott, H.; Mantz, W.; Hewitt, J.; Strisower, B.; Herring, V.; Lyon, T.P. The role of lipids and lipoproteins in atherosclerosis. Science 1950, 111, 166–186. [Google Scholar] [CrossRef] [Green Version]
- Manley, C.; Mayer, J. Clinical Veterinary Advisor: Birds and Exotic Pets; Elsevier Inc.: Amsterdam, The Netherlands, 2012; pp. 613–614. [Google Scholar]
- Motonaka, J.; Faulkner, L.R. Determination of Cholesterol and Cholesterol Ester with Novel Enzyme Microsensors. Anal. Chem. 1993, 65, 3258–3261. [Google Scholar] [CrossRef]
- Sekretaryova, A.N.; Beni, V.; Eriksson, M.; Karyakin, A.A.; Turner, A.P.F.; Vagin, M.Y. Cholesterol self-powered biosensor. Anal. Chem. 2014, 86, 9540–9547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amiri, M.; Arshi, S. An Overview on Electrochemical Determination of Cholesterol. Electroanalysis 2020, 32, 1391–1407. [Google Scholar] [CrossRef]
- Chunta, S.; Boonsriwong, W.; Wattanasin, P.; Naklua, W.; Lieberzeit, P.A. Direct assessment of very-low-density lipoprotein by mass sensitive sensor with molecularly imprinted polymers. Talanta 2021, 221, 121549. [Google Scholar] [CrossRef]
- Li, Y.; Cai, J.; Liu, F.; Yang, H.; Lin, Y.; Li, S.; Huang, X.; Lin, L. Construction of a turn off-on fluorescent nanosensor for cholesterol based on fluorescence resonance energy transfer and competitive host-guest recognition. Talanta 2019, 201, 82–89. [Google Scholar] [CrossRef]
- Saxena, U.; Chakraborty, M.; Goswami, P. Covalent immobilization of cholesterol oxidase on self-assembled gold nanoparticles for highly sensitive amperometric detection of cholesterol in real samples. Biosens. Bioelectron. 2011, 26, 3037–3043. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Liu, C.-C. Development of a screen-printed cholesterol biosensor: Comparing the performance of gold and platinum as the working electrode material and fabrication using a self-assembly approach. Sens. Actuators B Chem. 2007, 120, 417–425. [Google Scholar] [CrossRef]
- Haeckel, R.; Sonntag, O.; Külpmann, W.R.; Feldmann, U. Comparison of 9 Methods for the Determination of Cholesterol. Clin. Chem. Lab. Med. 1979, 17, 553–563. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Tan, J.; Cui, L.; Zhou, Z.; Zhou, S.; Zhang, Z.; Zheng, R.; Xue, Y.; Zhang, M.; Li, S.; et al. Graphene and Au NPs co-mediated enzymatic silver deposition for the ultrasensitive electrochemical detection of cholesterol. Biosens. Bioelectron. 2018, 102, 560–567. [Google Scholar]
- Lee, W.-C.; Kim, K.-B.; Gurudatt, N.; Hussain, K.K.; Choi, C.S.; Park, D.-S.; Shim, Y.-B. Comparison of enzymatic and non-enzymatic glucose sensors based on hierarchical Au-Ni alloy with conductive polymer. Biosens. Bioelectron. 2019, 130, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Saha, M.; Das, S. Fabrication of a nonenzymatic cholesterol biosensor using carbon nanotubes from coconut oil. J. Nanostruct. Chem. 2014, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-J.; Park, J.-Y. Nonenzymatic free-cholesterol detection via a modified highly sensitive macroporous gold electrode with platinum nanoparticles. Biosens. Bioelectron. 2010, 26, 1353–1358. [Google Scholar] [CrossRef]
- Saxena, U.; Das, A.B. Nanomaterials towards fabrication of cholesterol biosensors: Key roles and design approaches. Biosens. Bioelectron. 2016, 76, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Gahlaut, A.; Hooda, V.; Dhull, V.; Hooda, V. Recent approaches to ameliorate selectivity and sensitivity of enzyme based cholesterol biosensors: A review. Artif. Cells Nanomed. Biotechnol. 2018, 46, 472–481. [Google Scholar] [CrossRef] [Green Version]
- Arya, S.K.; Datta, M.; Malhotra, B.D. Recent advances in cholesterol biosensor. Biosens. Bioelectron. 2008, 23, 1083–1100. [Google Scholar] [CrossRef]
- Narwal, V.; Deswal, R.; Batra, B.; Kalra, V.; Hooda, R.; Sharma, M.; Rana, J. Cholesterol biosensors: A review. Steroids 2019, 143, 6–17. [Google Scholar] [CrossRef]
- Nawaz, M.A.H.; Majdinasab, M.; Latif, U.; Nasir, M.; Gokce, G.; Anwar, M.W.; Hayat, A. Hayat, Development of a disposable electrochemical sensor for detection of cholesterol using differential pulse voltammetry. J. Pharm. Biomed. Anal. 2018, 159, 398–405. [Google Scholar] [CrossRef]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors—Sensor Principles and Architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef] [PubMed]
- Soylemez, S.; Udum, Y.A.; Kesik, M.; Hızlıateş, C.G.; Ergun, Y.; Toppare, L. Electrochemical and optical properties of a conducting polymer and its use in a novel biosensor for the detection of cholesterol. Sens. Actuators B Chem. 2015, 212, 425–433. [Google Scholar] [CrossRef]
- Wu, Q.; Hou, Y.; Zhang, M.; Hou, X.; Xu, L.; Wang, N.; Wang, J.; Huang, W. Amperometric cholesterol biosensor based on zinc oxide films on a silver nanowire–graphene oxide modified electrode. Anal. Methods 2016, 8, 1806–1812. [Google Scholar] [CrossRef]
- Ahmadraji, T.; Killard, A.J. Measurement of total cholesterol using an enzyme sensor based on a printed hydrogen peroxide electrocatalyst. Anal. Methods 2016, 8, 2743–2749. [Google Scholar] [CrossRef]
- Bhavya, G.; Belorkar, S.A.; Mythili, R.; Geetha, N.; Shetty, H.S.; Udikeri, S.S.; Jogaiah, S. Remediation of emerging environmental pollutants: A review based on advances in the uses of eco-friendly biofabricated nanomaterials. Chemosphere 2021, 275, 129975. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Song, Y.; He, Z.; Zhang, J.-R.; Zhu, J.-J. Self-assembled nanomaterials for biosensing and therapeutics recent advances and challenges. Analyst 2021, 13. [Google Scholar] [CrossRef]
- Mulik, B.B.; Munde, A.V.; Dighole, R.P.; Sathe, B.R. Electrochemical determination of semicarbazide on cobalt oxide nanoparticles: Implication towards environmental monitoring. J. Ind. Eng. Chem. 2021, 93, 259–266. [Google Scholar] [CrossRef]
- Phetsang, S.; Jakmunee, J.; Mungkornasawakul, P.; Laocharoensuk, R.; Ounnunkad, K. Sensitive amperometric biosensors for detection of glucose and cholesterol using a platinum/reduced graphene oxide/poly(3-aminobenzoic acid) film-modified screen-printed carbon electrode. Bioelectrochemistry 2019, 127, 125–135. [Google Scholar] [CrossRef]
- Nantaphol, S.; Chailapakul, O.; Siangproh, W. A novel paper-based device coupled with a silver nanoparticle-modified boron-doped diamond electrode for cholesterol detection. Anal. Chim. Acta 2015, 891, 136–143. [Google Scholar] [CrossRef]
- Rahim, M.Z.A.; Govender-Hondros, G.; Adeloju, S.B. A single step electrochemical integration of gold nanoparticles, cholesterol oxidase, cholesterol esterase and mediator with polypyrrole films for fabrication of free and total cholesterol nanobiosensors. Talanta 2018, 189, 418–428. [Google Scholar] [CrossRef]
- Li, Y.; Bai, H.; Liu, Q.; Bao, J.; Han, M.; Dai, Z. A nonenzymatic cholesterol sensor constructed by using porous tubular silver nanoparticles. Biosens. Bioelectron. 2010, 25, 2356–2360. [Google Scholar] [CrossRef] [PubMed]
- Eom, K.S.; Lee, Y.J.; Seo, H.W.; Kang, J.Y.; Shim, J.S.; Lee, S.H. Sensitive and non-invasive cholesterol determination in saliva: Via optimization of enzyme loading and platinum nano-cluster composition. Analyst 2020, 145, 908–916. [Google Scholar] [CrossRef]
- Huang, Y.; Cui, L.; Xue, Y.; Zhang, S.; Zhu, N.; Liang, J.; Li, G. Ultrasensitive cholesterol biosensor based on enzymatic silver deposition on gold nanoparticles modified screen-printed carbon electrode. Mater. Sci. Eng. C 2017, 77, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Huang, W.; Chen, Z.; Yi, C.; Jiang, L. Simultaneous detection of glucose, uric acid and cholesterol using flexible microneedle electrode array-based biosensor and multi-channel portable electrochemical analyzer. Sens. Actuators B Chem. 2019, 287, 102–110. [Google Scholar] [CrossRef]
- Nantaphol, S.; Chailapakul, O.; Siangproh, W. Sensitive and selective electrochemical sensor using silver nanoparticles modified glassy carbon electrode for determination of cholesterol in bovine serum. Sens. Actuators B Chem. 2015, 207, 193–198. [Google Scholar] [CrossRef]
- Umar, A.; Ahmad, R.; Kumar, R.; Ibrahim, A.A.; Baskoutas, S. Bi2O2CO3 nanoplates: Fabrication and characterization of highly sensitive and selective cholesterol biosensor. J. Alloys Compd. 2016, 683, 433–438. [Google Scholar] [CrossRef]
- Kaur, G.; Tomar, M.; Gupta, V. Gupta, Development of a microfluidic electrochemical biosensor: Prospect for point-of-care cholesterol monitoring. Sens. Actuators B Chem. 2018, 261, 460–466. [Google Scholar] [CrossRef]
- Lin, X.; Ni, Y.; Kokot, S. Electrochemical cholesterol sensor based on cholesterol oxidase and MoS2-AuNPs modified glassy carbon electrode. Sens. Actuators B Chem. 2016, 233, 100–106. [Google Scholar] [CrossRef]
- Xu, L.; Hou, Y.; Zhang, M.; Cheng, T.; Huang, W.; Yao, C.; Wu, Q. Electrochemical sensor based on a silver nanowires modified electrode for the determination of cholesterol. Anal. Methods 2015, 7, 5649–5653. [Google Scholar] [CrossRef]
- Ruecha, N.; Rangkupan, R.; Rodthongkum, N.; Chailapakul, O. Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite. Biosens. Bioelectron. 2014, 52, 13–19. [Google Scholar] [CrossRef]
- Shrestha, B.K.; Ahmad, R.; Shrestha, S.; Park, C.H.; Kim, C.S. In situ synthesis of cylindrical spongy polypyrrole doped protonated graphitic carbon nitride for cholesterol sensing application. Biosens. Bioelectron. 2017, 94, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Dervisevic, M.; Çevik, E.; Şenel, M.; Nergiz, C.; Abasiyanik, M.F. Amperometric cholesterol biosensor based on reconstituted cholesterol oxidase on boronic acid functional conducting polymers. J. Electroanal. Chem. 2016, 776, 18–24. [Google Scholar] [CrossRef]
- Anh, T.T.N.; Lan, H.; Tam, L.T.; Pham, V.-H.; Tam, P.D. Highly Sensitive Nonenzymatic Cholesterol Sensor Based on Zinc Oxide Nanorods. J. Electron. Mater. 2018, 47, 6701–6708. [Google Scholar] [CrossRef]
- Khaliq, N.; Rasheed, M.A.; Cha, G.; Khan, M.; Karim, S.; Schmuki, P.; Ali, G. Development of non-enzymatic cholesterol bio-sensor based on TiO2 nanotubes decorated with Cu2O nanoparticles. Sens. Actuators B Chem. 2020, 302, 127200. [Google Scholar] [CrossRef]
- Rengaraj, A.; Haldorai, Y.; Kwak, C.H.; Ahn, S.; Jeon, K.-J.; Park, S.H.; Han, Y.-K.; Huh, Y.S. Electrodeposition of flower-like nickel oxide on CVD-grown graphene to develop an electrochemical non-enzymatic biosensor. J. Mater. Chem. B. 2015, 3, 6301–6309. [Google Scholar] [CrossRef] [PubMed]
- Alexander, S.; Baraneedharan, P.; Balasubrahmanyan, S.; Ramaprabhu, S. Modified graphene based molecular imprinted polymer for electrochemical non-enzymatic cholesterol biosensor. Eur. Polym. J. 2017, 86, 106–116. [Google Scholar] [CrossRef]
- Gautam, V.; Singh, K.P.; Yadav, V.L. Polyaniline/MWCNTs/starch modified carbon paste electrode for non-enzymatic detection of cholesterol: Application to real sample (cow milk). Anal. Bioanal. Chem. 2018, 410, 2173–2181. [Google Scholar] [CrossRef] [PubMed]
- Ganganboina, A.B.; Doong, R.-A. Functionalized N-doped graphene quantum dots for electrochemical determination of cholesterol through host-guest inclusion. Microchim. Acta 2018, 185, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhao, H.; Fan, S.; Zhao, G.; Ran, X.; Li, C.-P. Electrochemical detection of cholesterol based on competitive host-guest recognition using a β-cyclodextrin/poly(N-acetylaniline)/graphene-modified electrode. RSC Adv. 2015, 5, 64146–64155. [Google Scholar] [CrossRef]
- Zhu, J.; Ye, Z.; Fan, X.; Wang, H.; Wang, Z.; Chen, B. A highly sensitive biosensor based on Au NPs/rGO-PAMAM-Fc nanomaterials for detection of cholesterol. Int. J. Nanomed. 2019, 14, 835–849. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Li, X.-B.; Kim, J.; Lim, B.O.; Ahammad, A.S.; Lee, J.-J. A cholesterol biosensor based on a bi-enzyme immobilized on conducting poly(thionine) film. Sens. Actuators B Chem. 2014, 202, 536–542. [Google Scholar] [CrossRef]
- Vasilescu, A.; Hayat, A.; Gáspár, S.; Marty, J.-L. Advantages of Carbon Nanomaterials in Electrochemical Aptasensors for Food Analysis. Electroanalysis 2018, 30, 2–19. [Google Scholar] [CrossRef]
- Justino, C.I.; Gomes, A.R.; Freitas, A.C.; Duarte, A.C.; Rocha-Santos, T.A. Graphene based sensors and biosensors. TrAC Trends Anal. Chem. 2017, 91, 53–66. [Google Scholar] [CrossRef]
- Hossain, M.M.; Lee, S.Y.; Yadav, H.M.; Lee, J.-J. Role of electrolyte at the interface and in the dispersion of graphene in organic solvents. J. Mater. Sci. Mater. Electron. 2019, 31, 404–413. [Google Scholar] [CrossRef]
- Chiang, H.-C.; Wang, Y.; Zhang, Q.; Levon, K. Optimization of the Electrodeposition of Gold Nanoparticles for the Application of Highly Sensitive, Label-Free Biosensor. Biosensors 2019, 9, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, H.M.; Park, J.-D.; Kang, H.-C.; Lee, J.-J. Recent Development in Nanomaterial-Based Electrochemical Sensors for Cholesterol Detection. Chemosensors 2021, 9, 98. https://doi.org/10.3390/chemosensors9050098
Yadav HM, Park J-D, Kang H-C, Lee J-J. Recent Development in Nanomaterial-Based Electrochemical Sensors for Cholesterol Detection. Chemosensors. 2021; 9(5):98. https://doi.org/10.3390/chemosensors9050098
Chicago/Turabian StyleYadav, Hemraj Mahipati, Jong-Deok Park, Hyeong-Cheol Kang, and Jae-Joon Lee. 2021. "Recent Development in Nanomaterial-Based Electrochemical Sensors for Cholesterol Detection" Chemosensors 9, no. 5: 98. https://doi.org/10.3390/chemosensors9050098
APA StyleYadav, H. M., Park, J. -D., Kang, H. -C., & Lee, J. -J. (2021). Recent Development in Nanomaterial-Based Electrochemical Sensors for Cholesterol Detection. Chemosensors, 9(5), 98. https://doi.org/10.3390/chemosensors9050098